Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
  2. /* @(#)k_rem_pio2.c 5.1 93/09/24 */
  3. /*
  4.  * ====================================================
  5.  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  6.  *
  7.  * Developed at SunPro, a Sun Microsystems, Inc. business.
  8.  * Permission to use, copy, modify, and distribute this
  9.  * software is freely granted, provided that this notice
  10.  * is preserved.
  11.  * ====================================================
  12.  */
  13.  
  14. #if defined(LIBM_SCCS) && !defined(lint)
  15. static char rcsid[] = "$Id: k_rem_pio2.c,v 1.5 1994/08/18 23:06:11 jtc Exp $";
  16. #endif
  17.  
  18. /*
  19.  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
  20.  * double x[],y[]; int e0,nx,prec; int ipio2[];
  21.  *
  22.  * __kernel_rem_pio2 return the last three digits of N with
  23.  *              y = x - N*pi/2
  24.  * so that |y| < pi/2.
  25.  *
  26.  * The method is to compute the integer (mod 8) and fraction parts of
  27.  * (2/pi)*x without doing the full multiplication. In general we
  28.  * skip the part of the product that are known to be a huge integer (
  29.  * more accurately, = 0 mod 8 ). Thus the number of operations are
  30.  * independent of the exponent of the input.
  31.  *
  32.  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
  33.  *
  34.  * Input parameters:
  35.  *      x[]     The input value (must be positive) is broken into nx
  36.  *              pieces of 24-bit integers in double precision format.
  37.  *              x[i] will be the i-th 24 bit of x. The scaled exponent
  38.  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
  39.  *              match x's up to 24 bits.
  40.  *
  41.  *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
  42.  *                      e0 = ilogb(z)-23
  43.  *                      z  = scalbn(z,-e0)
  44.  *              for i = 0,1,2
  45.  *                      x[i] = floor(z)
  46.  *                      z    = (z-x[i])*2**24
  47.  *
  48.  *
  49.  *      y[]     ouput result in an array of double precision numbers.
  50.  *              The dimension of y[] is:
  51.  *                      24-bit  precision       1
  52.  *                      53-bit  precision       2
  53.  *                      64-bit  precision       2
  54.  *                      113-bit precision       3
  55.  *              The actual value is the sum of them. Thus for 113-bit
  56.  *              precison, one may have to do something like:
  57.  *
  58.  *              long double t,w,r_head, r_tail;
  59.  *              t = (long double)y[2] + (long double)y[1];
  60.  *              w = (long double)y[0];
  61.  *              r_head = t+w;
  62.  *              r_tail = w - (r_head - t);
  63.  *
  64.  *      e0      The exponent of x[0]
  65.  *
  66.  *      nx      dimension of x[]
  67.  *
  68.  *      prec    an integer indicating the precision:
  69.  *                      0       24  bits (single)
  70.  *                      1       53  bits (double)
  71.  *                      2       64  bits (extended)
  72.  *                      3       113 bits (quad)
  73.  *
  74.  *      ipio2[]
  75.  *              integer array, contains the (24*i)-th to (24*i+23)-th
  76.  *              bit of 2/pi after binary point. The corresponding
  77.  *              floating value is
  78.  *
  79.  *                      ipio2[i] * 2^(-24(i+1)).
  80.  *
  81.  * External function:
  82.  *      double scalbn(), floor();
  83.  *
  84.  *
  85.  * Here is the description of some local variables:
  86.  *
  87.  *      jk      jk+1 is the initial number of terms of ipio2[] needed
  88.  *              in the computation. The recommended value is 2,3,4,
  89.  *              6 for single, double, extended,and quad.
  90.  *
  91.  *      jz      local integer variable indicating the number of
  92.  *              terms of ipio2[] used.
  93.  *
  94.  *      jx      nx - 1
  95.  *
  96.  *      jv      index for pointing to the suitable ipio2[] for the
  97.  *              computation. In general, we want
  98.  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
  99.  *              is an integer. Thus
  100.  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
  101.  *              Hence jv = max(0,(e0-3)/24).
  102.  *
  103.  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
  104.  *
  105.  *      q[]     double array with integral value, representing the
  106.  *              24-bits chunk of the product of x and 2/pi.
  107.  *
  108.  *      q0      the corresponding exponent of q[0]. Note that the
  109.  *              exponent for q[i] would be q0-24*i.
  110.  *
  111.  *      PIo2[]  double precision array, obtained by cutting pi/2
  112.  *              into 24 bits chunks.
  113.  *
  114.  *      f[]     ipio2[] in floating point
  115.  *
  116.  *      iq[]    integer array by breaking up q[] in 24-bits chunk.
  117.  *
  118.  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
  119.  *
  120.  *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
  121.  *              it also indicates the *sign* of the result.
  122.  *
  123.  */
  124.  
  125.  
  126. /*
  127.  * Constants:
  128.  * The hexadecimal values are the intended ones for the following
  129.  * constants. The decimal values may be used, provided that the
  130.  * compiler will convert from decimal to binary accurately enough
  131.  * to produce the hexadecimal values shown.
  132.  */
  133.  
  134. #include "math.h"
  135. #include "math_private.h"
  136.  
  137. #ifdef __STDC__
  138. static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
  139. #else
  140. static int init_jk[] = {2,3,4,6};
  141. #endif
  142.  
  143. #ifdef __STDC__
  144. static const double PIo2[] = {
  145. #else
  146. static double PIo2[] = {
  147. #endif
  148.   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
  149.   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
  150.   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
  151.   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
  152.   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
  153.   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
  154.   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
  155.   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
  156. };
  157.  
  158. #ifdef __STDC__
  159. static const double                    
  160. #else
  161. static double                  
  162. #endif
  163. zero   = 0.0,
  164. one    = 1.0,
  165. two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
  166. twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
  167.  
  168. #ifdef __STDC__
  169.         int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
  170. #else
  171.         int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)    
  172.         double x[], y[]; int e0,nx,prec; int32_t ipio2[];
  173. #endif
  174. {
  175.         int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
  176.         double z,fw,f[20],fq[20],q[20];
  177.  
  178.     /* initialize jk*/
  179.         jk = init_jk[prec];
  180.         jp = jk;
  181.  
  182.     /* determine jx,jv,q0, note that 3>q0 */
  183.         jx =  nx-1;
  184.         jv = (e0-3)/24; if(jv<0) jv=0;
  185.         q0 =  e0-24*(jv+1);
  186.  
  187.     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
  188.         j = jv-jx; m = jx+jk;
  189.         for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
  190.  
  191.     /* compute q[0],q[1],...q[jk] */
  192.         for (i=0;i<=jk;i++) {
  193.             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
  194.         }
  195.  
  196.         jz = jk;
  197. recompute:
  198.     /* distill q[] into iq[] reversingly */
  199.         for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
  200.             fw    =  (double)((int32_t)(twon24* z));
  201.             iq[i] =  (int32_t)(z-two24*fw);
  202.             z     =  q[j-1]+fw;
  203.         }
  204.  
  205.     /* compute n */
  206.         z  = scalbn(z,q0);              /* actual value of z */
  207.         z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
  208.         n  = (int32_t) z;
  209.         z -= (double)n;
  210.         ih = 0;
  211.         if(q0>0) {      /* need iq[jz-1] to determine n */
  212.             i  = (iq[jz-1]>>(24-q0)); n += i;
  213.             iq[jz-1] -= i<<(24-q0);
  214.             ih = iq[jz-1]>>(23-q0);
  215.         }
  216.         else if(q0==0) ih = iq[jz-1]>>23;
  217.         else if(z>=0.5) ih=2;
  218.  
  219.         if(ih>0) {      /* q > 0.5 */
  220.             n += 1; carry = 0;
  221.             for(i=0;i<jz ;i++) {        /* compute 1-q */
  222.                 j = iq[i];
  223.                 if(carry==0) {
  224.                     if(j!=0) {
  225.                         carry = 1; iq[i] = 0x1000000- j;
  226.                     }
  227.                 } else  iq[i] = 0xffffff - j;
  228.             }
  229.             if(q0>0) {          /* rare case: chance is 1 in 12 */
  230.                 switch(q0) {
  231.                 case 1:
  232.                    iq[jz-1] &= 0x7fffff; break;
  233.                 case 2:
  234.                    iq[jz-1] &= 0x3fffff; break;
  235.                 }
  236.             }
  237.             if(ih==2) {
  238.                 z = one - z;
  239.                 if(carry!=0) z -= scalbn(one,q0);
  240.             }
  241.         }
  242.  
  243.     /* check if recomputation is needed */
  244.         if(z==zero) {
  245.             j = 0;
  246.             for (i=jz-1;i>=jk;i--) j |= iq[i];
  247.             if(j==0) { /* need recomputation */
  248.                 for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
  249.  
  250.                 for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
  251.                     f[jx+i] = (double) ipio2[jv+i];
  252.                     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
  253.                     q[i] = fw;
  254.                 }
  255.                 jz += k;
  256.                 goto recompute;
  257.             }
  258.         }
  259.  
  260.     /* chop off zero terms */
  261.         if(z==0.0) {
  262.             jz -= 1; q0 -= 24;
  263.             while(iq[jz]==0) { jz--; q0-=24;}
  264.         } else { /* break z into 24-bit if necessary */
  265.             z = scalbn(z,-q0);
  266.             if(z>=two24) {
  267.                 fw = (double)((int32_t)(twon24*z));
  268.                 iq[jz] = (int32_t)(z-two24*fw);
  269.                 jz += 1; q0 += 24;
  270.                 iq[jz] = (int32_t) fw;
  271.             } else iq[jz] = (int32_t) z ;
  272.         }
  273.  
  274.     /* convert integer "bit" chunk to floating-point value */
  275.         fw = scalbn(one,q0);
  276.         for(i=jz;i>=0;i--) {
  277.             q[i] = fw*(double)iq[i]; fw*=twon24;
  278.         }
  279.  
  280.     /* compute PIo2[0,...,jp]*q[jz,...,0] */
  281.         for(i=jz;i>=0;i--) {
  282.             for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
  283.             fq[jz-i] = fw;
  284.         }
  285.  
  286.     /* compress fq[] into y[] */
  287.         switch(prec) {
  288.             case 0:
  289.                 fw = 0.0;
  290.                 for (i=jz;i>=0;i--) fw += fq[i];
  291.                 y[0] = (ih==0)? fw: -fw;
  292.                 break;
  293.             case 1:
  294.             case 2:
  295.                 fw = 0.0;
  296.                 for (i=jz;i>=0;i--) fw += fq[i];
  297.                 y[0] = (ih==0)? fw: -fw;
  298.                 fw = fq[0]-fw;
  299.                 for (i=1;i<=jz;i++) fw += fq[i];
  300.                 y[1] = (ih==0)? fw: -fw;
  301.                 break;
  302.             case 3:     /* painful */
  303.                 for (i=jz;i>0;i--) {
  304.                     fw      = fq[i-1]+fq[i];
  305.                     fq[i]  += fq[i-1]-fw;
  306.                     fq[i-1] = fw;
  307.                 }
  308.                 for (i=jz;i>1;i--) {
  309.                     fw      = fq[i-1]+fq[i];
  310.                     fq[i]  += fq[i-1]-fw;
  311.                     fq[i-1] = fw;
  312.                 }
  313.                 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
  314.                 if(ih==0) {
  315.                     y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
  316.                 } else {
  317.                     y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
  318.                 }
  319.         }
  320.         return n&7;
  321. }
  322.