Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright © 2014 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Jason Ekstrand (jason@jlekstrand.net)
25
 *
26
 */
27
 
28
#include "nir.h"
29
#include "nir_vla.h"
30
 
31
/*
32
 * This file implements an out-of-SSA pass as described in "Revisiting
33
 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
34
 * Boissinot et. al.
35
 */
36
 
37
struct from_ssa_state {
38
   void *mem_ctx;
39
   void *dead_ctx;
40
   struct hash_table *merge_node_table;
41
   nir_instr *instr;
42
   nir_function_impl *impl;
43
};
44
 
45
/* Returns true if a dominates b */
46
static bool
47
ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
48
{
49
   if (a->live_index == 0) {
50
      /* SSA undefs always dominate */
51
      return true;
52
   } else if (b->live_index < a->live_index) {
53
      return false;
54
   } else if (a->parent_instr->block == b->parent_instr->block) {
55
      return a->live_index <= b->live_index;
56
   } else {
57
      return nir_block_dominates(a->parent_instr->block,
58
                                 b->parent_instr->block);
59
   }
60
}
61
 
62
 
63
/* The following data structure, which I have named merge_set is a way of
64
 * representing a set registers of non-interfering registers.  This is
65
 * based on the concept of a "dominence forest" presented in "Fast Copy
66
 * Coalescing and Live-Range Identification" by Budimlic et. al. but the
67
 * implementation concept is taken from  "Revisiting Out-of-SSA Translation
68
 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
69
 *
70
 * Each SSA definition is associated with a merge_node and the association
71
 * is represented by a combination of a hash table and the "def" parameter
72
 * in the merge_node structure.  The merge_set stores a linked list of
73
 * merge_node's in dominence order of the ssa definitions.  (Since the
74
 * liveness analysis pass indexes the SSA values in dominence order for us,
75
 * this is an easy thing to keep up.)  It is assumed that no pair of the
76
 * nodes in a given set interfere.  Merging two sets or checking for
77
 * interference can be done in a single linear-time merge-sort walk of the
78
 * two lists of nodes.
79
 */
80
struct merge_set;
81
 
82
typedef struct {
83
   struct exec_node node;
84
   struct merge_set *set;
85
   nir_ssa_def *def;
86
} merge_node;
87
 
88
typedef struct merge_set {
89
   struct exec_list nodes;
90
   unsigned size;
91
   nir_register *reg;
92
} merge_set;
93
 
94
#if 0
95
static void
96
merge_set_dump(merge_set *set, FILE *fp)
97
{
98
   nir_ssa_def *dom[set->size];
99
   int dom_idx = -1;
100
 
101
   foreach_list_typed(merge_node, node, node, &set->nodes) {
102
      while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
103
         dom_idx--;
104
 
105
      for (int i = 0; i <= dom_idx; i++)
106
         fprintf(fp, "  ");
107
 
108
      if (node->def->name)
109
         fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
110
      else
111
         fprintf(fp, "ssa_%d\n", node->def->index);
112
 
113
      dom[++dom_idx] = node->def;
114
   }
115
}
116
#endif
117
 
118
static merge_node *
119
get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
120
{
121
   struct hash_entry *entry =
122
      _mesa_hash_table_search(state->merge_node_table, def);
123
   if (entry)
124
      return entry->data;
125
 
126
   merge_set *set = ralloc(state->dead_ctx, merge_set);
127
   exec_list_make_empty(&set->nodes);
128
   set->size = 1;
129
   set->reg = NULL;
130
 
131
   merge_node *node = ralloc(state->dead_ctx, merge_node);
132
   node->set = set;
133
   node->def = def;
134
   exec_list_push_head(&set->nodes, &node->node);
135
 
136
   _mesa_hash_table_insert(state->merge_node_table, def, node);
137
 
138
   return node;
139
}
140
 
141
static bool
142
merge_nodes_interfere(merge_node *a, merge_node *b)
143
{
144
   return nir_ssa_defs_interfere(a->def, b->def);
145
}
146
 
147
/* Merges b into a */
148
static merge_set *
149
merge_merge_sets(merge_set *a, merge_set *b)
150
{
151
   struct exec_node *an = exec_list_get_head(&a->nodes);
152
   struct exec_node *bn = exec_list_get_head(&b->nodes);
153
   while (!exec_node_is_tail_sentinel(bn)) {
154
      merge_node *a_node = exec_node_data(merge_node, an, node);
155
      merge_node *b_node = exec_node_data(merge_node, bn, node);
156
 
157
      if (exec_node_is_tail_sentinel(an) ||
158
          a_node->def->live_index > b_node->def->live_index) {
159
         struct exec_node *next = bn->next;
160
         exec_node_remove(bn);
161
         exec_node_insert_node_before(an, bn);
162
         exec_node_data(merge_node, bn, node)->set = a;
163
         bn = next;
164
      } else {
165
         an = an->next;
166
      }
167
   }
168
 
169
   a->size += b->size;
170
   b->size = 0;
171
 
172
   return a;
173
}
174
 
175
/* Checks for any interference between two merge sets
176
 *
177
 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
178
 * Translation for Correctness, Code Quality, and Efficiency" by
179
 * Boissinot et. al.
180
 */
181
static bool
182
merge_sets_interfere(merge_set *a, merge_set *b)
183
{
184
   NIR_VLA(merge_node *, dom, a->size + b->size);
185
   int dom_idx = -1;
186
 
187
   struct exec_node *an = exec_list_get_head(&a->nodes);
188
   struct exec_node *bn = exec_list_get_head(&b->nodes);
189
   while (!exec_node_is_tail_sentinel(an) ||
190
          !exec_node_is_tail_sentinel(bn)) {
191
 
192
      merge_node *current;
193
      if (exec_node_is_tail_sentinel(an)) {
194
         current = exec_node_data(merge_node, bn, node);
195
         bn = bn->next;
196
      } else if (exec_node_is_tail_sentinel(bn)) {
197
         current = exec_node_data(merge_node, an, node);
198
         an = an->next;
199
      } else {
200
         merge_node *a_node = exec_node_data(merge_node, an, node);
201
         merge_node *b_node = exec_node_data(merge_node, bn, node);
202
 
203
         if (a_node->def->live_index <= b_node->def->live_index) {
204
            current = a_node;
205
            an = an->next;
206
         } else {
207
            current = b_node;
208
            bn = bn->next;
209
         }
210
      }
211
 
212
      while (dom_idx >= 0 &&
213
             !ssa_def_dominates(dom[dom_idx]->def, current->def))
214
         dom_idx--;
215
 
216
      if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
217
         return true;
218
 
219
      dom[++dom_idx] = current;
220
   }
221
 
222
   return false;
223
}
224
 
225
static bool
226
add_parallel_copy_to_end_of_block(nir_block *block, void *void_state)
227
{
228
   struct from_ssa_state *state = void_state;
229
 
230
   bool need_end_copy = false;
231
   if (block->successors[0]) {
232
      nir_instr *instr = nir_block_first_instr(block->successors[0]);
233
      if (instr && instr->type == nir_instr_type_phi)
234
         need_end_copy = true;
235
   }
236
 
237
   if (block->successors[1]) {
238
      nir_instr *instr = nir_block_first_instr(block->successors[1]);
239
      if (instr && instr->type == nir_instr_type_phi)
240
         need_end_copy = true;
241
   }
242
 
243
   if (need_end_copy) {
244
      /* If one of our successors has at least one phi node, we need to
245
       * create a parallel copy at the end of the block but before the jump
246
       * (if there is one).
247
       */
248
      nir_parallel_copy_instr *pcopy =
249
         nir_parallel_copy_instr_create(state->dead_ctx);
250
 
251
      nir_instr *last_instr = nir_block_last_instr(block);
252
      if (last_instr && last_instr->type == nir_instr_type_jump) {
253
         nir_instr_insert_before(last_instr, &pcopy->instr);
254
      } else {
255
         nir_instr_insert_after_block(block, &pcopy->instr);
256
      }
257
   }
258
 
259
   return true;
260
}
261
 
262
static nir_parallel_copy_instr *
263
get_parallel_copy_at_end_of_block(nir_block *block)
264
{
265
   nir_instr *last_instr = nir_block_last_instr(block);
266
   if (last_instr == NULL)
267
      return NULL;
268
 
269
   /* The last instruction may be a jump in which case the parallel copy is
270
    * right before it.
271
    */
272
   if (last_instr->type == nir_instr_type_jump)
273
      last_instr = nir_instr_prev(last_instr);
274
 
275
   if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
276
      return nir_instr_as_parallel_copy(last_instr);
277
   else
278
      return NULL;
279
}
280
 
281
/** Isolate phi nodes with parallel copies
282
 *
283
 * In order to solve the dependency problems with the sources and
284
 * destinations of phi nodes, we first isolate them by adding parallel
285
 * copies to the beginnings and ends of basic blocks.  For every block with
286
 * phi nodes, we add a parallel copy immediately following the last phi
287
 * node that copies the destinations of all of the phi nodes to new SSA
288
 * values.  We also add a parallel copy to the end of every block that has
289
 * a successor with phi nodes that, for each phi node in each successor,
290
 * copies the corresponding sorce of the phi node and adjust the phi to
291
 * used the destination of the parallel copy.
292
 *
293
 * In SSA form, each value has exactly one definition.  What this does is
294
 * ensure that each value used in a phi also has exactly one use.  The
295
 * destinations of phis are only used by the parallel copy immediately
296
 * following the phi nodes and.  Thanks to the parallel copy at the end of
297
 * the predecessor block, the sources of phi nodes are are the only use of
298
 * that value.  This allows us to immediately assign all the sources and
299
 * destinations of any given phi node to the same register without worrying
300
 * about interference at all.  We do coalescing to get rid of the parallel
301
 * copies where possible.
302
 *
303
 * Before this pass can be run, we have to iterate over the blocks with
304
 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
305
 * the ends of blocks exist.  We can create the ones at the beginnings as
306
 * we go, but the ones at the ends of blocks need to be created ahead of
307
 * time because of potential back-edges in the CFG.
308
 */
309
static bool
310
isolate_phi_nodes_block(nir_block *block, void *void_state)
311
{
312
   struct from_ssa_state *state = void_state;
313
 
314
   nir_instr *last_phi_instr = NULL;
315
   nir_foreach_instr(block, instr) {
316
      /* Phi nodes only ever come at the start of a block */
317
      if (instr->type != nir_instr_type_phi)
318
         break;
319
 
320
      last_phi_instr = instr;
321
   }
322
 
323
   /* If we don't have any phi's, then there's nothing for us to do. */
324
   if (last_phi_instr == NULL)
325
      return true;
326
 
327
   /* If we have phi nodes, we need to create a parallel copy at the
328
    * start of this block but after the phi nodes.
329
    */
330
   nir_parallel_copy_instr *block_pcopy =
331
      nir_parallel_copy_instr_create(state->dead_ctx);
332
   nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
333
 
334
   nir_foreach_instr(block, instr) {
335
      /* Phi nodes only ever come at the start of a block */
336
      if (instr->type != nir_instr_type_phi)
337
         break;
338
 
339
      nir_phi_instr *phi = nir_instr_as_phi(instr);
340
      assert(phi->dest.is_ssa);
341
      nir_foreach_phi_src(phi, src) {
342
         nir_parallel_copy_instr *pcopy =
343
            get_parallel_copy_at_end_of_block(src->pred);
344
         assert(pcopy);
345
 
346
         nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
347
                                                  nir_parallel_copy_entry);
348
         nir_ssa_dest_init(&pcopy->instr, &entry->dest,
349
                           phi->dest.ssa.num_components, src->src.ssa->name);
350
         exec_list_push_tail(&pcopy->entries, &entry->node);
351
 
352
         assert(src->src.is_ssa);
353
         nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
354
 
355
         nir_instr_rewrite_src(&phi->instr, &src->src,
356
                               nir_src_for_ssa(&entry->dest.ssa));
357
      }
358
 
359
      nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
360
                                               nir_parallel_copy_entry);
361
      nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
362
                        phi->dest.ssa.num_components, phi->dest.ssa.name);
363
      exec_list_push_tail(&block_pcopy->entries, &entry->node);
364
 
365
      nir_ssa_def_rewrite_uses(&phi->dest.ssa,
366
                               nir_src_for_ssa(&entry->dest.ssa),
367
                               state->mem_ctx);
368
 
369
      nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
370
                            nir_src_for_ssa(&phi->dest.ssa));
371
   }
372
 
373
   return true;
374
}
375
 
376
static bool
377
coalesce_phi_nodes_block(nir_block *block, void *void_state)
378
{
379
   struct from_ssa_state *state = void_state;
380
 
381
   nir_foreach_instr(block, instr) {
382
      /* Phi nodes only ever come at the start of a block */
383
      if (instr->type != nir_instr_type_phi)
384
         break;
385
 
386
      nir_phi_instr *phi = nir_instr_as_phi(instr);
387
 
388
      assert(phi->dest.is_ssa);
389
      merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
390
 
391
      nir_foreach_phi_src(phi, src) {
392
         assert(src->src.is_ssa);
393
         merge_node *src_node = get_merge_node(src->src.ssa, state);
394
         if (src_node->set != dest_node->set)
395
            merge_merge_sets(dest_node->set, src_node->set);
396
      }
397
   }
398
 
399
   return true;
400
}
401
 
402
static void
403
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
404
                                 struct from_ssa_state *state)
405
{
406
   nir_foreach_parallel_copy_entry(pcopy, entry) {
407
      if (!entry->src.is_ssa)
408
         continue;
409
 
410
      /* Since load_const instructions are SSA only, we can't replace their
411
       * destinations with registers and, therefore, can't coalesce them.
412
       */
413
      if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
414
         continue;
415
 
416
      /* Don't try and coalesce these */
417
      if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
418
         continue;
419
 
420
      merge_node *src_node = get_merge_node(entry->src.ssa, state);
421
      merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
422
 
423
      if (src_node->set == dest_node->set)
424
         continue;
425
 
426
      if (!merge_sets_interfere(src_node->set, dest_node->set))
427
         merge_merge_sets(src_node->set, dest_node->set);
428
   }
429
}
430
 
431
static bool
432
aggressive_coalesce_block(nir_block *block, void *void_state)
433
{
434
   struct from_ssa_state *state = void_state;
435
 
436
   nir_parallel_copy_instr *start_pcopy = NULL;
437
   nir_foreach_instr(block, instr) {
438
      /* Phi nodes only ever come at the start of a block */
439
      if (instr->type != nir_instr_type_phi) {
440
         if (instr->type != nir_instr_type_parallel_copy)
441
            break; /* The parallel copy must be right after the phis */
442
 
443
         start_pcopy = nir_instr_as_parallel_copy(instr);
444
 
445
         aggressive_coalesce_parallel_copy(start_pcopy, state);
446
 
447
         break;
448
      }
449
   }
450
 
451
   nir_parallel_copy_instr *end_pcopy =
452
      get_parallel_copy_at_end_of_block(block);
453
 
454
   if (end_pcopy && end_pcopy != start_pcopy)
455
      aggressive_coalesce_parallel_copy(end_pcopy, state);
456
 
457
   return true;
458
}
459
 
460
static bool
461
rewrite_ssa_def(nir_ssa_def *def, void *void_state)
462
{
463
   struct from_ssa_state *state = void_state;
464
   nir_register *reg;
465
 
466
   struct hash_entry *entry =
467
      _mesa_hash_table_search(state->merge_node_table, def);
468
   if (entry) {
469
      /* In this case, we're part of a phi web.  Use the web's register. */
470
      merge_node *node = (merge_node *)entry->data;
471
 
472
      /* If it doesn't have a register yet, create one.  Note that all of
473
       * the things in the merge set should be the same so it doesn't
474
       * matter which node's definition we use.
475
       */
476
      if (node->set->reg == NULL) {
477
         node->set->reg = nir_local_reg_create(state->impl);
478
         node->set->reg->name = def->name;
479
         node->set->reg->num_components = def->num_components;
480
         node->set->reg->num_array_elems = 0;
481
      }
482
 
483
      reg = node->set->reg;
484
   } else {
485
      /* We leave load_const SSA values alone.  They act as immediates to
486
       * the backend.  If it got coalesced into a phi, that's ok.
487
       */
488
      if (def->parent_instr->type == nir_instr_type_load_const)
489
         return true;
490
 
491
      reg = nir_local_reg_create(state->impl);
492
      reg->name = def->name;
493
      reg->num_components = def->num_components;
494
      reg->num_array_elems = 0;
495
 
496
      /* This register comes from an SSA definition that is defined and not
497
       * part of a phi-web.  Therefore, we know it has a single unique
498
       * definition that dominates all of its uses; we can copy the
499
       * parent_instr from the SSA def safely.
500
       */
501
      if (def->parent_instr->type != nir_instr_type_ssa_undef)
502
         reg->parent_instr = def->parent_instr;
503
   }
504
 
505
   nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg), state->mem_ctx);
506
   assert(list_empty(&def->uses) && list_empty(&def->if_uses));
507
 
508
   if (def->parent_instr->type == nir_instr_type_ssa_undef)
509
      return true;
510
 
511
   assert(def->parent_instr->type != nir_instr_type_load_const);
512
 
513
   /* At this point we know a priori that this SSA def is part of a
514
    * nir_dest.  We can use exec_node_data to get the dest pointer.
515
    */
516
   nir_dest *dest = exec_node_data(nir_dest, def, ssa);
517
 
518
   *dest = nir_dest_for_reg(reg);
519
   dest->reg.parent_instr = state->instr;
520
   list_addtail(&dest->reg.def_link, ®->defs);
521
 
522
   return true;
523
}
524
 
525
/* Resolves ssa definitions to registers.  While we're at it, we also
526
 * remove phi nodes and ssa_undef instructions
527
 */
528
static bool
529
resolve_registers_block(nir_block *block, void *void_state)
530
{
531
   struct from_ssa_state *state = void_state;
532
 
533
   nir_foreach_instr_safe(block, instr) {
534
      state->instr = instr;
535
      nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
536
 
537
      if (instr->type == nir_instr_type_ssa_undef ||
538
          instr->type == nir_instr_type_phi) {
539
         nir_instr_remove(instr);
540
         ralloc_steal(state->dead_ctx, instr);
541
      }
542
   }
543
   state->instr = NULL;
544
 
545
   return true;
546
}
547
 
548
static void
549
emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src,
550
          void *mem_ctx)
551
{
552
   assert(!dest_src.is_ssa &&
553
          dest_src.reg.indirect == NULL &&
554
          dest_src.reg.base_offset == 0);
555
 
556
   if (src.is_ssa)
557
      assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
558
   else
559
      assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
560
 
561
   nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
562
   nir_src_copy(&mov->src[0].src, &src, mem_ctx);
563
   mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
564
   mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
565
 
566
   nir_instr_insert_before(&pcopy->instr, &mov->instr);
567
}
568
 
569
/* Resolves a single parallel copy operation into a sequence of mov's
570
 *
571
 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
572
 * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
573
 * However, I never got the algorithm to work as written, so this version
574
 * is slightly modified.
575
 *
576
 * The algorithm works by playing this little shell game with the values.
577
 * We start by recording where every source value is and which source value
578
 * each destination value should receive.  We then grab any copy whose
579
 * destination is "empty", i.e. not used as a source, and do the following:
580
 *  - Find where its source value currently lives
581
 *  - Emit the move instruction
582
 *  - Set the location of the source value to the destination
583
 *  - Mark the location containing the source value
584
 *  - Mark the destination as no longer needing to be copied
585
 *
586
 * When we run out of "empty" destinations, we have a cycle and so we
587
 * create a temporary register, copy to that register, and mark the value
588
 * we copied as living in that temporary.  Now, the cycle is broken, so we
589
 * can continue with the above steps.
590
 */
591
static void
592
resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
593
                      struct from_ssa_state *state)
594
{
595
   unsigned num_copies = 0;
596
   nir_foreach_parallel_copy_entry(pcopy, entry) {
597
      /* Sources may be SSA */
598
      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
599
         continue;
600
 
601
      num_copies++;
602
   }
603
 
604
   if (num_copies == 0) {
605
      /* Hooray, we don't need any copies! */
606
      nir_instr_remove(&pcopy->instr);
607
      return;
608
   }
609
 
610
   /* The register/source corresponding to the given index */
611
   NIR_VLA_ZERO(nir_src, values, num_copies * 2);
612
 
613
   /* The current location of a given piece of data.  We will use -1 for "null" */
614
   NIR_VLA_FILL(int, loc, num_copies * 2, -1);
615
 
616
   /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
617
   NIR_VLA_FILL(int, pred, num_copies * 2, -1);
618
 
619
   /* The destinations we have yet to properly fill */
620
   NIR_VLA(int, to_do, num_copies * 2);
621
   int to_do_idx = -1;
622
 
623
   /* Now we set everything up:
624
    *  - All values get assigned a temporary index
625
    *  - Current locations are set from sources
626
    *  - Predicessors are recorded from sources and destinations
627
    */
628
   int num_vals = 0;
629
   nir_foreach_parallel_copy_entry(pcopy, entry) {
630
      /* Sources may be SSA */
631
      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
632
         continue;
633
 
634
      int src_idx = -1;
635
      for (int i = 0; i < num_vals; ++i) {
636
         if (nir_srcs_equal(values[i], entry->src))
637
            src_idx = i;
638
      }
639
      if (src_idx < 0) {
640
         src_idx = num_vals++;
641
         values[src_idx] = entry->src;
642
      }
643
 
644
      nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
645
 
646
      int dest_idx = -1;
647
      for (int i = 0; i < num_vals; ++i) {
648
         if (nir_srcs_equal(values[i], dest_src)) {
649
            /* Each destination of a parallel copy instruction should be
650
             * unique.  A destination may get used as a source, so we still
651
             * have to walk the list.  However, the predecessor should not,
652
             * at this point, be set yet, so we should have -1 here.
653
             */
654
            assert(pred[i] == -1);
655
            dest_idx = i;
656
         }
657
      }
658
      if (dest_idx < 0) {
659
         dest_idx = num_vals++;
660
         values[dest_idx] = dest_src;
661
      }
662
 
663
      loc[src_idx] = src_idx;
664
      pred[dest_idx] = src_idx;
665
 
666
      to_do[++to_do_idx] = dest_idx;
667
   }
668
 
669
   /* Currently empty destinations we can go ahead and fill */
670
   NIR_VLA(int, ready, num_copies * 2);
671
   int ready_idx = -1;
672
 
673
   /* Mark the ones that are ready for copying.  We know an index is a
674
    * destination if it has a predecessor and it's ready for copying if
675
    * it's not marked as containing data.
676
    */
677
   for (int i = 0; i < num_vals; i++) {
678
      if (pred[i] != -1 && loc[i] == -1)
679
         ready[++ready_idx] = i;
680
   }
681
 
682
   while (to_do_idx >= 0) {
683
      while (ready_idx >= 0) {
684
         int b = ready[ready_idx--];
685
         int a = pred[b];
686
         emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx);
687
 
688
         /* If any other copies want a they can find it at b */
689
         loc[a] = b;
690
 
691
         /* b has been filled, mark it as not needing to be copied */
692
         pred[b] = -1;
693
 
694
         /* If a needs to be filled, it's ready for copying now */
695
         if (pred[a] != -1)
696
            ready[++ready_idx] = a;
697
      }
698
      int b = to_do[to_do_idx--];
699
      if (pred[b] == -1)
700
         continue;
701
 
702
      /* If we got here, then we don't have any more trivial copies that we
703
       * can do.  We have to break a cycle, so we create a new temporary
704
       * register for that purpose.  Normally, if going out of SSA after
705
       * register allocation, you would want to avoid creating temporary
706
       * registers.  However, we are going out of SSA before register
707
       * allocation, so we would rather not create extra register
708
       * dependencies for the backend to deal with.  If it wants, the
709
       * backend can coalesce the (possibly multiple) temporaries.
710
       */
711
      assert(num_vals < num_copies * 2);
712
      nir_register *reg = nir_local_reg_create(state->impl);
713
      reg->name = "copy_temp";
714
      reg->num_array_elems = 0;
715
      if (values[b].is_ssa)
716
         reg->num_components = values[b].ssa->num_components;
717
      else
718
         reg->num_components = values[b].reg.reg->num_components;
719
      values[num_vals].is_ssa = false;
720
      values[num_vals].reg.reg = reg;
721
 
722
      emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx);
723
      loc[b] = num_vals;
724
      ready[++ready_idx] = b;
725
      num_vals++;
726
   }
727
 
728
   nir_instr_remove(&pcopy->instr);
729
}
730
 
731
/* Resolves the parallel copies in a block.  Each block can have at most
732
 * two:  One at the beginning, right after all the phi noces, and one at
733
 * the end (or right before the final jump if it exists).
734
 */
735
static bool
736
resolve_parallel_copies_block(nir_block *block, void *void_state)
737
{
738
   struct from_ssa_state *state = void_state;
739
 
740
   /* At this point, we have removed all of the phi nodes.  If a parallel
741
    * copy existed right after the phi nodes in this block, it is now the
742
    * first instruction.
743
    */
744
   nir_instr *first_instr = nir_block_first_instr(block);
745
   if (first_instr == NULL)
746
      return true; /* Empty, nothing to do. */
747
 
748
   if (first_instr->type == nir_instr_type_parallel_copy) {
749
      nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
750
 
751
      resolve_parallel_copy(pcopy, state);
752
   }
753
 
754
   /* It's possible that the above code already cleaned up the end parallel
755
    * copy.  However, doing so removed it form the instructions list so we
756
    * won't find it here.  Therefore, it's safe to go ahead and just look
757
    * for one and clean it up if it exists.
758
    */
759
   nir_parallel_copy_instr *end_pcopy =
760
      get_parallel_copy_at_end_of_block(block);
761
   if (end_pcopy)
762
      resolve_parallel_copy(end_pcopy, state);
763
 
764
   return true;
765
}
766
 
767
static void
768
nir_convert_from_ssa_impl(nir_function_impl *impl)
769
{
770
   struct from_ssa_state state;
771
 
772
   state.mem_ctx = ralloc_parent(impl);
773
   state.dead_ctx = ralloc_context(NULL);
774
   state.impl = impl;
775
   state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
776
                                                    _mesa_key_pointer_equal);
777
 
778
   nir_foreach_block(impl, add_parallel_copy_to_end_of_block, &state);
779
   nir_foreach_block(impl, isolate_phi_nodes_block, &state);
780
 
781
   /* Mark metadata as dirty before we ask for liveness analysis */
782
   nir_metadata_preserve(impl, nir_metadata_block_index |
783
                               nir_metadata_dominance);
784
 
785
   nir_metadata_require(impl, nir_metadata_live_variables |
786
                              nir_metadata_dominance);
787
 
788
   nir_foreach_block(impl, coalesce_phi_nodes_block, &state);
789
   nir_foreach_block(impl, aggressive_coalesce_block, &state);
790
 
791
   nir_foreach_block(impl, resolve_registers_block, &state);
792
 
793
   nir_foreach_block(impl, resolve_parallel_copies_block, &state);
794
 
795
   nir_metadata_preserve(impl, nir_metadata_block_index |
796
                               nir_metadata_dominance);
797
 
798
   /* Clean up dead instructions and the hash tables */
799
   _mesa_hash_table_destroy(state.merge_node_table, NULL);
800
   ralloc_free(state.dead_ctx);
801
}
802
 
803
void
804
nir_convert_from_ssa(nir_shader *shader)
805
{
806
   nir_foreach_overload(shader, overload) {
807
      if (overload->impl)
808
         nir_convert_from_ssa_impl(overload->impl);
809
   }
810
}