Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | Download | RSS feed

  1.  
  2.                    How FreeType's rasterizer work
  3.  
  4.                           by David Turner
  5.  
  6.                         Revised 2007-Feb-01
  7.  
  8.  
  9. This file  is an  attempt to explain  the internals of  the FreeType
  10. rasterizer.  The  rasterizer is of  quite general purpose  and could
  11. easily be integrated into other programs.
  12.  
  13.  
  14.   I. Introduction
  15.  
  16.  II. Rendering Technology
  17.      1. Requirements
  18.      2. Profiles and Spans
  19.         a. Sweeping the Shape
  20.         b. Decomposing Outlines into Profiles
  21.         c. The Render Pool
  22.         d. Computing Profiles Extents
  23.         e. Computing Profiles Coordinates
  24.         f. Sweeping and Sorting the Spans
  25.  
  26.  
  27. I. Introduction
  28. ===============
  29.  
  30.   A  rasterizer is  a library  in charge  of converting  a vectorial
  31.   representation of a shape  into a bitmap.  The FreeType rasterizer
  32.   has  been  originally developed  to  render  the  glyphs found  in
  33.   TrueType  files, made  up  of segments  and second-order  Béziers.
  34.   Meanwhile it has been extended to render third-order Bézier curves
  35.   also.   This  document  is   an  explanation  of  its  design  and
  36.   implementation.
  37.  
  38.   While  these explanations start  from the  basics, a  knowledge of
  39.   common rasterization techniques is assumed.
  40.  
  41.  
  42. II. Rendering Technology
  43. ========================
  44.  
  45. 1. Requirements
  46. ---------------
  47.  
  48.   We  assume that  all scaling,  rotating, hinting,  etc.,  has been
  49.   already done.  The glyph is thus  described by a list of points in
  50.   the device space.
  51.  
  52.   - All point coordinates  are in the 26.6 fixed  float format.  The
  53.     used orientation is:
  54.  
  55.  
  56.        ^ y
  57.        |         reference orientation
  58.        |
  59.        *----> x
  60.       0
  61.  
  62.  
  63.     `26.6' means  that 26 bits  are used for  the integer part  of a
  64.     value   and  6   bits  are   used  for   the   fractional  part.
  65.     Consequently, the `distance'  between two neighbouring pixels is
  66.     64 `units' (1 unit = 1/64th of a pixel).
  67.  
  68.     Note  that, for  the rasterizer,  pixel centers  are  located at
  69.     integer   coordinates.   The   TrueType   bytecode  interpreter,
  70.     however, assumes that  the lower left edge of  a pixel (which is
  71.     taken  to be  a square  with  a length  of 1  unit) has  integer
  72.     coordinates.
  73.  
  74.  
  75.         ^ y                                        ^ y
  76.         |                                          |
  77.         |            (1,1)                         |      (0.5,0.5)
  78.         +-----------+                        +-----+-----+
  79.         |           |                        |     |     |
  80.         |           |                        |     |     |
  81.         |           |                        |     o-----+-----> x
  82.         |           |                        |   (0,0)   |
  83.         |           |                        |           |
  84.         o-----------+-----> x                +-----------+
  85.       (0,0)                             (-0.5,-0.5)
  86.  
  87.    TrueType bytecode interpreter          FreeType rasterizer
  88.  
  89.  
  90.     A pixel line in the target bitmap is called a `scanline'.
  91.  
  92.   - A  glyph  is  usually  made  of several  contours,  also  called
  93.     `outlines'.  A contour is simply a closed curve that delimits an
  94.     outer or inner region of the glyph.  It is described by a series
  95.     of successive points of the points table.
  96.  
  97.     Each point  of the glyph  has an associated flag  that indicates
  98.     whether  it is  `on' or  `off' the  curve.  Two  successive `on'
  99.     points indicate a line segment joining the two points.
  100.  
  101.     One `off' point amidst two `on' points indicates a second-degree
  102.     (conic)  Bézier parametric  arc, defined  by these  three points
  103.     (the `off' point being the  control point, and the `on' ones the
  104.     start and end points).  Similarly, a third-degree (cubic) Bézier
  105.     curve  is described  by four  points (two  `off'  control points
  106.     between two `on' points).
  107.  
  108.     Finally,  for  second-order curves  only,  two successive  `off'
  109.     points  forces the  rasterizer to  create, during  rendering, an
  110.     `on'  point amidst them,  at their  exact middle.   This greatly
  111.     facilitates the  definition of  successive Bézier arcs.
  112.  
  113.   The parametric form of a second-order Bézier curve is:
  114.  
  115.       P(t) = (1-t)^2*P1 + 2*t*(1-t)*P2 + t^2*P3
  116.  
  117.       (P1 and P3 are the end points, P2 the control point.)
  118.  
  119.   The parametric form of a third-order Bézier curve is:
  120.  
  121.       P(t) = (1-t)^3*P1 + 3*t*(1-t)^2*P2 + 3*t^2*(1-t)*P3 + t^3*P4
  122.  
  123.       (P1 and P4 are the end points, P2 and P3 the control points.)
  124.  
  125.   For both formulae, t is a real number in the range [0..1].
  126.  
  127.   Note  that the rasterizer  does not  use these  formulae directly.
  128.   They exhibit,  however, one very  useful property of  Bézier arcs:
  129.   Each  point of  the curve  is a  weighted average  of  the control
  130.   points.
  131.  
  132.   As all weights  are positive and always sum up  to 1, whatever the
  133.   value  of t,  each arc  point lies  within the  triangle (polygon)
  134.   defined by the arc's three (four) control points.
  135.  
  136.   In  the following,  only second-order  curves are  discussed since
  137.   rasterization of third-order curves is completely identical.
  138.  
  139.   Here some samples for second-order curves.
  140.  
  141.  
  142.                                         *            # on curve
  143.                                                      * off curve
  144.                                      __---__
  145.         #-__                      _--       -_
  146.             --__                _-            -
  147.                 --__           #               \
  148.                     --__                        #
  149.                         -#
  150.                                  Two `on' points
  151.          Two `on' points       and one `off' point
  152.                                   between them
  153.  
  154.                       *
  155.         #            __      Two `on' points with two `off'
  156.          \          -  -     points between them. The point
  157.           \        /    \    marked `0' is the middle of the
  158.            -      0      \   `off' points, and is a `virtual
  159.             -_  _-       #   on' point where the curve passes.
  160.               --             It does not appear in the point
  161.               *              list.
  162.  
  163.  
  164. 2. Profiles and Spans
  165. ---------------------
  166.  
  167.   The following is a basic explanation of the _kind_ of computations
  168.   made  by  the   rasterizer  to  build  a  bitmap   from  a  vector
  169.   representation.  Note  that the actual  implementation is slightly
  170.   different, due to performance tuning and other factors.
  171.  
  172.   However, the following ideas remain  in the same category, and are
  173.   more convenient to understand.
  174.  
  175.  
  176.   a. Sweeping the Shape
  177.  
  178.     The best way to fill a shape is to decompose it into a number of
  179.     simple  horizontal segments,  then turn  them on  in  the target
  180.     bitmap.  These segments are called `spans'.
  181.  
  182.                 __---__
  183.              _--       -_
  184.            _-            -
  185.           -               \
  186.          /                 \
  187.         /                   \
  188.        |                     \
  189.  
  190.                 __---__         Example: filling a shape
  191.              _----------_                with spans.
  192.            _--------------
  193.           ----------------\
  194.          /-----------------\    This is typically done from the top
  195.         /                   \   to the bottom of the shape, in a
  196.        |           |         \  movement called a `sweep'.
  197.                    V
  198.  
  199.                 __---__
  200.              _----------_
  201.            _--------------
  202.           ----------------\
  203.          /-----------------\
  204.         /-------------------\
  205.        |---------------------\
  206.  
  207.  
  208.     In  order  to draw  a  span,  the  rasterizer must  compute  its
  209.     coordinates, which  are simply the x coordinates  of the shape's
  210.     contours, taken on the y scanlines.
  211.  
  212.  
  213.                    /---/    |---|   Note that there are usually
  214.                   /---/     |---|   several spans per scanline.
  215.         |        /---/      |---|
  216.         |       /---/_______|---|   When rendering this shape to the
  217.         V      /----------------|   current scanline y, we must
  218.               /-----------------|   compute the x values of the
  219.            a /----|         |---|   points a, b, c, and d.
  220.       - - - *     * - - - - *   * - - y -
  221.            /     / b       c|   |d
  222.  
  223.  
  224.                    /---/    |---|
  225.                   /---/     |---|  And then turn on the spans a-b
  226.                  /---/      |---|  and c-d.
  227.                 /---/_______|---|
  228.                /----------------|
  229.               /-----------------|
  230.            a /----|         |---|
  231.       - - - ####### - - - - ##### - - y -
  232.            /     / b       c|   |d
  233.  
  234.  
  235.   b. Decomposing Outlines into Profiles
  236.  
  237.     For  each  scanline during  the  sweep,  we  need the  following
  238.     information:
  239.  
  240.     o The  number of  spans on  the current  scanline, given  by the
  241.       number of  shape points  intersecting the scanline  (these are
  242.       the points a, b, c, and d in the above example).
  243.  
  244.     o The x coordinates of these points.
  245.  
  246.     x coordinates are  computed before the sweep, in  a phase called
  247.     `decomposition' which converts the glyph into *profiles*.
  248.  
  249.     Put it simply, a `profile'  is a contour's portion that can only
  250.     be either ascending or descending,  i.e., it is monotonic in the
  251.     vertical direction (we also say  y-monotonic).  There is no such
  252.     thing as a horizontal profile, as we shall see.
  253.  
  254.     Here are a few examples:
  255.  
  256.  
  257.       this square
  258.                                           1         2
  259.          ---->----     is made of two
  260.         |         |                       |         |
  261.         |         |       profiles        |         |
  262.         ^         v                       ^    +    v
  263.         |         |                       |         |
  264.         |         |                       |         |
  265.          ----<----
  266.  
  267.                                          up        down
  268.  
  269.  
  270.       this triangle
  271.  
  272.              P2                             1          2
  273.  
  274.              |\        is made of two       |         \
  275.           ^  | \  \                         |          \
  276.           | |   \  \      profiles         |            \      |
  277.          |  |    \  v                  ^   |             \     |
  278.            |      \                    |  |         +     \    v
  279.            |       \                   |  |                \
  280.         P1 ---___   \                     ---___            \
  281.                  ---_\                          ---_         \
  282.              <--__     P3                   up           down
  283.  
  284.  
  285.  
  286.       A more general contour can be made of more than two profiles:
  287.  
  288.               __     ^
  289.              /  |   /  ___          /    |
  290.             /   |     /   |        /     |       /     |
  291.            |    |    /   /    =>  |      v      /     /
  292.            |    |   |   |         |      |     ^     |
  293.         ^  |    |___|   |  |      ^   +  |  +  |  +  v
  294.         |  |           |   v      |                 |
  295.            |           |          |           up    |
  296.            |___________|          |    down         |
  297.  
  298.                 <--               up              down
  299.  
  300.  
  301.     Successive  profiles are  always joined  by  horizontal segments
  302.     that are not part of the profiles themselves.
  303.  
  304.     For  the  rasterizer,  a  profile  is  simply  an  *array*  that
  305.     associates  one  horizontal *pixel*  coordinate  to each  bitmap
  306.     *scanline*  crossed  by  the  contour's section  containing  the
  307.     profile.  Note that profiles are *oriented* up or down along the
  308.     glyph's original flow orientation.
  309.  
  310.     In other graphics libraries, profiles are also called `edges' or
  311.     `edgelists'.
  312.  
  313.  
  314.   c. The Render Pool
  315.  
  316.     FreeType  has been designed  to be  able to  run well  on _very_
  317.     light systems, including embedded systems with very few memory.
  318.  
  319.     A render pool  will be allocated once; the  rasterizer uses this
  320.     pool for all  its needs by managing this  memory directly in it.
  321.     The  algorithms that are  used for  profile computation  make it
  322.     possible to use  the pool as a simple  growing heap.  This means
  323.     that this  memory management is  actually quite easy  and faster
  324.     than any kind of malloc()/free() combination.
  325.  
  326.     Moreover,  we'll see  later that  the rasterizer  is  able, when
  327.     dealing with profiles too large  and numerous to lie all at once
  328.     in  the render  pool, to  immediately decompose  recursively the
  329.     rendering process  into independent sub-tasks,  each taking less
  330.     memory to be performed (see `sub-banding' below).
  331.  
  332.     The  render pool doesn't  need to  be large.   A 4KByte  pool is
  333.     enough for nearly all renditions, though nearly 100% slower than
  334.     a more comfortable 16KByte or 32KByte pool (that was tested with
  335.     complex glyphs at sizes over 500 pixels).
  336.  
  337.  
  338.   d. Computing Profiles Extents
  339.  
  340.     Remember that a profile is an array, associating a _scanline_ to
  341.     the x pixel coordinate of its intersection with a contour.
  342.  
  343.     Though it's not exactly how the FreeType rasterizer works, it is
  344.     convenient  to think  that  we need  a  profile's height  before
  345.     allocating it in the pool and computing its coordinates.
  346.  
  347.     The profile's height  is the number of scanlines  crossed by the
  348.     y-monotonic section of a contour.  We thus need to compute these
  349.     sections from  the vectorial description.  In order  to do that,
  350.     we are  obliged to compute all  (local and global)  y extrema of
  351.     the glyph (minima and maxima).
  352.  
  353.  
  354.            P2             For instance, this triangle has only
  355.                           two y-extrema, which are simply
  356.            |\
  357.            | \               P2.y  as a vertical maximum
  358.           |   \              P3.y  as a vertical minimum
  359.           |    \
  360.          |      \            P1.y is not a vertical extremum (though
  361.          |       \           it is a horizontal minimum, which we
  362.       P1 ---___   \          don't need).
  363.                ---_\
  364.                      P3
  365.  
  366.  
  367.     Note  that the  extrema are  expressed  in pixel  units, not  in
  368.     scanlines.   The triangle's  height  is certainly  (P3.y-P2.y+1)
  369.     pixel  units,   but  its  profiles'  heights   are  computed  in
  370.     scanlines.  The exact conversion is simple:
  371.  
  372.       - min scanline = FLOOR  ( min y )
  373.       - max scanline = CEILING( max y )
  374.  
  375.     A problem  arises with Bézier  Arcs.  While a segment  is always
  376.     necessarily y-monotonic (i.e.,  flat, ascending, or descending),
  377.     which makes extrema computations easy,  the ascent of an arc can
  378.     vary between its control points.
  379.  
  380.  
  381.                           P2
  382.                          *
  383.                                        # on curve
  384.                                        * off curve
  385.                    __-x--_
  386.                 _--       -_
  387.           P1  _-            -          A non y-monotonic Bézier arc.
  388.              #               \
  389.                               -        The arc goes from P1 to P3.
  390.                                \
  391.                                 \  P3
  392.                                  #
  393.  
  394.  
  395.     We first  need to be  able to easily detect  non-monotonic arcs,
  396.     according to  their control points.  I will  state here, without
  397.     proof, that the monotony condition can be expressed as:
  398.  
  399.       P1.y <= P2.y <= P3.y   for an ever-ascending arc
  400.  
  401.       P1.y >= P2.y >= P3.y   for an ever-descending arc
  402.  
  403.     with the special case of
  404.  
  405.       P1.y = P2.y = P3.y     where the arc is said to be `flat'.
  406.  
  407.     As  you can  see, these  conditions can  be very  easily tested.
  408.     They are, however, extremely important, as any arc that does not
  409.     satisfy them necessarily contains an extremum.
  410.  
  411.     Note  also that  a monotonic  arc can  contain an  extremum too,
  412.     which is then one of its `on' points:
  413.  
  414.  
  415.         P1           P2
  416.           #---__   *         P1P2P3 is ever-descending, but P1
  417.                 -_           is an y-extremum.
  418.                   -
  419.            ---_    \
  420.                ->   \
  421.                      \  P3
  422.                       #
  423.  
  424.  
  425.     Let's go back to our previous example:
  426.  
  427.  
  428.                           P2
  429.                          *
  430.                                        # on curve
  431.                                        * off curve
  432.                    __-x--_
  433.                 _--       -_
  434.           P1  _-            -          A non-y-monotonic Bézier arc.
  435.              #               \
  436.                               -        Here we have
  437.                                \              P2.y >= P1.y &&
  438.                                 \  P3         P2.y >= P3.y      (!)
  439.                                  #
  440.  
  441.  
  442.     We need to  compute the vertical maximum of this  arc to be able
  443.     to compute a profile's height (the point marked by an `x').  The
  444.     arc's equation indicates that  a direct computation is possible,
  445.     but  we rely  on a  different technique,  which use  will become
  446.     apparent soon.
  447.  
  448.     Bézier  arcs have  the  special property  of  being very  easily
  449.     decomposed into two sub-arcs,  which are themselves Bézier arcs.
  450.     Moreover, it is easy to prove that there is at most one vertical
  451.     extremum on  each Bézier arc (for  second-degree curves; similar
  452.     conditions can be found for third-order arcs).
  453.  
  454.     For instance,  the following arc  P1P2P3 can be  decomposed into
  455.     two sub-arcs Q1Q2Q3 and R1R2R3:
  456.  
  457.  
  458.                     P2
  459.                    *
  460.                                     # on  curve
  461.                                     * off curve
  462.  
  463.  
  464.                                     original Bézier arc P1P2P3.
  465.                 __---__
  466.              _--       --_
  467.            _-             -_
  468.           -                 -
  469.          /                   \
  470.         /                     \
  471.        #                       #
  472.      P1                         P3
  473.  
  474.  
  475.  
  476.                     P2
  477.                    *
  478.  
  479.  
  480.  
  481.                    Q3                 Decomposed into two subarcs
  482.           Q2                R2        Q1Q2Q3 and R1R2R3
  483.             *   __-#-__   *
  484.              _--       --_
  485.            _-       R1    -_          Q1 = P1         R3 = P3
  486.           -                 -         Q2 = (P1+P2)/2  R2 = (P2+P3)/2
  487.          /                   \
  488.         /                     \            Q3 = R1 = (Q2+R2)/2
  489.        #                       #
  490.      Q1                         R3    Note that Q2, R2, and Q3=R1
  491.                                       are on a single line which is
  492.                                       tangent to the curve.
  493.  
  494.  
  495.     We have then decomposed  a non-y-monotonic Bézier curve into two
  496.     smaller sub-arcs.  Note that in the above drawing, both sub-arcs
  497.     are monotonic, and that the extremum is then Q3=R1.  However, in
  498.     a  more general  case,  only  one sub-arc  is  guaranteed to  be
  499.     monotonic.  Getting back to our former example:
  500.  
  501.  
  502.                     Q2
  503.                    *
  504.  
  505.                    __-x--_ R1
  506.                 _--       #_
  507.           Q1  _-        Q3  -   R2
  508.              #               \ *
  509.                               -
  510.                                \
  511.                                 \  R3
  512.                                  #
  513.  
  514.  
  515.     Here, we see that,  though Q1Q2Q3 is still non-monotonic, R1R2R3
  516.     is ever  descending: We  thus know that  it doesn't  contain the
  517.     extremum.  We can then re-subdivide Q1Q2Q3 into two sub-arcs and
  518.     go  on recursively,  stopping  when we  encounter two  monotonic
  519.     subarcs, or when the subarcs become simply too small.
  520.  
  521.     We  will finally  find  the vertical  extremum.   Note that  the
  522.     iterative process of finding an extremum is called `flattening'.
  523.  
  524.  
  525.   e. Computing Profiles Coordinates
  526.  
  527.     Once we have the height of each profile, we are able to allocate
  528.     it in the render pool.   The next task is to compute coordinates
  529.     for each scanline.
  530.  
  531.     In  the case  of segments,  the computation  is straightforward,
  532.     using  the  Euclidean   algorithm  (also  known  as  Bresenham).
  533.     However, for Bézier arcs, the job is a little more complicated.
  534.  
  535.     We assume  that all Béziers that  are part of a  profile are the
  536.     result of  flattening the curve,  which means that they  are all
  537.     y-monotonic (ascending  or descending, and never  flat).  We now
  538.     have  to compute the  intersections of  arcs with  the profile's
  539.     scanlines.  One  way is  to use a  similar scheme  to flattening
  540.     called `stepping'.
  541.  
  542.  
  543.                                  Consider this arc, going from P1 to
  544.       ---------------------      P3.  Suppose that we need to
  545.                                  compute its intersections with the
  546.                                  drawn scanlines.  As already
  547.       ---------------------      mentioned this can be done
  548.                                  directly, but the involved
  549.           * P2         _---# P3  algorithm is far too slow.
  550.       ------------- _--  --
  551.                   _-
  552.                 _/               Instead, it is still possible to
  553.       ---------/-----------      use the decomposition property in
  554.               /                  the same recursive way, i.e.,
  555.              |                   subdivide the arc into subarcs
  556.       ------|--------------      until these get too small to cross
  557.             |                    more than one scanline!
  558.            |
  559.       -----|---------------      This is very easily done using a
  560.           |                      rasterizer-managed stack of
  561.           |                      subarcs.
  562.           # P1
  563.  
  564.  
  565.   f. Sweeping and Sorting the Spans
  566.  
  567.     Once all our profiles have  been computed, we begin the sweep to
  568.     build (and fill) the spans.
  569.  
  570.     As both the  TrueType and Type 1 specifications  use the winding
  571.     fill  rule (but  with opposite  directions), we  place,  on each
  572.     scanline, the present profiles in two separate lists.
  573.  
  574.     One  list,  called  the  `left'  one,  only  contains  ascending
  575.     profiles, while  the other `right' list  contains the descending
  576.     profiles.
  577.  
  578.     As  each glyph  is made  of  closed curves,  a simple  geometric
  579.     property ensures that  the two lists contain the  same number of
  580.     elements.
  581.  
  582.     Creating spans is thus straightforward:
  583.  
  584.     1. We sort each list in increasing horizontal order.
  585.  
  586.     2. We pair  each value of  the left list with  its corresponding
  587.        value in the right list.
  588.  
  589.  
  590.                    /     /  |   |          For example, we have here
  591.                   /     /   |   |          four profiles.  Two of
  592.                 >/     /    |   |  |       them are ascending (1 &
  593.               1//     /   ^ |   |  | 2     3), while the two others
  594.               //     //  3| |   |  v       are descending (2 & 4).
  595.               /     //4   | |   |          On the given scanline,
  596.            a /     /<       |   |          the left list is (1,3),
  597.       - - - *-----* - - - - *---* - - y -  and the right one is
  598.            /     / b       c|   |d         (4,2) (sorted).
  599.  
  600.                                    There are then two spans, joining
  601.                                    1 to 4 (i.e. a-b) and 3 to 2
  602.                                    (i.e. c-d)!
  603.  
  604.  
  605.     Sorting doesn't necessarily  take much time, as in  99 cases out
  606.     of 100, the lists' order is  kept from one scanline to the next.
  607.     We can  thus implement it  with two simple  singly-linked lists,
  608.     sorted by a classic bubble-sort, which takes a minimum amount of
  609.     time when the lists are already sorted.
  610.  
  611.     A  previous  version  of  the  rasterizer  used  more  elaborate
  612.     structures, like arrays to  perform `faster' sorting.  It turned
  613.     out that  this old scheme is  not faster than  the one described
  614.     above.
  615.  
  616.     Once the spans  have been `created', we can  simply draw them in
  617.     the target bitmap.
  618.  
  619. ------------------------------------------------------------------------
  620.  
  621. Copyright 2003, 2007 by
  622. David Turner, Robert Wilhelm, and Werner Lemberg.
  623.  
  624. This  file  is  part  of the  FreeType  project, and may  only be  used,
  625. modified,  and  distributed  under  the  terms of  the FreeType  project
  626. license, LICENSE.TXT.   By continuing to use, modify, or distribute this
  627. file you  indicate that  you have  read the  license and understand  and
  628. accept it fully.
  629.  
  630.  
  631. --- end of raster.txt ---
  632.  
  633. Local Variables:
  634. coding: utf-8
  635. End:
  636.