Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright 2011 Christoph Bumiller
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice shall be included in
12
 * all copies or substantial portions of the Software.
13
 *
14
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20
 * OTHER DEALINGS IN THE SOFTWARE.
21
 */
22
 
23
#include "codegen/nv50_ir_target_nvc0.h"
24
 
25
namespace nv50_ir {
26
 
27
Target *getTargetNVC0(unsigned int chipset)
28
{
29
   return new TargetNVC0(chipset);
30
}
31
 
32
TargetNVC0::TargetNVC0(unsigned int card) :
33
   Target(card < 0x110, false, card >= 0xe4)
34
{
35
   chipset = card;
36
   initOpInfo();
37
}
38
 
39
// BULTINS / LIBRARY FUNCTIONS:
40
 
41
// lazyness -> will just hardcode everything for the time being
42
 
43
#include "lib/gf100.asm.h"
44
#include "lib/gk104.asm.h"
45
#include "lib/gk110.asm.h"
46
 
47
void
48
TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
49
{
50
   switch (chipset & ~0xf) {
51
   case 0xe0:
52
      if (chipset < NVISA_GK20A_CHIPSET) {
53
         *code = (const uint32_t *)&gk104_builtin_code[0];
54
         *size = sizeof(gk104_builtin_code);
55
         break;
56
      }
57
      /* fall-through for GK20A */
58
   case 0xf0:
59
   case 0x100:
60
      *code = (const uint32_t *)&gk110_builtin_code[0];
61
      *size = sizeof(gk110_builtin_code);
62
      break;
63
   default:
64
      *code = (const uint32_t *)&gf100_builtin_code[0];
65
      *size = sizeof(gf100_builtin_code);
66
      break;
67
   }
68
}
69
 
70
uint32_t
71
TargetNVC0::getBuiltinOffset(int builtin) const
72
{
73
   assert(builtin < NVC0_BUILTIN_COUNT);
74
 
75
   switch (chipset & ~0xf) {
76
   case 0xe0:
77
      if (chipset < NVISA_GK20A_CHIPSET)
78
         return gk104_builtin_offsets[builtin];
79
      /* fall-through for GK20A */
80
   case 0xf0:
81
   case 0x100:
82
      return gk110_builtin_offsets[builtin];
83
   default:
84
      return gf100_builtin_offsets[builtin];
85
   }
86
}
87
 
88
struct opProperties
89
{
90
   operation op;
91
   unsigned int mNeg   : 4;
92
   unsigned int mAbs   : 4;
93
   unsigned int mNot   : 4;
94
   unsigned int mSat   : 4;
95
   unsigned int fConst : 3;
96
   unsigned int fImmd  : 4; // last bit indicates if full immediate is suppoted
97
};
98
 
99
static const struct opProperties _initProps[] =
100
{
101
   //           neg  abs  not  sat  c[]  imm
102
   { OP_ADD,    0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
103
   { OP_SUB,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
104
   { OP_MUL,    0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
105
   { OP_MAX,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
106
   { OP_MIN,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
107
   { OP_MAD,    0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
108
   { OP_MADSP,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
109
   { OP_ABS,    0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
110
   { OP_NEG,    0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
111
   { OP_CVT,    0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
112
   { OP_CEIL,   0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
113
   { OP_FLOOR,  0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
114
   { OP_TRUNC,  0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
115
   { OP_AND,    0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
116
   { OP_OR,     0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
117
   { OP_XOR,    0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
118
   { OP_SHL,    0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
119
   { OP_SHR,    0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
120
   { OP_SET,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
121
   { OP_SLCT,   0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
122
   { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
123
   { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
124
   { OP_COS,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
125
   { OP_SIN,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
126
   { OP_EX2,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
127
   { OP_LG2,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
128
   { OP_RCP,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
129
   { OP_RSQ,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
130
   { OP_DFDX,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
131
   { OP_DFDY,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
132
   { OP_CALL,   0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
133
   { OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
134
   { OP_INSBF,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
135
   { OP_EXTBF,  0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
136
   { OP_BFIND,  0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
137
   { OP_PERMT,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
138
   { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
139
   { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
140
   { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
141
   // saturate only:
142
   { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
143
   { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
144
   // nve4 ops:
145
   { OP_SULDB,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
146
   { OP_SUSTB,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
147
   { OP_SUSTP,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
148
   { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
149
   { OP_SUBFM,   0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
150
   { OP_SUEAU,   0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
151
};
152
 
153
void TargetNVC0::initOpInfo()
154
{
155
   unsigned int i, j;
156
 
157
   static const uint32_t commutative[(OP_LAST + 31) / 32] =
158
   {
159
      // ADD, MAD, MUL, AND, OR, XOR, MAX, MIN
160
      0x0670ca00, 0x0000003f, 0x00000000, 0x00000000
161
   };
162
 
163
   static const uint32_t shortForm[(OP_LAST + 31) / 32] =
164
   {
165
      // ADD, MAD, MUL, AND, OR, XOR, PRESIN, PREEX2, SFN, CVT, PINTERP, MOV
166
      0x0670ca00, 0x00000000, 0x00000000, 0x00000000
167
   };
168
 
169
   static const operation noDest[] =
170
   {
171
      OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
172
      OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
173
      OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
174
      OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
175
      OP_SUREDB, OP_BAR
176
   };
177
 
178
   static const operation noPred[] =
179
   {
180
      OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
181
      OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
182
   };
183
 
184
   for (i = 0; i < DATA_FILE_COUNT; ++i)
185
      nativeFileMap[i] = (DataFile)i;
186
   nativeFileMap[FILE_ADDRESS] = FILE_GPR;
187
 
188
   for (i = 0; i < OP_LAST; ++i) {
189
      opInfo[i].variants = NULL;
190
      opInfo[i].op = (operation)i;
191
      opInfo[i].srcTypes = 1 << (int)TYPE_F32;
192
      opInfo[i].dstTypes = 1 << (int)TYPE_F32;
193
      opInfo[i].immdBits = 0;
194
      opInfo[i].srcNr = operationSrcNr[i];
195
 
196
      for (j = 0; j < opInfo[i].srcNr; ++j) {
197
         opInfo[i].srcMods[j] = 0;
198
         opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
199
      }
200
      opInfo[i].dstMods = 0;
201
      opInfo[i].dstFiles = 1 << (int)FILE_GPR;
202
 
203
      opInfo[i].hasDest = 1;
204
      opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
205
      opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
206
      opInfo[i].pseudo = (i < OP_MOV);
207
      opInfo[i].predicate = !opInfo[i].pseudo;
208
      opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
209
      opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
210
   }
211
   for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
212
      opInfo[noDest[i]].hasDest = 0;
213
   for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
214
      opInfo[noPred[i]].predicate = 0;
215
 
216
   for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
217
      const struct opProperties *prop = &_initProps[i];
218
 
219
      for (int s = 0; s < 3; ++s) {
220
         if (prop->mNeg & (1 << s))
221
            opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
222
         if (prop->mAbs & (1 << s))
223
            opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
224
         if (prop->mNot & (1 << s))
225
            opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
226
         if (prop->fConst & (1 << s))
227
            opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
228
         if (prop->fImmd & (1 << s))
229
            opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
230
         if (prop->fImmd & 8)
231
            opInfo[prop->op].immdBits = 0xffffffff;
232
      }
233
      if (prop->mSat & 8)
234
         opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
235
   }
236
}
237
 
238
unsigned int
239
TargetNVC0::getFileSize(DataFile file) const
240
{
241
   switch (file) {
242
   case FILE_NULL:          return 0;
243
   case FILE_GPR:           return (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
244
   case FILE_PREDICATE:     return 7;
245
   case FILE_FLAGS:         return 1;
246
   case FILE_ADDRESS:       return 0;
247
   case FILE_IMMEDIATE:     return 0;
248
   case FILE_MEMORY_CONST:  return 65536;
249
   case FILE_SHADER_INPUT:  return 0x400;
250
   case FILE_SHADER_OUTPUT: return 0x400;
251
   case FILE_MEMORY_GLOBAL: return 0xffffffff;
252
   case FILE_MEMORY_SHARED: return 16 << 10;
253
   case FILE_MEMORY_LOCAL:  return 48 << 10;
254
   case FILE_SYSTEM_VALUE:  return 32;
255
   default:
256
      assert(!"invalid file");
257
      return 0;
258
   }
259
}
260
 
261
unsigned int
262
TargetNVC0::getFileUnit(DataFile file) const
263
{
264
   if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
265
      return 2;
266
   return 0;
267
}
268
 
269
uint32_t
270
TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
271
{
272
   const int idx = sym->reg.data.sv.index;
273
   const SVSemantic sv = sym->reg.data.sv.sv;
274
 
275
   const bool isInput = shaderFile == FILE_SHADER_INPUT;
276
   const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
277
 
278
   switch (sv) {
279
   case SV_POSITION:       return 0x070 + idx * 4;
280
   case SV_INSTANCE_ID:    return 0x2f8;
281
   case SV_VERTEX_ID:      return 0x2fc;
282
   case SV_PRIMITIVE_ID:   return isInput ? 0x060 : 0x040;
283
   case SV_LAYER:          return 0x064;
284
   case SV_VIEWPORT_INDEX: return 0x068;
285
   case SV_POINT_SIZE:     return 0x06c;
286
   case SV_CLIP_DISTANCE:  return 0x2c0 + idx * 4;
287
   case SV_POINT_COORD:    return 0x2e0 + idx * 4;
288
   case SV_FACE:           return 0x3fc;
289
   case SV_TESS_FACTOR:    return 0x000 + idx * 4;
290
   case SV_TESS_COORD:     return 0x2f0 + idx * 4;
291
   case SV_NTID:           return kepler ? (0x00 + idx * 4) : ~0;
292
   case SV_NCTAID:         return kepler ? (0x0c + idx * 4) : ~0;
293
   case SV_GRIDID:         return kepler ? 0x18 : ~0;
294
   case SV_SAMPLE_INDEX:   return 0;
295
   case SV_SAMPLE_POS:     return 0;
296
   case SV_SAMPLE_MASK:    return 0;
297
   default:
298
      return 0xffffffff;
299
   }
300
}
301
 
302
bool
303
TargetNVC0::insnCanLoad(const Instruction *i, int s,
304
                        const Instruction *ld) const
305
{
306
   DataFile sf = ld->src(0).getFile();
307
 
308
   // immediate 0 can be represented by GPR $r63/$r255
309
   if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
310
      return (!i->isPseudo() &&
311
              !i->asTex() &&
312
              i->op != OP_EXPORT && i->op != OP_STORE);
313
 
314
   if (s >= opInfo[i->op].srcNr)
315
      return false;
316
   if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
317
      return false;
318
 
319
   // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
320
   if (ld->src(0).isIndirect(0))
321
      return false;
322
 
323
   for (int k = 0; i->srcExists(k); ++k) {
324
      if (i->src(k).getFile() == FILE_IMMEDIATE) {
325
         if (k == 2 && i->op == OP_SUCLAMP) // special case
326
            continue;
327
         if (i->getSrc(k)->reg.data.u64 != 0)
328
            return false;
329
      } else
330
      if (i->src(k).getFile() != FILE_GPR &&
331
          i->src(k).getFile() != FILE_PREDICATE) {
332
         return false;
333
      }
334
   }
335
 
336
   // not all instructions support full 32 bit immediates
337
   if (sf == FILE_IMMEDIATE) {
338
      Storage ® = ld->getSrc(0)->asImm()->reg;
339
 
340
      if (typeSizeof(i->sType) > 4)
341
         return false;
342
      if (opInfo[i->op].immdBits != 0xffffffff) {
343
         if (i->sType == TYPE_F32) {
344
            if (reg.data.u32 & 0xfff)
345
               return false;
346
         } else
347
         if (i->sType == TYPE_S32 || i->sType == TYPE_U32) {
348
            // with u32, 0xfffff counts as 0xffffffff as well
349
            if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
350
               return false;
351
         }
352
      } else
353
      if (i->op == OP_MAD || i->op == OP_FMA) {
354
         // requires src == dst, cannot decide before RA
355
         // (except if we implement more constraints)
356
         if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
357
            return false;
358
      } else
359
      if (i->op == OP_ADD && i->sType == TYPE_F32) {
360
         // add f32 LIMM cannot saturate
361
         if (i->saturate && (reg.data.u32 & 0xfff))
362
            return false;
363
      }
364
   }
365
 
366
   return true;
367
}
368
 
369
bool
370
TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
371
{
372
   if (ty == TYPE_NONE)
373
      return false;
374
   if (file == FILE_MEMORY_CONST && getChipset() >= 0xe0) // wrong encoding ?
375
      return typeSizeof(ty) <= 8;
376
   if (ty == TYPE_B96)
377
      return false;
378
   return true;
379
}
380
 
381
bool
382
TargetNVC0::isOpSupported(operation op, DataType ty) const
383
{
384
   if ((op == OP_MAD || op == OP_FMA) && (ty != TYPE_F32))
385
      return false;
386
   if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
387
      return false;
388
   if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
389
      return false;
390
   return true;
391
}
392
 
393
bool
394
TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
395
{
396
   if (!isFloatType(insn->dType)) {
397
      switch (insn->op) {
398
      case OP_ABS:
399
      case OP_NEG:
400
      case OP_CVT:
401
      case OP_CEIL:
402
      case OP_FLOOR:
403
      case OP_TRUNC:
404
      case OP_AND:
405
      case OP_OR:
406
      case OP_XOR:
407
      case OP_POPCNT:
408
      case OP_BFIND:
409
         break;
410
      case OP_SET:
411
         if (insn->sType != TYPE_F32)
412
            return false;
413
         break;
414
      case OP_ADD:
415
         if (mod.abs())
416
            return false;
417
         if (insn->src(s ? 0 : 1).mod.neg())
418
            return false;
419
         break;
420
      case OP_SUB:
421
         if (s == 0)
422
            return insn->src(1).mod.neg() ? false : true;
423
         break;
424
      default:
425
         return false;
426
      }
427
   }
428
   if (s >= 3)
429
      return false;
430
   return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
431
}
432
 
433
bool
434
TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
435
{
436
   if (insn->getPredicate())
437
      return false;
438
   return opInfo[insn->op].predicate;
439
}
440
 
441
bool
442
TargetNVC0::isSatSupported(const Instruction *insn) const
443
{
444
   if (insn->op == OP_CVT)
445
      return true;
446
   if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
447
      return false;
448
 
449
   if (insn->dType == TYPE_U32)
450
      return (insn->op == OP_ADD) || (insn->op == OP_MAD);
451
 
452
   // add f32 LIMM cannot saturate
453
   if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
454
      if (insn->getSrc(1)->asImm() &&
455
          insn->getSrc(1)->reg.data.u32 & 0xfff)
456
         return false;
457
   }
458
 
459
   return insn->dType == TYPE_F32;
460
}
461
 
462
bool
463
TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
464
{
465
   if (op != OP_MUL)
466
      return false;
467
   f = fabsf(f);
468
   e = static_cast(log2f(f));
469
   if (e < -3 || e > 3)
470
      return false;
471
   return f == exp2f(static_cast(e));
472
}
473
 
474
// TODO: better values
475
// this could be more precise, e.g. depending on the issue-to-read/write delay
476
// of the depending instruction, but it's good enough
477
int TargetNVC0::getLatency(const Instruction *i) const
478
{
479
   if (chipset >= 0xe4) {
480
      if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
481
         return 20;
482
      switch (i->op) {
483
      case OP_LINTERP:
484
      case OP_PINTERP:
485
         return 15;
486
      case OP_LOAD:
487
         if (i->src(0).getFile() == FILE_MEMORY_CONST)
488
            return 9;
489
         // fall through
490
      case OP_VFETCH:
491
         return 24;
492
      default:
493
         if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
494
            return 17;
495
         if (i->op == OP_MUL && i->dType != TYPE_F32)
496
            return 15;
497
         return 9;
498
      }
499
   } else {
500
      if (i->op == OP_LOAD) {
501
         if (i->cache == CACHE_CV)
502
            return 700;
503
         return 48;
504
      }
505
      return 24;
506
   }
507
   return 32;
508
}
509
 
510
// These are "inverse" throughput values, i.e. the number of cycles required
511
// to issue a specific instruction for a full warp (32 threads).
512
//
513
// Assuming we have more than 1 warp in flight, a higher issue latency results
514
// in a lower result latency since the MP will have spent more time with other
515
// warps.
516
// This also helps to determine the number of cycles between instructions in
517
// a single warp.
518
//
519
int TargetNVC0::getThroughput(const Instruction *i) const
520
{
521
   // TODO: better values
522
   if (i->dType == TYPE_F32) {
523
      switch (i->op) {
524
      case OP_ADD:
525
      case OP_MUL:
526
      case OP_MAD:
527
      case OP_FMA:
528
         return 1;
529
      case OP_CVT:
530
      case OP_CEIL:
531
      case OP_FLOOR:
532
      case OP_TRUNC:
533
      case OP_SET:
534
      case OP_SLCT:
535
      case OP_MIN:
536
      case OP_MAX:
537
         return 2;
538
      case OP_RCP:
539
      case OP_RSQ:
540
      case OP_LG2:
541
      case OP_SIN:
542
      case OP_COS:
543
      case OP_PRESIN:
544
      case OP_PREEX2:
545
      default:
546
         return 8;
547
      }
548
   } else
549
   if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
550
      switch (i->op) {
551
      case OP_ADD:
552
      case OP_AND:
553
      case OP_OR:
554
      case OP_XOR:
555
      case OP_NOT:
556
         return 1;
557
      case OP_MUL:
558
      case OP_MAD:
559
      case OP_CVT:
560
      case OP_SET:
561
      case OP_SLCT:
562
      case OP_SHL:
563
      case OP_SHR:
564
      case OP_NEG:
565
      case OP_ABS:
566
      case OP_MIN:
567
      case OP_MAX:
568
      default:
569
         return 2;
570
      }
571
   } else
572
   if (i->dType == TYPE_F64) {
573
      return 2;
574
   } else {
575
      return 1;
576
   }
577
}
578
 
579
bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
580
{
581
   const OpClass clA = operationClass[a->op];
582
   const OpClass clB = operationClass[b->op];
583
 
584
   if (getChipset() >= 0xe4) {
585
      // not texturing
586
      // not if the 2nd instruction isn't necessarily executed
587
      if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
588
         return false;
589
      // anything with MOV
590
      if (a->op == OP_MOV || b->op == OP_MOV)
591
         return true;
592
      if (clA == clB) {
593
         // only F32 arith or integer additions
594
         if (clA != OPCLASS_ARITH)
595
            return false;
596
         return (a->dType == TYPE_F32 || a->op == OP_ADD ||
597
                 b->dType == TYPE_F32 || b->op == OP_ADD);
598
      }
599
      // nothing with TEXBAR
600
      if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
601
         return false;
602
      // no loads and stores accessing the the same space
603
      if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
604
          (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
605
         if (a->src(0).getFile() == b->src(0).getFile())
606
            return false;
607
      // no > 32-bit ops
608
      if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
609
          typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
610
         return false;
611
      return true;
612
   } else {
613
      return false; // info not needed (yet)
614
   }
615
}
616
 
617
} // namespace nv50_ir