Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* cairo - a vector graphics library with display and print output
  2.  *
  3.  * Copyright © 2004 Red Hat, Inc.
  4.  * Copyright © 2005 Red Hat, Inc.
  5.  *
  6.  * This library is free software; you can redistribute it and/or
  7.  * modify it either under the terms of the GNU Lesser General Public
  8.  * License version 2.1 as published by the Free Software Foundation
  9.  * (the "LGPL") or, at your option, under the terms of the Mozilla
  10.  * Public License Version 1.1 (the "MPL"). If you do not alter this
  11.  * notice, a recipient may use your version of this file under either
  12.  * the MPL or the LGPL.
  13.  *
  14.  * You should have received a copy of the LGPL along with this library
  15.  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
  16.  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
  17.  * You should have received a copy of the MPL along with this library
  18.  * in the file COPYING-MPL-1.1
  19.  *
  20.  * The contents of this file are subject to the Mozilla Public License
  21.  * Version 1.1 (the "License"); you may not use this file except in
  22.  * compliance with the License. You may obtain a copy of the License at
  23.  * http://www.mozilla.org/MPL/
  24.  *
  25.  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
  26.  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
  27.  * the specific language governing rights and limitations.
  28.  *
  29.  * The Original Code is the cairo graphics library.
  30.  *
  31.  * The Initial Developer of the Original Code is Red Hat, Inc.
  32.  *
  33.  * Contributor(s):
  34.  *      Keith Packard <keithp@keithp.com>
  35.  *      Graydon Hoare <graydon@redhat.com>
  36.  *      Carl Worth <cworth@cworth.org>
  37.  */
  38.  
  39. #include "cairoint.h"
  40. #include "cairo-error-private.h"
  41.  
  42. /*
  43.  * An entry can be in one of three states:
  44.  *
  45.  * FREE: Entry has never been used, terminates all searches.
  46.  *       Appears in the table as a %NULL pointer.
  47.  *
  48.  * DEAD: Entry had been live in the past. A dead entry can be reused
  49.  *       but does not terminate a search for an exact entry.
  50.  *       Appears in the table as a pointer to DEAD_ENTRY.
  51.  *
  52.  * LIVE: Entry is currently being used.
  53.  *       Appears in the table as any non-%NULL, non-DEAD_ENTRY pointer.
  54.  */
  55.  
  56. #define DEAD_ENTRY ((cairo_hash_entry_t *) 0x1)
  57.  
  58. #define ENTRY_IS_FREE(entry) ((entry) == NULL)
  59. #define ENTRY_IS_DEAD(entry) ((entry) == DEAD_ENTRY)
  60. #define ENTRY_IS_LIVE(entry) ((entry) >  DEAD_ENTRY)
  61.  
  62. /* We expect keys will not be destroyed frequently, so our table does not
  63.  * contain any explicit shrinking code nor any chain-coalescing code for
  64.  * entries randomly deleted by memory pressure (except during rehashing, of
  65.  * course). These assumptions are potentially bad, but they make the
  66.  * implementation straightforward.
  67.  *
  68.  * Revisit later if evidence appears that we're using excessive memory from
  69.  * a mostly-dead table.
  70.  *
  71.  * This table is open-addressed with double hashing. Each table size is a
  72.  * prime chosen to be a little more than double the high water mark for a
  73.  * given arrangement, so the tables should remain < 50% full. The table
  74.  * size makes for the "first" hash modulus; a second prime (2 less than the
  75.  * first prime) serves as the "second" hash modulus, which is co-prime and
  76.  * thus guarantees a complete permutation of table indices.
  77.  *
  78.  * This structure, and accompanying table, is borrowed/modified from the
  79.  * file xserver/render/glyph.c in the freedesktop.org x server, with
  80.  * permission (and suggested modification of doubling sizes) by Keith
  81.  * Packard.
  82.  */
  83.  
  84. typedef struct _cairo_hash_table_arrangement {
  85.     unsigned long high_water_mark;
  86.     unsigned long size;
  87.     unsigned long rehash;
  88. } cairo_hash_table_arrangement_t;
  89.  
  90. static const cairo_hash_table_arrangement_t hash_table_arrangements [] = {
  91.     { 16,               43,             41              },
  92.     { 32,               73,             71              },
  93.     { 64,               151,            149             },
  94.     { 128,              283,            281             },
  95.     { 256,              571,            569             },
  96.     { 512,              1153,           1151            },
  97.     { 1024,             2269,           2267            },
  98.     { 2048,             4519,           4517            },
  99.     { 4096,             9013,           9011            },
  100.     { 8192,             18043,          18041           },
  101.     { 16384,            36109,          36107           },
  102.     { 32768,            72091,          72089           },
  103.     { 65536,            144409,         144407          },
  104.     { 131072,           288361,         288359          },
  105.     { 262144,           576883,         576881          },
  106.     { 524288,           1153459,        1153457         },
  107.     { 1048576,          2307163,        2307161         },
  108.     { 2097152,          4613893,        4613891         },
  109.     { 4194304,          9227641,        9227639         },
  110.     { 8388608,          18455029,       18455027        },
  111.     { 16777216,         36911011,       36911009        },
  112.     { 33554432,         73819861,       73819859        },
  113.     { 67108864,         147639589,      147639587       },
  114.     { 134217728,        295279081,      295279079       },
  115.     { 268435456,        590559793,      590559791       }
  116. };
  117.  
  118. #define NUM_HASH_TABLE_ARRANGEMENTS ARRAY_LENGTH (hash_table_arrangements)
  119.  
  120. struct _cairo_hash_table {
  121.     cairo_hash_keys_equal_func_t keys_equal;
  122.  
  123.     const cairo_hash_table_arrangement_t *arrangement;
  124.     cairo_hash_entry_t **entries;
  125.  
  126.     unsigned long live_entries;
  127.     unsigned long iterating;   /* Iterating, no insert, no resize */
  128. };
  129.  
  130. /**
  131.  * _cairo_hash_table_create:
  132.  * @keys_equal: a function to return %TRUE if two keys are equal
  133.  *
  134.  * Creates a new hash table which will use the keys_equal() function
  135.  * to compare hash keys. Data is provided to the hash table in the
  136.  * form of user-derived versions of #cairo_hash_entry_t. A hash entry
  137.  * must be able to hold both a key (including a hash code) and a
  138.  * value. Sometimes only the key will be necessary, (as in
  139.  * _cairo_hash_table_remove), and other times both a key and a value
  140.  * will be necessary, (as in _cairo_hash_table_insert).
  141.  *
  142.  * See #cairo_hash_entry_t for more details.
  143.  *
  144.  * Return value: the new hash table or %NULL if out of memory.
  145.  **/
  146. cairo_hash_table_t *
  147. _cairo_hash_table_create (cairo_hash_keys_equal_func_t keys_equal)
  148. {
  149.     cairo_hash_table_t *hash_table;
  150.  
  151.     hash_table = malloc (sizeof (cairo_hash_table_t));
  152.     if (unlikely (hash_table == NULL)) {
  153.         _cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
  154.         return NULL;
  155.     }
  156.  
  157.     hash_table->keys_equal = keys_equal;
  158.  
  159.     hash_table->arrangement = &hash_table_arrangements[0];
  160.  
  161.     hash_table->entries = calloc (hash_table->arrangement->size,
  162.                                   sizeof(cairo_hash_entry_t *));
  163.     if (unlikely (hash_table->entries == NULL)) {
  164.         _cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
  165.         free (hash_table);
  166.         return NULL;
  167.     }
  168.  
  169.     hash_table->live_entries = 0;
  170.     hash_table->iterating = 0;
  171.  
  172.     return hash_table;
  173. }
  174.  
  175. /**
  176.  * _cairo_hash_table_destroy:
  177.  * @hash_table: an empty hash table to destroy
  178.  *
  179.  * Immediately destroys the given hash table, freeing all resources
  180.  * associated with it.
  181.  *
  182.  * WARNING: The hash_table must have no live entries in it before
  183.  * _cairo_hash_table_destroy is called. It is a fatal error otherwise,
  184.  * and this function will halt. The rationale for this behavior is to
  185.  * avoid memory leaks and to avoid needless complication of the API
  186.  * with destroy notifiy callbacks.
  187.  *
  188.  * WARNING: The hash_table must have no running iterators in it when
  189.  * _cairo_hash_table_destroy is called. It is a fatal error otherwise,
  190.  * and this function will halt.
  191.  **/
  192. void
  193. _cairo_hash_table_destroy (cairo_hash_table_t *hash_table)
  194. {
  195.     /* The hash table must be empty. Otherwise, halt. */
  196.     assert (hash_table->live_entries == 0);
  197.     /* No iterators can be running. Otherwise, halt. */
  198.     assert (hash_table->iterating == 0);
  199.  
  200.     free (hash_table->entries);
  201.     hash_table->entries = NULL;
  202.  
  203.     free (hash_table);
  204. }
  205.  
  206. static cairo_hash_entry_t **
  207. _cairo_hash_table_lookup_unique_key (cairo_hash_table_t *hash_table,
  208.                                      cairo_hash_entry_t *key)
  209. {
  210.     unsigned long table_size, i, idx, step;
  211.     cairo_hash_entry_t **entry;
  212.  
  213.     table_size = hash_table->arrangement->size;
  214.     idx = key->hash % table_size;
  215.  
  216.     entry = &hash_table->entries[idx];
  217.     if (! ENTRY_IS_LIVE (*entry))
  218.         return entry;
  219.  
  220.     i = 1;
  221.     step = key->hash % hash_table->arrangement->rehash;
  222.     if (step == 0)
  223.         step = 1;
  224.     do {
  225.         idx += step;
  226.         if (idx >= table_size)
  227.             idx -= table_size;
  228.  
  229.         entry = &hash_table->entries[idx];
  230.         if (! ENTRY_IS_LIVE (*entry))
  231.             return entry;
  232.     } while (++i < table_size);
  233.  
  234.     ASSERT_NOT_REACHED;
  235.     return NULL;
  236. }
  237.  
  238. /**
  239.  * _cairo_hash_table_resize:
  240.  * @hash_table: a hash table
  241.  *
  242.  * Resize the hash table if the number of entries has gotten much
  243.  * bigger or smaller than the ideal number of entries for the current
  244.  * size.
  245.  *
  246.  * Return value: %CAIRO_STATUS_SUCCESS if successful or
  247.  * %CAIRO_STATUS_NO_MEMORY if out of memory.
  248.  **/
  249. static cairo_status_t
  250. _cairo_hash_table_resize (cairo_hash_table_t *hash_table)
  251. {
  252.     cairo_hash_table_t tmp;
  253.     unsigned long new_size, i;
  254.  
  255.     /* This keeps the hash table between 25% and 50% full. */
  256.     unsigned long high = hash_table->arrangement->high_water_mark;
  257.     unsigned long low = high >> 2;
  258.  
  259.     if (hash_table->live_entries >= low && hash_table->live_entries <= high)
  260.         return CAIRO_STATUS_SUCCESS;
  261.  
  262.     tmp = *hash_table;
  263.  
  264.     if (hash_table->live_entries > high)
  265.     {
  266.         tmp.arrangement = hash_table->arrangement + 1;
  267.         /* This code is being abused if we can't make a table big enough. */
  268.         assert (tmp.arrangement - hash_table_arrangements <
  269.                 NUM_HASH_TABLE_ARRANGEMENTS);
  270.     }
  271.     else /* hash_table->live_entries < low */
  272.     {
  273.         /* Can't shrink if we're at the smallest size */
  274.         if (hash_table->arrangement == &hash_table_arrangements[0])
  275.             return CAIRO_STATUS_SUCCESS;
  276.         tmp.arrangement = hash_table->arrangement - 1;
  277.     }
  278.  
  279.     new_size = tmp.arrangement->size;
  280.     tmp.entries = calloc (new_size, sizeof (cairo_hash_entry_t*));
  281.     if (unlikely (tmp.entries == NULL))
  282.         return _cairo_error (CAIRO_STATUS_NO_MEMORY);
  283.  
  284.     for (i = 0; i < hash_table->arrangement->size; ++i) {
  285.         if (ENTRY_IS_LIVE (hash_table->entries[i])) {
  286.             *_cairo_hash_table_lookup_unique_key (&tmp, hash_table->entries[i])
  287.                 = hash_table->entries[i];
  288.         }
  289.     }
  290.  
  291.     free (hash_table->entries);
  292.     hash_table->entries = tmp.entries;
  293.     hash_table->arrangement = tmp.arrangement;
  294.  
  295.     return CAIRO_STATUS_SUCCESS;
  296. }
  297.  
  298. /**
  299.  * _cairo_hash_table_lookup:
  300.  * @hash_table: a hash table
  301.  * @key: the key of interest
  302.  *
  303.  * Performs a lookup in @hash_table looking for an entry which has a
  304.  * key that matches @key, (as determined by the keys_equal() function
  305.  * passed to _cairo_hash_table_create).
  306.  *
  307.  * Return value: the matching entry, of %NULL if no match was found.
  308.  **/
  309. void *
  310. _cairo_hash_table_lookup (cairo_hash_table_t *hash_table,
  311.                           cairo_hash_entry_t *key)
  312. {
  313.     cairo_hash_entry_t *entry;
  314.     unsigned long table_size, i, idx, step;
  315.  
  316.     table_size = hash_table->arrangement->size;
  317.     idx = key->hash % table_size;
  318.  
  319.     entry = hash_table->entries[idx];
  320.     if (ENTRY_IS_LIVE (entry)) {
  321.         if (hash_table->keys_equal (key, entry))
  322.             return entry;
  323.     } else if (ENTRY_IS_FREE (entry))
  324.         return NULL;
  325.  
  326.     i = 1;
  327.     step = key->hash % hash_table->arrangement->rehash;
  328.     if (step == 0)
  329.         step = 1;
  330.     do {
  331.         idx += step;
  332.         if (idx >= table_size)
  333.             idx -= table_size;
  334.  
  335.         entry = hash_table->entries[idx];
  336.         if (ENTRY_IS_LIVE (entry)) {
  337.             if (hash_table->keys_equal (key, entry))
  338.                 return entry;
  339.         } else if (ENTRY_IS_FREE (entry))
  340.             return NULL;
  341.     } while (++i < table_size);
  342.  
  343.     return NULL;
  344. }
  345.  
  346. /**
  347.  * _cairo_hash_table_random_entry:
  348.  * @hash_table: a hash table
  349.  * @predicate: a predicate function.
  350.  *
  351.  * Find a random entry in the hash table satisfying the given
  352.  * @predicate.
  353.  *
  354.  * We use the same algorithm as the lookup algorithm to walk over the
  355.  * entries in the hash table in a pseudo-random order. Walking
  356.  * linearly would favor entries following gaps in the hash table. We
  357.  * could also call rand() repeatedly, which works well for almost-full
  358.  * tables, but degrades when the table is almost empty, or predicate
  359.  * returns %TRUE for most entries.
  360.  *
  361.  * Return value: a random live entry or %NULL if there are no entries
  362.  * that match the given predicate. In particular, if predicate is
  363.  * %NULL, a %NULL return value indicates that the table is empty.
  364.  **/
  365. void *
  366. _cairo_hash_table_random_entry (cairo_hash_table_t         *hash_table,
  367.                                 cairo_hash_predicate_func_t predicate)
  368. {
  369.     cairo_hash_entry_t *entry;
  370.     unsigned long hash;
  371.     unsigned long table_size, i, idx, step;
  372.  
  373.     assert (predicate != NULL);
  374.  
  375.     table_size = hash_table->arrangement->size;
  376.     hash = rand ();
  377.     idx = hash % table_size;
  378.  
  379.     entry = hash_table->entries[idx];
  380.     if (ENTRY_IS_LIVE (entry) && predicate (entry))
  381.         return entry;
  382.  
  383.     i = 1;
  384.     step = hash % hash_table->arrangement->rehash;
  385.     if (step == 0)
  386.         step = 1;
  387.     do {
  388.         idx += step;
  389.         if (idx >= table_size)
  390.             idx -= table_size;
  391.  
  392.         entry = hash_table->entries[idx];
  393.         if (ENTRY_IS_LIVE (entry) && predicate (entry))
  394.             return entry;
  395.     } while (++i < table_size);
  396.  
  397.     return NULL;
  398. }
  399.  
  400. /**
  401.  * _cairo_hash_table_insert:
  402.  * @hash_table: a hash table
  403.  * @key_and_value: an entry to be inserted
  404.  *
  405.  * Insert the entry #key_and_value into the hash table.
  406.  *
  407.  * WARNING: There must not be an existing entry in the hash table
  408.  * with a matching key.
  409.  *
  410.  * WARNING: It is a fatal error to insert an element while
  411.  * an iterator is running
  412.  *
  413.  * Instead of using insert to replace an entry, consider just editing
  414.  * the entry obtained with _cairo_hash_table_lookup. Or if absolutely
  415.  * necessary, use _cairo_hash_table_remove first.
  416.  *
  417.  * Return value: %CAIRO_STATUS_SUCCESS if successful or
  418.  * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available.
  419.  **/
  420. cairo_status_t
  421. _cairo_hash_table_insert (cairo_hash_table_t *hash_table,
  422.                           cairo_hash_entry_t *key_and_value)
  423. {
  424.     cairo_status_t status;
  425.  
  426.     /* Insert is illegal while an iterator is running. */
  427.     assert (hash_table->iterating == 0);
  428.  
  429.     hash_table->live_entries++;
  430.     status = _cairo_hash_table_resize (hash_table);
  431.     if (unlikely (status)) {
  432.         /* abort the insert... */
  433.         hash_table->live_entries--;
  434.         return status;
  435.     }
  436.  
  437.     *_cairo_hash_table_lookup_unique_key (hash_table,
  438.                                           key_and_value) = key_and_value;
  439.  
  440.     return CAIRO_STATUS_SUCCESS;
  441. }
  442.  
  443. static cairo_hash_entry_t **
  444. _cairo_hash_table_lookup_exact_key (cairo_hash_table_t *hash_table,
  445.                                     cairo_hash_entry_t *key)
  446. {
  447.     unsigned long table_size, i, idx, step;
  448.     cairo_hash_entry_t **entry;
  449.  
  450.     table_size = hash_table->arrangement->size;
  451.     idx = key->hash % table_size;
  452.  
  453.     entry = &hash_table->entries[idx];
  454.     if (*entry == key)
  455.         return entry;
  456.  
  457.     i = 1;
  458.     step = key->hash % hash_table->arrangement->rehash;
  459.     if (step == 0)
  460.         step = 1;
  461.     do {
  462.         idx += step;
  463.         if (idx >= table_size)
  464.             idx -= table_size;
  465.  
  466.         entry = &hash_table->entries[idx];
  467.         if (*entry == key)
  468.             return entry;
  469.     } while (++i < table_size);
  470.  
  471.     ASSERT_NOT_REACHED;
  472.     return NULL;
  473. }
  474. /**
  475.  * _cairo_hash_table_remove:
  476.  * @hash_table: a hash table
  477.  * @key: key of entry to be removed
  478.  *
  479.  * Remove an entry from the hash table which points to @key.
  480.  *
  481.  * Return value: %CAIRO_STATUS_SUCCESS if successful or
  482.  * %CAIRO_STATUS_NO_MEMORY if out of memory.
  483.  **/
  484. void
  485. _cairo_hash_table_remove (cairo_hash_table_t *hash_table,
  486.                           cairo_hash_entry_t *key)
  487. {
  488.     *_cairo_hash_table_lookup_exact_key (hash_table, key) = DEAD_ENTRY;
  489.     hash_table->live_entries--;
  490.  
  491.     /* Check for table resize. Don't do this when iterating as this will
  492.      * reorder elements of the table and cause the iteration to potentially
  493.      * skip some elements. */
  494.     if (hash_table->iterating == 0) {
  495.         /* This call _can_ fail, but only in failing to allocate new
  496.          * memory to shrink the hash table. It does leave the table in a
  497.          * consistent state, and we've already succeeded in removing the
  498.          * entry, so we don't examine the failure status of this call. */
  499.         _cairo_hash_table_resize (hash_table);
  500.     }
  501. }
  502.  
  503. /**
  504.  * _cairo_hash_table_foreach:
  505.  * @hash_table: a hash table
  506.  * @hash_callback: function to be called for each live entry
  507.  * @closure: additional argument to be passed to @hash_callback
  508.  *
  509.  * Call @hash_callback for each live entry in the hash table, in a
  510.  * non-specified order.
  511.  *
  512.  * Entries in @hash_table may be removed by code executed from @hash_callback.
  513.  *
  514.  * Entries may not be inserted to @hash_table, nor may @hash_table
  515.  * be destroyed by code executed from @hash_callback. The relevant
  516.  * functions will halt in these cases.
  517.  **/
  518. void
  519. _cairo_hash_table_foreach (cairo_hash_table_t         *hash_table,
  520.                            cairo_hash_callback_func_t  hash_callback,
  521.                            void                       *closure)
  522. {
  523.     unsigned long i;
  524.     cairo_hash_entry_t *entry;
  525.  
  526.     /* Mark the table for iteration */
  527.     ++hash_table->iterating;
  528.     for (i = 0; i < hash_table->arrangement->size; i++) {
  529.         entry = hash_table->entries[i];
  530.         if (ENTRY_IS_LIVE(entry))
  531.             hash_callback (entry, closure);
  532.     }
  533.     /* If some elements were deleted during the iteration,
  534.      * the table may need resizing. Just do this every time
  535.      * as the check is inexpensive.
  536.      */
  537.     if (--hash_table->iterating == 0) {
  538.         /* Should we fail to shrink the hash table, it is left unaltered,
  539.          * and we don't need to propagate the error status. */
  540.         _cairo_hash_table_resize (hash_table);
  541.     }
  542. }
  543.