Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | Download | RSS feed

  1.  
  2. /* @(#)e_sqrt.c 5.1 93/09/24 */
  3. /*
  4.  * ====================================================
  5.  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  6.  *
  7.  * Developed at SunPro, a Sun Microsystems, Inc. business.
  8.  * Permission to use, copy, modify, and distribute this
  9.  * software is freely granted, provided that this notice
  10.  * is preserved.
  11.  * ====================================================
  12.  */
  13.  
  14. /* __ieee754_sqrt(x)
  15.  * Return correctly rounded sqrt.
  16.  *           ------------------------------------------
  17.  *           |  Use the hardware sqrt if you have one |
  18.  *           ------------------------------------------
  19.  * Method:
  20.  *   Bit by bit method using integer arithmetic. (Slow, but portable)
  21.  *   1. Normalization
  22.  *      Scale x to y in [1,4) with even powers of 2:
  23.  *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
  24.  *              sqrt(x) = 2^k * sqrt(y)
  25.  *   2. Bit by bit computation
  26.  *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
  27.  *           i                                                   0
  28.  *                                     i+1         2
  29.  *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
  30.  *           i      i            i                 i
  31.  *                                                        
  32.  *      To compute q    from q , one checks whether
  33.  *                  i+1       i                      
  34.  *
  35.  *                            -(i+1) 2
  36.  *                      (q + 2      ) <= y.                     (2)
  37.  *                        i
  38.  *                                                            -(i+1)
  39.  *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
  40.  *                             i+1   i             i+1   i
  41.  *
  42.  *      With some algebric manipulation, it is not difficult to see
  43.  *      that (2) is equivalent to
  44.  *                             -(i+1)
  45.  *                      s  +  2       <= y                      (3)
  46.  *                       i                i
  47.  *
  48.  *      The advantage of (3) is that s  and y  can be computed by
  49.  *                                    i      i
  50.  *      the following recurrence formula:
  51.  *          if (3) is false
  52.  *
  53.  *          s     =  s  ,       y    = y   ;                    (4)
  54.  *           i+1      i          i+1    i
  55.  *
  56.  *          otherwise,
  57.  *                         -i                     -(i+1)
  58.  *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
  59.  *           i+1      i          i+1    i     i
  60.  *                             
  61.  *      One may easily use induction to prove (4) and (5).
  62.  *      Note. Since the left hand side of (3) contain only i+2 bits,
  63.  *            it does not necessary to do a full (53-bit) comparison
  64.  *            in (3).
  65.  *   3. Final rounding
  66.  *      After generating the 53 bits result, we compute one more bit.
  67.  *      Together with the remainder, we can decide whether the
  68.  *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
  69.  *      (it will never equal to 1/2ulp).
  70.  *      The rounding mode can be detected by checking whether
  71.  *      huge + tiny is equal to huge, and whether huge - tiny is
  72.  *      equal to huge for some floating point number "huge" and "tiny".
  73.  *             
  74.  * Special cases:
  75.  *      sqrt(+-0) = +-0         ... exact
  76.  *      sqrt(inf) = inf
  77.  *      sqrt(-ve) = NaN         ... with invalid signal
  78.  *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
  79.  *
  80.  * Other methods : see the appended file at the end of the program below.
  81.  *---------------
  82.  */
  83.  
  84. #include "fdlibm.h"
  85.  
  86. #ifndef _DOUBLE_IS_32BITS
  87.  
  88. #ifdef __STDC__
  89. static  const double    one     = 1.0, tiny=1.0e-300;
  90. #else
  91. static  double  one     = 1.0, tiny=1.0e-300;
  92. #endif
  93.  
  94. #ifdef __STDC__
  95.         double __ieee754_sqrt(double x)
  96. #else
  97.         double __ieee754_sqrt(x)
  98.         double x;
  99. #endif
  100. {
  101.         double z;
  102.         __int32_t sign = (int)0x80000000;
  103.         __uint32_t r,t1,s1,ix1,q1;
  104.         __int32_t ix0,s0,q,m,t,i;
  105.  
  106.         EXTRACT_WORDS(ix0,ix1,x);
  107.  
  108.     /* take care of Inf and NaN */
  109.         if((ix0&0x7ff00000)==0x7ff00000) {                     
  110.             return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
  111.                                            sqrt(-inf)=sNaN */
  112.         }
  113.     /* take care of zero */
  114.         if(ix0<=0) {
  115.             if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
  116.             else if(ix0<0)
  117.                 return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */
  118.         }
  119.     /* normalize x */
  120.         m = (ix0>>20);
  121.         if(m==0) {                              /* subnormal x */
  122.             while(ix0==0) {
  123.                 m -= 21;
  124.                 ix0 |= (ix1>>11); ix1 <<= 21;
  125.             }
  126.             for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
  127.             m -= i-1;
  128.             ix0 |= (ix1>>(32-i));
  129.             ix1 <<= i;
  130.         }
  131.         m -= 1023;      /* unbias exponent */
  132.         ix0 = (ix0&0x000fffff)|0x00100000;
  133.         if(m&1){        /* odd m, double x to make it even */
  134.             ix0 += ix0 + ((ix1&sign)>>31);
  135.             ix1 += ix1;
  136.         }
  137.         m >>= 1;        /* m = [m/2] */
  138.  
  139.     /* generate sqrt(x) bit by bit */
  140.         ix0 += ix0 + ((ix1&sign)>>31);
  141.         ix1 += ix1;
  142.         q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */
  143.         r = 0x00200000;         /* r = moving bit from right to left */
  144.  
  145.         while(r!=0) {
  146.             t = s0+r;
  147.             if(t<=ix0) {
  148.                 s0   = t+r;
  149.                 ix0 -= t;
  150.                 q   += r;
  151.             }
  152.             ix0 += ix0 + ((ix1&sign)>>31);
  153.             ix1 += ix1;
  154.             r>>=1;
  155.         }
  156.  
  157.         r = sign;
  158.         while(r!=0) {
  159.             t1 = s1+r;
  160.             t  = s0;
  161.             if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
  162.                 s1  = t1+r;
  163.                 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
  164.                 ix0 -= t;
  165.                 if (ix1 < t1) ix0 -= 1;
  166.                 ix1 -= t1;
  167.                 q1  += r;
  168.             }
  169.             ix0 += ix0 + ((ix1&sign)>>31);
  170.             ix1 += ix1;
  171.             r>>=1;
  172.         }
  173.  
  174.     /* use floating add to find out rounding direction */
  175.         if((ix0|ix1)!=0) {
  176.             z = one-tiny; /* trigger inexact flag */
  177.             if (z>=one) {
  178.                 z = one+tiny;
  179.                 if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;}
  180.                 else if (z>one) {
  181.                     if (q1==(__uint32_t)0xfffffffe) q+=1;
  182.                     q1+=2;
  183.                 } else
  184.                     q1 += (q1&1);
  185.             }
  186.         }
  187.         ix0 = (q>>1)+0x3fe00000;
  188.         ix1 =  q1>>1;
  189.         if ((q&1)==1) ix1 |= sign;
  190.         ix0 += (m <<20);
  191.         INSERT_WORDS(z,ix0,ix1);
  192.         return z;
  193. }
  194.  
  195. #endif /* defined(_DOUBLE_IS_32BITS) */
  196.  
  197. /*
  198. Other methods  (use floating-point arithmetic)
  199. -------------
  200. (This is a copy of a drafted paper by Prof W. Kahan
  201. and K.C. Ng, written in May, 1986)
  202.  
  203.         Two algorithms are given here to implement sqrt(x)
  204.         (IEEE double precision arithmetic) in software.
  205.         Both supply sqrt(x) correctly rounded. The first algorithm (in
  206.         Section A) uses newton iterations and involves four divisions.
  207.         The second one uses reciproot iterations to avoid division, but
  208.         requires more multiplications. Both algorithms need the ability
  209.         to chop results of arithmetic operations instead of round them,
  210.         and the INEXACT flag to indicate when an arithmetic operation
  211.         is executed exactly with no roundoff error, all part of the
  212.         standard (IEEE 754-1985). The ability to perform shift, add,
  213.         subtract and logical AND operations upon 32-bit words is needed
  214.         too, though not part of the standard.
  215.  
  216. A.  sqrt(x) by Newton Iteration
  217.  
  218.    (1)  Initial approximation
  219.  
  220.         Let x0 and x1 be the leading and the trailing 32-bit words of
  221.         a floating point number x (in IEEE double format) respectively
  222.  
  223.             1    11                  52                           ...widths
  224.            ------------------------------------------------------
  225.         x: |s|    e     |             f                         |
  226.            ------------------------------------------------------
  227.               msb    lsb  msb                                 lsb ...order
  228.  
  229.  
  230.              ------------------------        ------------------------
  231.         x0:  |s|   e    |    f1     |    x1: |          f2           |
  232.              ------------------------        ------------------------
  233.  
  234.         By performing shifts and subtracts on x0 and x1 (both regarded
  235.         as integers), we obtain an 8-bit approximation of sqrt(x) as
  236.         follows.
  237.  
  238.                 k  := (x0>>1) + 0x1ff80000;
  239.                 y0 := k - T1[31&(k>>15)].       ... y ~ sqrt(x) to 8 bits
  240.         Here k is a 32-bit integer and T1[] is an integer array containing
  241.         correction terms. Now magically the floating value of y (y's
  242.         leading 32-bit word is y0, the value of its trailing word is 0)
  243.         approximates sqrt(x) to almost 8-bit.
  244.  
  245.         Value of T1:
  246.         static int T1[32]= {
  247.         0,      1024,   3062,   5746,   9193,   13348,  18162,  23592,
  248.         29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
  249.         83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
  250.         16499,  12183,  8588,   5674,   3403,   1742,   661,    130,};
  251.  
  252.     (2) Iterative refinement
  253.  
  254.         Apply Heron's rule three times to y, we have y approximates
  255.         sqrt(x) to within 1 ulp (Unit in the Last Place):
  256.  
  257.                 y := (y+x/y)/2          ... almost 17 sig. bits
  258.                 y := (y+x/y)/2          ... almost 35 sig. bits
  259.                 y := y-(y-x/y)/2        ... within 1 ulp
  260.  
  261.  
  262.         Remark 1.
  263.             Another way to improve y to within 1 ulp is:
  264.  
  265.                 y := (y+x/y)            ... almost 17 sig. bits to 2*sqrt(x)
  266.                 y := y - 0x00100006     ... almost 18 sig. bits to sqrt(x)
  267.  
  268.                                 2
  269.                             (x-y )*y
  270.                 y := y + 2* ----------  ...within 1 ulp
  271.                                2
  272.                              3y  + x
  273.  
  274.  
  275.         This formula has one division fewer than the one above; however,
  276.         it requires more multiplications and additions. Also x must be
  277.         scaled in advance to avoid spurious overflow in evaluating the
  278.         expression 3y*y+x. Hence it is not recommended uless division
  279.         is slow. If division is very slow, then one should use the
  280.         reciproot algorithm given in section B.
  281.  
  282.     (3) Final adjustment
  283.  
  284.         By twiddling y's last bit it is possible to force y to be
  285.         correctly rounded according to the prevailing rounding mode
  286.         as follows. Let r and i be copies of the rounding mode and
  287.         inexact flag before entering the square root program. Also we
  288.         use the expression y+-ulp for the next representable floating
  289.         numbers (up and down) of y. Note that y+-ulp = either fixed
  290.         point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  291.         mode.
  292.  
  293.                 I := FALSE;     ... reset INEXACT flag I
  294.                 R := RZ;        ... set rounding mode to round-toward-zero
  295.                 z := x/y;       ... chopped quotient, possibly inexact
  296.                 If(not I) then {        ... if the quotient is exact
  297.                     if(z=y) {
  298.                         I := i;  ... restore inexact flag
  299.                         R := r;  ... restore rounded mode
  300.                         return sqrt(x):=y.
  301.                     } else {
  302.                         z := z - ulp;   ... special rounding
  303.                     }
  304.                 }
  305.                 i := TRUE;              ... sqrt(x) is inexact
  306.                 If (r=RN) then z=z+ulp  ... rounded-to-nearest
  307.                 If (r=RP) then {        ... round-toward-+inf
  308.                     y = y+ulp; z=z+ulp;
  309.                 }
  310.                 y := y+z;               ... chopped sum
  311.                 y0:=y0-0x00100000;      ... y := y/2 is correctly rounded.
  312.                 I := i;                 ... restore inexact flag
  313.                 R := r;                 ... restore rounded mode
  314.                 return sqrt(x):=y.
  315.                    
  316.     (4) Special cases
  317.  
  318.         Square root of +inf, +-0, or NaN is itself;
  319.         Square root of a negative number is NaN with invalid signal.
  320.  
  321.  
  322. B.  sqrt(x) by Reciproot Iteration
  323.  
  324.    (1)  Initial approximation
  325.  
  326.         Let x0 and x1 be the leading and the trailing 32-bit words of
  327.         a floating point number x (in IEEE double format) respectively
  328.         (see section A). By performing shifs and subtracts on x0 and y0,
  329.         we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
  330.  
  331.             k := 0x5fe80000 - (x0>>1);
  332.             y0:= k - T2[63&(k>>14)].    ... y ~ 1/sqrt(x) to 7.8 bits
  333.  
  334.         Here k is a 32-bit integer and T2[] is an integer array
  335.         containing correction terms. Now magically the floating
  336.         value of y (y's leading 32-bit word is y0, the value of
  337.         its trailing word y1 is set to zero) approximates 1/sqrt(x)
  338.         to almost 7.8-bit.
  339.  
  340.         Value of T2:
  341.         static int T2[64]= {
  342.         0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
  343.         0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
  344.         0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
  345.         0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
  346.         0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
  347.         0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
  348.         0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
  349.         0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
  350.  
  351.     (2) Iterative refinement
  352.  
  353.         Apply Reciproot iteration three times to y and multiply the
  354.         result by x to get an approximation z that matches sqrt(x)
  355.         to about 1 ulp. To be exact, we will have
  356.                 -1ulp < sqrt(x)-z<1.0625ulp.
  357.        
  358.         ... set rounding mode to Round-to-nearest
  359.            y := y*(1.5-0.5*x*y*y)       ... almost 15 sig. bits to 1/sqrt(x)
  360.            y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
  361.         ... special arrangement for better accuracy
  362.            z := x*y                     ... 29 bits to sqrt(x), with z*y<1
  363.            z := z + 0.5*z*(1-z*y)       ... about 1 ulp to sqrt(x)
  364.  
  365.         Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
  366.         (a) the term z*y in the final iteration is always less than 1;
  367.         (b) the error in the final result is biased upward so that
  368.                 -1 ulp < sqrt(x) - z < 1.0625 ulp
  369.             instead of |sqrt(x)-z|<1.03125ulp.
  370.  
  371.     (3) Final adjustment
  372.  
  373.         By twiddling y's last bit it is possible to force y to be
  374.         correctly rounded according to the prevailing rounding mode
  375.         as follows. Let r and i be copies of the rounding mode and
  376.         inexact flag before entering the square root program. Also we
  377.         use the expression y+-ulp for the next representable floating
  378.         numbers (up and down) of y. Note that y+-ulp = either fixed
  379.         point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  380.         mode.
  381.  
  382.         R := RZ;                ... set rounding mode to round-toward-zero
  383.         switch(r) {
  384.             case RN:            ... round-to-nearest
  385.                if(x<= z*(z-ulp)...chopped) z = z - ulp; else
  386.                if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
  387.                break;
  388.             case RZ:case RM:    ... round-to-zero or round-to--inf
  389.                R:=RP;           ... reset rounding mod to round-to-+inf
  390.                if(x<z*z ... rounded up) z = z - ulp; else
  391.                if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
  392.                break;
  393.             case RP:            ... round-to-+inf
  394.                if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
  395.                if(x>z*z ...chopped) z = z+ulp;
  396.                break;
  397.         }
  398.  
  399.         Remark 3. The above comparisons can be done in fixed point. For
  400.         example, to compare x and w=z*z chopped, it suffices to compare
  401.         x1 and w1 (the trailing parts of x and w), regarding them as
  402.         two's complement integers.
  403.  
  404.         ...Is z an exact square root?
  405.         To determine whether z is an exact square root of x, let z1 be the
  406.         trailing part of z, and also let x0 and x1 be the leading and
  407.         trailing parts of x.
  408.  
  409.         If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
  410.             I := 1;             ... Raise Inexact flag: z is not exact
  411.         else {
  412.             j := 1 - [(x0>>20)&1]       ... j = logb(x) mod 2
  413.             k := z1 >> 26;              ... get z's 25-th and 26-th
  414.                                             fraction bits
  415.             I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
  416.         }
  417.         R:= r           ... restore rounded mode
  418.         return sqrt(x):=z.
  419.  
  420.         If multiplication is cheaper then the foregoing red tape, the
  421.         Inexact flag can be evaluated by
  422.  
  423.             I := i;
  424.             I := (z*z!=x) or I.
  425.  
  426.         Note that z*z can overwrite I; this value must be sensed if it is
  427.         True.
  428.  
  429.         Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
  430.         zero.
  431.  
  432.                     --------------------
  433.                 z1: |        f2        |
  434.                     --------------------
  435.                 bit 31             bit 0
  436.  
  437.         Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
  438.         or even of logb(x) have the following relations:
  439.  
  440.         -------------------------------------------------
  441.         bit 27,26 of z1         bit 1,0 of x1   logb(x)
  442.         -------------------------------------------------
  443.         00                      00              odd and even
  444.         01                      01              even
  445.         10                      10              odd
  446.         10                      00              even
  447.         11                      01              even
  448.         -------------------------------------------------
  449.  
  450.     (4) Special cases (see (4) of Section A).  
  451.  
  452.  */
  453.