Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright © 2015 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Jason Ekstrand (jason@jlekstrand.net)
25
 *
26
 */
27
 
28
#include "nir.h"
29
 
30
/*
31
 * Implements a pass that lowers vector phi nodes to scalar phi nodes when
32
 * we don't think it will hurt anything.
33
 */
34
 
35
struct lower_phis_to_scalar_state {
36
   void *mem_ctx;
37
   void *dead_ctx;
38
 
39
   /* Hash table marking which phi nodes are scalarizable.  The key is
40
    * pointers to phi instructions and the entry is either NULL for not
41
    * scalarizable or non-null for scalarizable.
42
    */
43
   struct hash_table *phi_table;
44
};
45
 
46
static bool
47
should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state);
48
 
49
static bool
50
is_phi_src_scalarizable(nir_phi_src *src,
51
                        struct lower_phis_to_scalar_state *state)
52
{
53
   /* Don't know what to do with non-ssa sources */
54
   if (!src->src.is_ssa)
55
      return false;
56
 
57
   nir_instr *src_instr = src->src.ssa->parent_instr;
58
   switch (src_instr->type) {
59
   case nir_instr_type_alu: {
60
      nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
61
 
62
      /* ALU operations with output_size == 0 should be scalarized.  We
63
       * will also see a bunch of vecN operations from scalarizing ALU
64
       * operations and, since they can easily be copy-propagated, they
65
       * are ok too.
66
       */
67
      return nir_op_infos[src_alu->op].output_size == 0 ||
68
             src_alu->op == nir_op_vec2 ||
69
             src_alu->op == nir_op_vec3 ||
70
             src_alu->op == nir_op_vec4;
71
   }
72
 
73
   case nir_instr_type_phi:
74
      /* A phi is scalarizable if we're going to lower it */
75
      return should_lower_phi(nir_instr_as_phi(src_instr), state);
76
 
77
   case nir_instr_type_load_const:
78
      /* These are trivially scalarizable */
79
      return true;
80
 
81
   case nir_instr_type_intrinsic: {
82
      nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
83
 
84
      switch (src_intrin->intrinsic) {
85
      case nir_intrinsic_load_var:
86
         return src_intrin->variables[0]->var->data.mode == nir_var_shader_in ||
87
                src_intrin->variables[0]->var->data.mode == nir_var_uniform;
88
 
89
      case nir_intrinsic_interp_var_at_centroid:
90
      case nir_intrinsic_interp_var_at_sample:
91
      case nir_intrinsic_interp_var_at_offset:
92
      case nir_intrinsic_load_uniform:
93
      case nir_intrinsic_load_uniform_indirect:
94
      case nir_intrinsic_load_ubo:
95
      case nir_intrinsic_load_ubo_indirect:
96
      case nir_intrinsic_load_input:
97
      case nir_intrinsic_load_input_indirect:
98
         return true;
99
      default:
100
         break;
101
      }
102
   }
103
 
104
   default:
105
      /* We can't scalarize this type of instruction */
106
      return false;
107
   }
108
}
109
 
110
/**
111
 * Determines if the given phi node should be lowered.  The only phi nodes
112
 * we will scalarize at the moment are those where all of the sources are
113
 * scalarizable.
114
 *
115
 * The reason for this comes down to coalescing.  Since phi sources can't
116
 * swizzle, swizzles on phis have to be resolved by inserting a mov right
117
 * before the phi.  The choice then becomes between movs to pick off
118
 * components for a scalar phi or potentially movs to recombine components
119
 * for a vector phi.  The problem is that the movs generated to pick off
120
 * the components are almost uncoalescable.  We can't coalesce them in NIR
121
 * because we need them to pick off components and we can't coalesce them
122
 * in the backend because the source register is a vector and the
123
 * destination is a scalar that may be used at other places in the program.
124
 * On the other hand, if we have a bunch of scalars going into a vector
125
 * phi, the situation is much better.  In this case, if the SSA def is
126
 * generated in the predecessor block to the corresponding phi source, the
127
 * backend code will be an ALU op into a temporary and then a mov into the
128
 * given vector component;  this move can almost certainly be coalesced
129
 * away.
130
 */
131
static bool
132
should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state)
133
{
134
   /* Already scalar */
135
   if (phi->dest.ssa.num_components == 1)
136
      return false;
137
 
138
   struct hash_entry *entry = _mesa_hash_table_search(state->phi_table, phi);
139
   if (entry)
140
      return entry->data != NULL;
141
 
142
   /* Insert an entry and mark it as scalarizable for now. That way
143
    * we don't recurse forever and a cycle in the dependence graph
144
    * won't automatically make us fail to scalarize.
145
    */
146
   entry = _mesa_hash_table_insert(state->phi_table, phi, (void *)(intptr_t)1);
147
 
148
   bool scalarizable = true;
149
 
150
   nir_foreach_phi_src(phi, src) {
151
      scalarizable = is_phi_src_scalarizable(src, state);
152
      if (!scalarizable)
153
         break;
154
   }
155
 
156
   entry->data = (void *)(intptr_t)scalarizable;
157
 
158
   return scalarizable;
159
}
160
 
161
static bool
162
lower_phis_to_scalar_block(nir_block *block, void *void_state)
163
{
164
   struct lower_phis_to_scalar_state *state = void_state;
165
 
166
   /* Find the last phi node in the block */
167
   nir_phi_instr *last_phi = NULL;
168
   nir_foreach_instr(block, instr) {
169
      if (instr->type != nir_instr_type_phi)
170
         break;
171
 
172
      last_phi = nir_instr_as_phi(instr);
173
   }
174
 
175
   /* We have to handle the phi nodes in their own pass due to the way
176
    * we're modifying the linked list of instructions.
177
    */
178
   nir_foreach_instr_safe(block, instr) {
179
      if (instr->type != nir_instr_type_phi)
180
         break;
181
 
182
      nir_phi_instr *phi = nir_instr_as_phi(instr);
183
 
184
      if (!should_lower_phi(phi, state))
185
         continue;
186
 
187
      /* Create a vecN operation to combine the results.  Most of these
188
       * will be redundant, but copy propagation should clean them up for
189
       * us.  No need to add the complexity here.
190
       */
191
      nir_op vec_op;
192
      switch (phi->dest.ssa.num_components) {
193
      case 2: vec_op = nir_op_vec2; break;
194
      case 3: vec_op = nir_op_vec3; break;
195
      case 4: vec_op = nir_op_vec4; break;
196
      default: unreachable("Invalid number of components");
197
      }
198
 
199
      nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, vec_op);
200
      nir_ssa_dest_init(&vec->instr, &vec->dest.dest,
201
                        phi->dest.ssa.num_components, NULL);
202
      vec->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
203
 
204
      for (unsigned i = 0; i < phi->dest.ssa.num_components; i++) {
205
         nir_phi_instr *new_phi = nir_phi_instr_create(state->mem_ctx);
206
         nir_ssa_dest_init(&new_phi->instr, &new_phi->dest, 1, NULL);
207
 
208
         vec->src[i].src = nir_src_for_ssa(&new_phi->dest.ssa);
209
 
210
         nir_foreach_phi_src(phi, src) {
211
            /* We need to insert a mov to grab the i'th component of src */
212
            nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
213
                                                      nir_op_imov);
214
            nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 1, NULL);
215
            mov->dest.write_mask = 1;
216
            nir_src_copy(&mov->src[0].src, &src->src, state->mem_ctx);
217
            mov->src[0].swizzle[0] = i;
218
 
219
            /* Insert at the end of the predecessor but before the jump */
220
            nir_instr *pred_last_instr = nir_block_last_instr(src->pred);
221
            if (pred_last_instr && pred_last_instr->type == nir_instr_type_jump)
222
               nir_instr_insert_before(pred_last_instr, &mov->instr);
223
            else
224
               nir_instr_insert_after_block(src->pred, &mov->instr);
225
 
226
            nir_phi_src *new_src = ralloc(new_phi, nir_phi_src);
227
            new_src->pred = src->pred;
228
            new_src->src = nir_src_for_ssa(&mov->dest.dest.ssa);
229
 
230
            exec_list_push_tail(&new_phi->srcs, &new_src->node);
231
         }
232
 
233
         nir_instr_insert_before(&phi->instr, &new_phi->instr);
234
      }
235
 
236
      nir_instr_insert_after(&last_phi->instr, &vec->instr);
237
 
238
      nir_ssa_def_rewrite_uses(&phi->dest.ssa,
239
                               nir_src_for_ssa(&vec->dest.dest.ssa),
240
                               state->mem_ctx);
241
 
242
      ralloc_steal(state->dead_ctx, phi);
243
      nir_instr_remove(&phi->instr);
244
 
245
      /* We're using the safe iterator and inserting all the newly
246
       * scalarized phi nodes before their non-scalarized version so that's
247
       * ok.  However, we are also inserting vec operations after all of
248
       * the last phi node so once we get here, we can't trust even the
249
       * safe iterator to stop properly.  We have to break manually.
250
       */
251
      if (instr == &last_phi->instr)
252
         break;
253
   }
254
 
255
   return true;
256
}
257
 
258
static void
259
lower_phis_to_scalar_impl(nir_function_impl *impl)
260
{
261
   struct lower_phis_to_scalar_state state;
262
 
263
   state.mem_ctx = ralloc_parent(impl);
264
   state.dead_ctx = ralloc_context(NULL);
265
   state.phi_table = _mesa_hash_table_create(state.dead_ctx, _mesa_hash_pointer,
266
                                             _mesa_key_pointer_equal);
267
 
268
   nir_foreach_block(impl, lower_phis_to_scalar_block, &state);
269
 
270
   nir_metadata_preserve(impl, nir_metadata_block_index |
271
                               nir_metadata_dominance);
272
 
273
   ralloc_free(state.dead_ctx);
274
}
275
 
276
/** A pass that lowers vector phi nodes to scalar
277
 *
278
 * This pass loops through the blocks and lowers looks for vector phi nodes
279
 * it can lower to scalar phi nodes.  Not all phi nodes are lowered.  For
280
 * instance, if one of the sources is a non-scalarizable vector, then we
281
 * don't bother lowering because that would generate hard-to-coalesce movs.
282
 */
283
void
284
nir_lower_phis_to_scalar(nir_shader *shader)
285
{
286
   nir_foreach_overload(shader, overload) {
287
      if (overload->impl)
288
         lower_phis_to_scalar_impl(overload->impl);
289
   }
290
}