Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | Download | RSS feed

  1. /* Copyright (C) 1995 DJ Delorie, see COPYING.DJ for details */
  2. /* This is file RANDOM.C */
  3. /* This file may have been modified by DJ Delorie (Jan 1995).  If so,
  4. ** these modifications are Coyright (C) 1993 DJ Delorie, 24 Kirsten Ave,
  5. ** Rochester NH, 03867-2954, USA.
  6. */
  7.  
  8. /*
  9.  * Copyright (c) 1983 Regents of the University of California.
  10.  * All rights reserved.
  11.  *
  12.  * Redistribution and use in source and binary forms are permitted
  13.  * provided that: (1) source distributions retain this entire copyright
  14.  * notice and comment, and (2) distributions including binaries display
  15.  * the following acknowledgement:  ``This product includes software
  16.  * developed by the University of California, Berkeley and its contributors''
  17.  * in the documentation or other materials provided with the distribution
  18.  * and in all advertising materials mentioning features or use of this
  19.  * software. Neither the name of the University nor the names of its
  20.  * contributors may be used to endorse or promote products derived
  21.  * from this software without specific prior written permission.
  22.  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  23.  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  24.  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  25.  */
  26.  
  27. #include <stdlib.h>
  28.  
  29. /*
  30.  * random.c:
  31.  * An improved random number generation package.  In addition to the standard
  32.  * rand()/srand() like interface, this package also has a special state info
  33.  * interface.  The initstate() routine is called with a seed, an array of
  34.  * bytes, and a count of how many bytes are being passed in; this array is then
  35.  * initialized to contain information for random number generation with that
  36.  * much state information.  Good sizes for the amount of state information are
  37.  * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
  38.  * setstate() routine with the same array as was initiallized with initstate().
  39.  * By default, the package runs with 128 bytes of state information and
  40.  * generates far better random numbers than a linear congruential generator.
  41.  * If the amount of state information is less than 32 bytes, a simple linear
  42.  * congruential R.N.G. is used.
  43.  * Internally, the state information is treated as an array of longs; the
  44.  * zeroeth element of the array is the type of R.N.G. being used (small
  45.  * integer); the remainder of the array is the state information for the
  46.  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
  47.  * state information, which will allow a degree seven polynomial.  (Note: the
  48.  * zeroeth word of state information also has some other information stored
  49.  * in it -- see setstate() for details).
  50.  * The random number generation technique is a linear feedback shift register
  51.  * approach, employing trinomials (since there are fewer terms to sum up that
  52.  * way).  In this approach, the least significant bit of all the numbers in
  53.  * the state table will act as a linear feedback shift register, and will have
  54.  * period 2^deg - 1 (where deg is the degree of the polynomial being used,
  55.  * assuming that the polynomial is irreducible and primitive).  The higher
  56.  * order bits will have longer periods, since their values are also influenced
  57.  * by pseudo-random carries out of the lower bits.  The total period of the
  58.  * generator is approximately deg*(2**deg - 1); thus doubling the amount of
  59.  * state information has a vast influence on the period of the generator.
  60.  * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
  61.  * when the period of the shift register is the dominant factor.  With deg
  62.  * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
  63.  * predicted by this formula.
  64.  */
  65.  
  66.  
  67.  
  68. /*
  69.  * For each of the currently supported random number generators, we have a
  70.  * break value on the amount of state information (you need at least this
  71.  * many bytes of state info to support this random number generator), a degree
  72.  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
  73.  * the separation between the two lower order coefficients of the trinomial.
  74.  */
  75.  
  76. #define         TYPE_0          0               /* linear congruential */
  77. #define         BREAK_0         8
  78. #define         DEG_0           0
  79. #define         SEP_0           0
  80.  
  81. #define         TYPE_1          1               /* x**7 + x**3 + 1 */
  82. #define         BREAK_1         32
  83. #define         DEG_1           7
  84. #define         SEP_1           3
  85.  
  86. #define         TYPE_2          2               /* x**15 + x + 1 */
  87. #define         BREAK_2         64
  88. #define         DEG_2           15
  89. #define         SEP_2           1
  90.  
  91. #define         TYPE_3          3               /* x**31 + x**3 + 1 */
  92. #define         BREAK_3         128
  93. #define         DEG_3           31
  94. #define         SEP_3           3
  95.  
  96. #define         TYPE_4          4               /* x**63 + x + 1 */
  97. #define         BREAK_4         256
  98. #define         DEG_4           63
  99. #define         SEP_4           1
  100.  
  101.  
  102. /*
  103.  * Array versions of the above information to make code run faster -- relies
  104.  * on fact that TYPE_i == i.
  105.  */
  106.  
  107. #define MAX_TYPES 5 /* max number of types above */
  108. static int degrees[MAX_TYPES]   = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
  109. static int seps[MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
  110.  
  111. /*
  112.  * Initially, everything is set up as if from :
  113.  *              initstate( 1, &randtbl, 128 );
  114.  * Note that this initialization takes advantage of the fact that srandom()
  115.  * advances the front and rear pointers 10*rand_deg times, and hence the
  116.  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
  117.  * element of the state information, which contains info about the current
  118.  * position of the rear pointer is just
  119.  *      MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
  120.  */
  121.  
  122. static unsigned long randtbl[DEG_3 + 1] = { TYPE_3,
  123.                             0x9a319039U, 0x32d9c024U, 0x9b663182U, 0x5da1f342U,
  124.                             0xde3b81e0U, 0xdf0a6fb5U, 0xf103bc02U, 0x48f340fbU,
  125.                             0x7449e56bU, 0xbeb1dbb0U, 0xab5c5918U, 0x946554fdU,
  126.                             0x8c2e680fU, 0xeb3d799fU, 0xb11ee0b7U, 0x2d436b86U,
  127.                             0xda672e2aU, 0x1588ca88U, 0xe369735dU, 0x904f35f7U,
  128.                             0xd7158fd6U, 0x6fa6f051U, 0x616e6b96U, 0xac94efdcU,
  129.                             0x36413f93U, 0xc622c298U, 0xf5a42ab8U, 0x8a88d77bU,
  130.                                          0xf5ad9d0eU, 0x8999220bU, 0x27fb47b9U };
  131.  
  132. /*
  133.  * fptr and rptr are two pointers into the state info, a front and a rear
  134.  * pointer.  These two pointers are always rand_sep places aparts, as they cycle
  135.  * cyclically through the state information.  (Yes, this does mean we could get
  136.  * away with just one pointer, but the code for random() is more efficient this
  137.  * way).  The pointers are left positioned as they would be from the call
  138.  *                      initstate( 1, randtbl, 128 )
  139.  * (The position of the rear pointer, rptr, is really 0 (as explained above
  140.  * in the initialization of randtbl) because the state table pointer is set
  141.  * to point to randtbl[1] (as explained below).
  142.  */
  143.  
  144. static  long            *fptr                   = &randtbl[ SEP_3 + 1 ];
  145. static  long            *rptr                   = &randtbl[ 1 ];
  146.  
  147. /*
  148.  * The following things are the pointer to the state information table,
  149.  * the type of the current generator, the degree of the current polynomial
  150.  * being used, and the separation between the two pointers.
  151.  * Note that for efficiency of random(), we remember the first location of
  152.  * the state information, not the zeroeth.  Hence it is valid to access
  153.  * state[-1], which is used to store the type of the R.N.G.
  154.  * Also, we remember the last location, since this is more efficient than
  155.  * indexing every time to find the address of the last element to see if
  156.  * the front and rear pointers have wrapped.
  157.  */
  158.  
  159. static  long            *state                  = &randtbl[ 1 ];
  160. static  int             rand_type               = TYPE_3;
  161. static  int             rand_deg                = DEG_3;
  162. static  int             rand_sep                = SEP_3;
  163. static  long            *end_ptr                = &randtbl[ DEG_3 + 1 ];
  164.  
  165. /*
  166.  * srandom:
  167.  * Initialize the random number generator based on the given seed.  If the
  168.  * type is the trivial no-state-information type, just remember the seed.
  169.  * Otherwise, initializes state[] based on the given "seed" via a linear
  170.  * congruential generator.  Then, the pointers are set to known locations
  171.  * that are exactly rand_sep places apart.  Lastly, it cycles the state
  172.  * information a given number of times to get rid of any initial dependencies
  173.  * introduced by the L.C.R.N.G.
  174.  * Note that the initialization of randtbl[] for default usage relies on
  175.  * values produced by this routine.
  176.  */
  177.  
  178. int
  179. srandom(int x)
  180. {
  181.   int i, j;
  182.  
  183.   if (rand_type == TYPE_0)
  184.   {
  185.     state[ 0 ] = x;
  186.   }
  187.   else
  188.   {
  189.     j = 1;
  190.     state[ 0 ] = x;
  191.     for (i = 1; i < rand_deg; i++)
  192.     {
  193.       state[i] = 1103515245*state[i - 1] + 12345;
  194.     }
  195.     fptr = &state[rand_sep];
  196.     rptr = &state[0];
  197.     for( i = 0; i < 10*rand_deg; i++ )
  198.       random();
  199.   }
  200.   return 0;
  201. }
  202.  
  203. /*
  204.  * initstate:
  205.  * Initialize the state information in the given array of n bytes for
  206.  * future random number generation.  Based on the number of bytes we
  207.  * are given, and the break values for the different R.N.G.'s, we choose
  208.  * the best (largest) one we can and set things up for it.  srandom() is
  209.  * then called to initialize the state information.
  210.  * Note that on return from srandom(), we set state[-1] to be the type
  211.  * multiplexed with the current value of the rear pointer; this is so
  212.  * successive calls to initstate() won't lose this information and will
  213.  * be able to restart with setstate().
  214.  * Note: the first thing we do is save the current state, if any, just like
  215.  * setstate() so that it doesn't matter when initstate is called.
  216.  * Returns a pointer to the old state.
  217.  */
  218.  
  219. char  *
  220. initstate (unsigned seed, char *arg_state, int n)
  221. {
  222.   char *ostate = (char *)(&state[ -1 ]);
  223.  
  224.   if (rand_type == TYPE_0)
  225.     state[-1] = rand_type;
  226.   else
  227.     state[-1] = MAX_TYPES * (rptr - state) + rand_type;
  228.   if (n  <  BREAK_1)
  229.   {
  230.     if (n  <  BREAK_0)
  231.       return 0;
  232.     rand_type = TYPE_0;
  233.     rand_deg = DEG_0;
  234.     rand_sep = SEP_0;
  235.   }
  236.   else
  237.   {
  238.     if (n < BREAK_2)
  239.     {
  240.       rand_type = TYPE_1;
  241.       rand_deg = DEG_1;
  242.       rand_sep = SEP_1;
  243.     }
  244.     else
  245.     {
  246.       if (n < BREAK_3)
  247.       {
  248.         rand_type = TYPE_2;
  249.         rand_deg = DEG_2;
  250.         rand_sep = SEP_2;
  251.       }
  252.       else
  253.       {
  254.         if (n < BREAK_4)
  255.         {
  256.           rand_type = TYPE_3;
  257.           rand_deg = DEG_3;
  258.           rand_sep = SEP_3;
  259.         }
  260.         else
  261.         {
  262.           rand_type = TYPE_4;
  263.           rand_deg = DEG_4;
  264.           rand_sep = SEP_4;
  265.         }
  266.       }
  267.     }
  268.   }
  269.   state = &(((long *)arg_state)[1]);    /* first location */
  270.   end_ptr = &state[rand_deg];           /* must set end_ptr before srandom */
  271.   srandom(seed);
  272.   if (rand_type == TYPE_0)
  273.     state[-1] = rand_type;
  274.   else
  275.     state[-1] = MAX_TYPES * (rptr - state) + rand_type;
  276.   return ostate;
  277. }
  278.  
  279. /*
  280.  * setstate:
  281.  * Restore the state from the given state array.
  282.  * Note: it is important that we also remember the locations of the pointers
  283.  * in the current state information, and restore the locations of the pointers
  284.  * from the old state information.  This is done by multiplexing the pointer
  285.  * location into the zeroeth word of the state information.
  286.  * Note that due to the order in which things are done, it is OK to call
  287.  * setstate() with the same state as the current state.
  288.  * Returns a pointer to the old state information.
  289.  */
  290.  
  291. char  *
  292. setstate(char *arg_state)
  293. {
  294.   long *new_state = (long *)arg_state;
  295.   int type = new_state[0]%MAX_TYPES;
  296.   int rear = new_state[0]/MAX_TYPES;
  297.   char *ostate = (char *)( &state[ -1 ] );
  298.  
  299.   if (rand_type == TYPE_0)
  300.     state[-1] = rand_type;
  301.   else
  302.     state[-1] = MAX_TYPES * (rptr - state) + rand_type;
  303.   switch (type)
  304.   {
  305.   case TYPE_0:
  306.   case TYPE_1:
  307.   case TYPE_2:
  308.   case TYPE_3:
  309.   case TYPE_4:
  310.     rand_type = type;
  311.     rand_deg = degrees[ type ];
  312.     rand_sep = seps[ type ];
  313.     break;
  314.   }
  315.   state = &new_state[ 1 ];
  316.   if (rand_type != TYPE_0)
  317.   {
  318.     rptr = &state[rear];
  319.     fptr = &state[(rear + rand_sep)%rand_deg];
  320.   }
  321.   end_ptr = &state[rand_deg]; /* set end_ptr too */
  322.   return ostate;
  323. }
  324.  
  325. /*
  326.  * random:
  327.  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
  328.  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
  329.  * same in all ther other cases due to all the global variables that have been
  330.  * set up.  The basic operation is to add the number at the rear pointer into
  331.  * the one at the front pointer.  Then both pointers are advanced to the next
  332.  * location cyclically in the table.  The value returned is the sum generated,
  333.  * reduced to 31 bits by throwing away the "least random" low bit.
  334.  * Note: the code takes advantage of the fact that both the front and
  335.  * rear pointers can't wrap on the same call by not testing the rear
  336.  * pointer if the front one has wrapped.
  337.  * Returns a 31-bit random number.
  338.  */
  339.  
  340. long
  341. random(void)
  342. {
  343.   long i;
  344.        
  345.   if (rand_type == TYPE_0)
  346.   {
  347.     i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
  348.   }
  349.   else
  350.   {
  351.     *fptr += *rptr;
  352.     i = (*fptr >> 1)&0x7fffffff; /* chucking least random bit */
  353.     if (++fptr >= end_ptr )
  354.     {
  355.       fptr = state;
  356.       ++rptr;
  357.     }
  358.     else
  359.     {
  360.       if (++rptr >= end_ptr)
  361.         rptr = state;
  362.     }
  363.   }
  364.   return i;
  365. }
  366.