Subversion Repositories Kolibri OS

Rev

Rev 6937 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2012 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21.  * IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25.  *
  26.  */
  27.  
  28. //#include <linux/cpufreq.h>
  29. #include "i915_drv.h"
  30. #include "intel_drv.h"
  31. //#include "../../../platform/x86/intel_ips.h"
  32. #include <linux/module.h>
  33.  
  34.  
  35. #define FORCEWAKE_ACK_TIMEOUT_MS 2
  36.  
  37. void getrawmonotonic(struct timespec *ts);
  38.  
  39. /**
  40.  * DOC: RC6
  41.  *
  42.  * RC6 is a special power stage which allows the GPU to enter an very
  43.  * low-voltage mode when idle, using down to 0V while at this stage.  This
  44.  * stage is entered automatically when the GPU is idle when RC6 support is
  45.  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  46.  *
  47.  * There are different RC6 modes available in Intel GPU, which differentiate
  48.  * among each other with the latency required to enter and leave RC6 and
  49.  * voltage consumed by the GPU in different states.
  50.  *
  51.  * The combination of the following flags define which states GPU is allowed
  52.  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  53.  * RC6pp is deepest RC6. Their support by hardware varies according to the
  54.  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  55.  * which brings the most power savings; deeper states save more power, but
  56.  * require higher latency to switch to and wake up.
  57.  */
  58. #define INTEL_RC6_ENABLE                        (1<<0)
  59. #define INTEL_RC6p_ENABLE                       (1<<1)
  60. #define INTEL_RC6pp_ENABLE                      (1<<2)
  61.  
  62. static void bxt_init_clock_gating(struct drm_device *dev)
  63. {
  64.         struct drm_i915_private *dev_priv = dev->dev_private;
  65.  
  66.         /* WaDisableSDEUnitClockGating:bxt */
  67.         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  68.                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  69.  
  70.         /*
  71.          * FIXME:
  72.          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  73.          */
  74.         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  75.                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  76.  
  77.         /*
  78.          * Wa: Backlight PWM may stop in the asserted state, causing backlight
  79.          * to stay fully on.
  80.          */
  81.         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  82.                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  83.                            PWM1_GATING_DIS | PWM2_GATING_DIS);
  84. }
  85.  
  86. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  87. {
  88.         struct drm_i915_private *dev_priv = dev->dev_private;
  89.         u32 tmp;
  90.  
  91.         tmp = I915_READ(CLKCFG);
  92.  
  93.         switch (tmp & CLKCFG_FSB_MASK) {
  94.         case CLKCFG_FSB_533:
  95.                 dev_priv->fsb_freq = 533; /* 133*4 */
  96.                 break;
  97.         case CLKCFG_FSB_800:
  98.                 dev_priv->fsb_freq = 800; /* 200*4 */
  99.                 break;
  100.         case CLKCFG_FSB_667:
  101.                 dev_priv->fsb_freq =  667; /* 167*4 */
  102.                 break;
  103.         case CLKCFG_FSB_400:
  104.                 dev_priv->fsb_freq = 400; /* 100*4 */
  105.                 break;
  106.         }
  107.  
  108.         switch (tmp & CLKCFG_MEM_MASK) {
  109.         case CLKCFG_MEM_533:
  110.                 dev_priv->mem_freq = 533;
  111.                 break;
  112.         case CLKCFG_MEM_667:
  113.                 dev_priv->mem_freq = 667;
  114.                 break;
  115.         case CLKCFG_MEM_800:
  116.                 dev_priv->mem_freq = 800;
  117.                 break;
  118.         }
  119.  
  120.         /* detect pineview DDR3 setting */
  121.         tmp = I915_READ(CSHRDDR3CTL);
  122.         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  123. }
  124.  
  125. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  126. {
  127.         struct drm_i915_private *dev_priv = dev->dev_private;
  128.         u16 ddrpll, csipll;
  129.  
  130.         ddrpll = I915_READ16(DDRMPLL1);
  131.         csipll = I915_READ16(CSIPLL0);
  132.  
  133.         switch (ddrpll & 0xff) {
  134.         case 0xc:
  135.                 dev_priv->mem_freq = 800;
  136.                 break;
  137.         case 0x10:
  138.                 dev_priv->mem_freq = 1066;
  139.                 break;
  140.         case 0x14:
  141.                 dev_priv->mem_freq = 1333;
  142.                 break;
  143.         case 0x18:
  144.                 dev_priv->mem_freq = 1600;
  145.                 break;
  146.         default:
  147.                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  148.                                  ddrpll & 0xff);
  149.                 dev_priv->mem_freq = 0;
  150.                 break;
  151.         }
  152.  
  153.         dev_priv->ips.r_t = dev_priv->mem_freq;
  154.  
  155.         switch (csipll & 0x3ff) {
  156.         case 0x00c:
  157.                 dev_priv->fsb_freq = 3200;
  158.                 break;
  159.         case 0x00e:
  160.                 dev_priv->fsb_freq = 3733;
  161.                 break;
  162.         case 0x010:
  163.                 dev_priv->fsb_freq = 4266;
  164.                 break;
  165.         case 0x012:
  166.                 dev_priv->fsb_freq = 4800;
  167.                 break;
  168.         case 0x014:
  169.                 dev_priv->fsb_freq = 5333;
  170.                 break;
  171.         case 0x016:
  172.                 dev_priv->fsb_freq = 5866;
  173.                 break;
  174.         case 0x018:
  175.                 dev_priv->fsb_freq = 6400;
  176.                 break;
  177.         default:
  178.                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  179.                                  csipll & 0x3ff);
  180.                 dev_priv->fsb_freq = 0;
  181.                 break;
  182.         }
  183.  
  184.         if (dev_priv->fsb_freq == 3200) {
  185.                 dev_priv->ips.c_m = 0;
  186.         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  187.                 dev_priv->ips.c_m = 1;
  188.         } else {
  189.                 dev_priv->ips.c_m = 2;
  190.         }
  191. }
  192.  
  193. static const struct cxsr_latency cxsr_latency_table[] = {
  194.         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
  195.         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
  196.         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
  197.         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
  198.         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
  199.  
  200.         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
  201.         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
  202.         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
  203.         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
  204.         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
  205.  
  206.         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
  207.         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
  208.         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
  209.         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
  210.         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
  211.  
  212.         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
  213.         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
  214.         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
  215.         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
  216.         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
  217.  
  218.         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
  219.         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
  220.         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
  221.         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
  222.         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
  223.  
  224.         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
  225.         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
  226.         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
  227.         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
  228.         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
  229. };
  230.  
  231. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  232.                                                          int is_ddr3,
  233.                                                          int fsb,
  234.                                                          int mem)
  235. {
  236.         const struct cxsr_latency *latency;
  237.         int i;
  238.  
  239.         if (fsb == 0 || mem == 0)
  240.                 return NULL;
  241.  
  242.         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  243.                 latency = &cxsr_latency_table[i];
  244.                 if (is_desktop == latency->is_desktop &&
  245.                     is_ddr3 == latency->is_ddr3 &&
  246.                     fsb == latency->fsb_freq && mem == latency->mem_freq)
  247.                         return latency;
  248.         }
  249.  
  250.         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  251.  
  252.         return NULL;
  253. }
  254.  
  255. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  256. {
  257.         u32 val;
  258.  
  259.         mutex_lock(&dev_priv->rps.hw_lock);
  260.  
  261.         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  262.         if (enable)
  263.                 val &= ~FORCE_DDR_HIGH_FREQ;
  264.         else
  265.                 val |= FORCE_DDR_HIGH_FREQ;
  266.         val &= ~FORCE_DDR_LOW_FREQ;
  267.         val |= FORCE_DDR_FREQ_REQ_ACK;
  268.         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  269.  
  270.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  271.                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  272.                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  273.  
  274.         mutex_unlock(&dev_priv->rps.hw_lock);
  275. }
  276.  
  277. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  278. {
  279.         u32 val;
  280.  
  281.         mutex_lock(&dev_priv->rps.hw_lock);
  282.  
  283.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  284.         if (enable)
  285.                 val |= DSP_MAXFIFO_PM5_ENABLE;
  286.         else
  287.                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
  288.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  289.  
  290.         mutex_unlock(&dev_priv->rps.hw_lock);
  291. }
  292.  
  293. #define FW_WM(value, plane) \
  294.         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  295.  
  296. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  297. {
  298.         struct drm_device *dev = dev_priv->dev;
  299.         u32 val;
  300.  
  301.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  302.                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  303.                 POSTING_READ(FW_BLC_SELF_VLV);
  304.                 dev_priv->wm.vlv.cxsr = enable;
  305.         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  306.                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  307.                 POSTING_READ(FW_BLC_SELF);
  308.         } else if (IS_PINEVIEW(dev)) {
  309.                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  310.                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  311.                 I915_WRITE(DSPFW3, val);
  312.                 POSTING_READ(DSPFW3);
  313.         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  314.                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  315.                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  316.                 I915_WRITE(FW_BLC_SELF, val);
  317.                 POSTING_READ(FW_BLC_SELF);
  318.         } else if (IS_I915GM(dev)) {
  319.                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  320.                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  321.                 I915_WRITE(INSTPM, val);
  322.                 POSTING_READ(INSTPM);
  323.         } else {
  324.                 return;
  325.         }
  326.  
  327.         DRM_DEBUG_KMS("memory self-refresh is %s\n",
  328.                       enable ? "enabled" : "disabled");
  329. }
  330.  
  331.  
  332. /*
  333.  * Latency for FIFO fetches is dependent on several factors:
  334.  *   - memory configuration (speed, channels)
  335.  *   - chipset
  336.  *   - current MCH state
  337.  * It can be fairly high in some situations, so here we assume a fairly
  338.  * pessimal value.  It's a tradeoff between extra memory fetches (if we
  339.  * set this value too high, the FIFO will fetch frequently to stay full)
  340.  * and power consumption (set it too low to save power and we might see
  341.  * FIFO underruns and display "flicker").
  342.  *
  343.  * A value of 5us seems to be a good balance; safe for very low end
  344.  * platforms but not overly aggressive on lower latency configs.
  345.  */
  346. static const int pessimal_latency_ns = 5000;
  347.  
  348. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  349.         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  350.  
  351. static int vlv_get_fifo_size(struct drm_device *dev,
  352.                               enum pipe pipe, int plane)
  353. {
  354.         struct drm_i915_private *dev_priv = dev->dev_private;
  355.         int sprite0_start, sprite1_start, size;
  356.  
  357.         switch (pipe) {
  358.                 uint32_t dsparb, dsparb2, dsparb3;
  359.         case PIPE_A:
  360.                 dsparb = I915_READ(DSPARB);
  361.                 dsparb2 = I915_READ(DSPARB2);
  362.                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  363.                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  364.                 break;
  365.         case PIPE_B:
  366.                 dsparb = I915_READ(DSPARB);
  367.                 dsparb2 = I915_READ(DSPARB2);
  368.                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  369.                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  370.                 break;
  371.         case PIPE_C:
  372.                 dsparb2 = I915_READ(DSPARB2);
  373.                 dsparb3 = I915_READ(DSPARB3);
  374.                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  375.                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  376.                 break;
  377.         default:
  378.                 return 0;
  379.         }
  380.  
  381.         switch (plane) {
  382.         case 0:
  383.                 size = sprite0_start;
  384.                 break;
  385.         case 1:
  386.                 size = sprite1_start - sprite0_start;
  387.                 break;
  388.         case 2:
  389.                 size = 512 - 1 - sprite1_start;
  390.                 break;
  391.         default:
  392.                 return 0;
  393.         }
  394.  
  395.         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  396.                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  397.                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  398.                       size);
  399.  
  400.         return size;
  401. }
  402.  
  403. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  404. {
  405.         struct drm_i915_private *dev_priv = dev->dev_private;
  406.         uint32_t dsparb = I915_READ(DSPARB);
  407.         int size;
  408.  
  409.         size = dsparb & 0x7f;
  410.         if (plane)
  411.                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  412.  
  413.         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  414.                       plane ? "B" : "A", size);
  415.  
  416.         return size;
  417. }
  418.  
  419. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  420. {
  421.         struct drm_i915_private *dev_priv = dev->dev_private;
  422.         uint32_t dsparb = I915_READ(DSPARB);
  423.         int size;
  424.  
  425.         size = dsparb & 0x1ff;
  426.         if (plane)
  427.                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  428.         size >>= 1; /* Convert to cachelines */
  429.  
  430.         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  431.                       plane ? "B" : "A", size);
  432.  
  433.         return size;
  434. }
  435.  
  436. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  437. {
  438.         struct drm_i915_private *dev_priv = dev->dev_private;
  439.         uint32_t dsparb = I915_READ(DSPARB);
  440.         int size;
  441.  
  442.         size = dsparb & 0x7f;
  443.         size >>= 2; /* Convert to cachelines */
  444.  
  445.         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  446.                       plane ? "B" : "A",
  447.                       size);
  448.  
  449.         return size;
  450. }
  451.  
  452. /* Pineview has different values for various configs */
  453. static const struct intel_watermark_params pineview_display_wm = {
  454.         .fifo_size = PINEVIEW_DISPLAY_FIFO,
  455.         .max_wm = PINEVIEW_MAX_WM,
  456.         .default_wm = PINEVIEW_DFT_WM,
  457.         .guard_size = PINEVIEW_GUARD_WM,
  458.         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  459. };
  460. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  461.         .fifo_size = PINEVIEW_DISPLAY_FIFO,
  462.         .max_wm = PINEVIEW_MAX_WM,
  463.         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  464.         .guard_size = PINEVIEW_GUARD_WM,
  465.         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  466. };
  467. static const struct intel_watermark_params pineview_cursor_wm = {
  468.         .fifo_size = PINEVIEW_CURSOR_FIFO,
  469.         .max_wm = PINEVIEW_CURSOR_MAX_WM,
  470.         .default_wm = PINEVIEW_CURSOR_DFT_WM,
  471.         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  472.         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  473. };
  474. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  475.         .fifo_size = PINEVIEW_CURSOR_FIFO,
  476.         .max_wm = PINEVIEW_CURSOR_MAX_WM,
  477.         .default_wm = PINEVIEW_CURSOR_DFT_WM,
  478.         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  479.         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  480. };
  481. static const struct intel_watermark_params g4x_wm_info = {
  482.         .fifo_size = G4X_FIFO_SIZE,
  483.         .max_wm = G4X_MAX_WM,
  484.         .default_wm = G4X_MAX_WM,
  485.         .guard_size = 2,
  486.         .cacheline_size = G4X_FIFO_LINE_SIZE,
  487. };
  488. static const struct intel_watermark_params g4x_cursor_wm_info = {
  489.         .fifo_size = I965_CURSOR_FIFO,
  490.         .max_wm = I965_CURSOR_MAX_WM,
  491.         .default_wm = I965_CURSOR_DFT_WM,
  492.         .guard_size = 2,
  493.         .cacheline_size = G4X_FIFO_LINE_SIZE,
  494. };
  495. static const struct intel_watermark_params valleyview_wm_info = {
  496.         .fifo_size = VALLEYVIEW_FIFO_SIZE,
  497.         .max_wm = VALLEYVIEW_MAX_WM,
  498.         .default_wm = VALLEYVIEW_MAX_WM,
  499.         .guard_size = 2,
  500.         .cacheline_size = G4X_FIFO_LINE_SIZE,
  501. };
  502. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  503.         .fifo_size = I965_CURSOR_FIFO,
  504.         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  505.         .default_wm = I965_CURSOR_DFT_WM,
  506.         .guard_size = 2,
  507.         .cacheline_size = G4X_FIFO_LINE_SIZE,
  508. };
  509. static const struct intel_watermark_params i965_cursor_wm_info = {
  510.         .fifo_size = I965_CURSOR_FIFO,
  511.         .max_wm = I965_CURSOR_MAX_WM,
  512.         .default_wm = I965_CURSOR_DFT_WM,
  513.         .guard_size = 2,
  514.         .cacheline_size = I915_FIFO_LINE_SIZE,
  515. };
  516. static const struct intel_watermark_params i945_wm_info = {
  517.         .fifo_size = I945_FIFO_SIZE,
  518.         .max_wm = I915_MAX_WM,
  519.         .default_wm = 1,
  520.         .guard_size = 2,
  521.         .cacheline_size = I915_FIFO_LINE_SIZE,
  522. };
  523. static const struct intel_watermark_params i915_wm_info = {
  524.         .fifo_size = I915_FIFO_SIZE,
  525.         .max_wm = I915_MAX_WM,
  526.         .default_wm = 1,
  527.         .guard_size = 2,
  528.         .cacheline_size = I915_FIFO_LINE_SIZE,
  529. };
  530. static const struct intel_watermark_params i830_a_wm_info = {
  531.         .fifo_size = I855GM_FIFO_SIZE,
  532.         .max_wm = I915_MAX_WM,
  533.         .default_wm = 1,
  534.         .guard_size = 2,
  535.         .cacheline_size = I830_FIFO_LINE_SIZE,
  536. };
  537. static const struct intel_watermark_params i830_bc_wm_info = {
  538.         .fifo_size = I855GM_FIFO_SIZE,
  539.         .max_wm = I915_MAX_WM/2,
  540.         .default_wm = 1,
  541.         .guard_size = 2,
  542.         .cacheline_size = I830_FIFO_LINE_SIZE,
  543. };
  544. static const struct intel_watermark_params i845_wm_info = {
  545.         .fifo_size = I830_FIFO_SIZE,
  546.         .max_wm = I915_MAX_WM,
  547.         .default_wm = 1,
  548.         .guard_size = 2,
  549.         .cacheline_size = I830_FIFO_LINE_SIZE,
  550. };
  551.  
  552. /**
  553.  * intel_calculate_wm - calculate watermark level
  554.  * @clock_in_khz: pixel clock
  555.  * @wm: chip FIFO params
  556.  * @cpp: bytes per pixel
  557.  * @latency_ns: memory latency for the platform
  558.  *
  559.  * Calculate the watermark level (the level at which the display plane will
  560.  * start fetching from memory again).  Each chip has a different display
  561.  * FIFO size and allocation, so the caller needs to figure that out and pass
  562.  * in the correct intel_watermark_params structure.
  563.  *
  564.  * As the pixel clock runs, the FIFO will be drained at a rate that depends
  565.  * on the pixel size.  When it reaches the watermark level, it'll start
  566.  * fetching FIFO line sized based chunks from memory until the FIFO fills
  567.  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
  568.  * will occur, and a display engine hang could result.
  569.  */
  570. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  571.                                         const struct intel_watermark_params *wm,
  572.                                         int fifo_size, int cpp,
  573.                                         unsigned long latency_ns)
  574. {
  575.         long entries_required, wm_size;
  576.  
  577.         /*
  578.          * Note: we need to make sure we don't overflow for various clock &
  579.          * latency values.
  580.          * clocks go from a few thousand to several hundred thousand.
  581.          * latency is usually a few thousand
  582.          */
  583.         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
  584.                 1000;
  585.         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  586.  
  587.         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  588.  
  589.         wm_size = fifo_size - (entries_required + wm->guard_size);
  590.  
  591.         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  592.  
  593.         /* Don't promote wm_size to unsigned... */
  594.         if (wm_size > (long)wm->max_wm)
  595.                 wm_size = wm->max_wm;
  596.         if (wm_size <= 0)
  597.                 wm_size = wm->default_wm;
  598.  
  599.         /*
  600.          * Bspec seems to indicate that the value shouldn't be lower than
  601.          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  602.          * Lets go for 8 which is the burst size since certain platforms
  603.          * already use a hardcoded 8 (which is what the spec says should be
  604.          * done).
  605.          */
  606.         if (wm_size <= 8)
  607.                 wm_size = 8;
  608.  
  609.         return wm_size;
  610. }
  611.  
  612. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  613. {
  614.         struct drm_crtc *crtc, *enabled = NULL;
  615.  
  616.         for_each_crtc(dev, crtc) {
  617.                 if (intel_crtc_active(crtc)) {
  618.                         if (enabled)
  619.                                 return NULL;
  620.                         enabled = crtc;
  621.                 }
  622.         }
  623.  
  624.         return enabled;
  625. }
  626.  
  627. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  628. {
  629.         struct drm_device *dev = unused_crtc->dev;
  630.         struct drm_i915_private *dev_priv = dev->dev_private;
  631.         struct drm_crtc *crtc;
  632.         const struct cxsr_latency *latency;
  633.         u32 reg;
  634.         unsigned long wm;
  635.  
  636.         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  637.                                          dev_priv->fsb_freq, dev_priv->mem_freq);
  638.         if (!latency) {
  639.                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  640.                 intel_set_memory_cxsr(dev_priv, false);
  641.                 return;
  642.         }
  643.  
  644.         crtc = single_enabled_crtc(dev);
  645.         if (crtc) {
  646.                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  647.                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  648.                 int clock = adjusted_mode->crtc_clock;
  649.  
  650.                 /* Display SR */
  651.                 wm = intel_calculate_wm(clock, &pineview_display_wm,
  652.                                         pineview_display_wm.fifo_size,
  653.                                         cpp, latency->display_sr);
  654.                 reg = I915_READ(DSPFW1);
  655.                 reg &= ~DSPFW_SR_MASK;
  656.                 reg |= FW_WM(wm, SR);
  657.                 I915_WRITE(DSPFW1, reg);
  658.                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  659.  
  660.                 /* cursor SR */
  661.                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  662.                                         pineview_display_wm.fifo_size,
  663.                                         cpp, latency->cursor_sr);
  664.                 reg = I915_READ(DSPFW3);
  665.                 reg &= ~DSPFW_CURSOR_SR_MASK;
  666.                 reg |= FW_WM(wm, CURSOR_SR);
  667.                 I915_WRITE(DSPFW3, reg);
  668.  
  669.                 /* Display HPLL off SR */
  670.                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  671.                                         pineview_display_hplloff_wm.fifo_size,
  672.                                         cpp, latency->display_hpll_disable);
  673.                 reg = I915_READ(DSPFW3);
  674.                 reg &= ~DSPFW_HPLL_SR_MASK;
  675.                 reg |= FW_WM(wm, HPLL_SR);
  676.                 I915_WRITE(DSPFW3, reg);
  677.  
  678.                 /* cursor HPLL off SR */
  679.                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  680.                                         pineview_display_hplloff_wm.fifo_size,
  681.                                         cpp, latency->cursor_hpll_disable);
  682.                 reg = I915_READ(DSPFW3);
  683.                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
  684.                 reg |= FW_WM(wm, HPLL_CURSOR);
  685.                 I915_WRITE(DSPFW3, reg);
  686.                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  687.  
  688.                 intel_set_memory_cxsr(dev_priv, true);
  689.         } else {
  690.                 intel_set_memory_cxsr(dev_priv, false);
  691.         }
  692. }
  693.  
  694. static bool g4x_compute_wm0(struct drm_device *dev,
  695.                             int plane,
  696.                             const struct intel_watermark_params *display,
  697.                             int display_latency_ns,
  698.                             const struct intel_watermark_params *cursor,
  699.                             int cursor_latency_ns,
  700.                             int *plane_wm,
  701.                             int *cursor_wm)
  702. {
  703.         struct drm_crtc *crtc;
  704.         const struct drm_display_mode *adjusted_mode;
  705.         int htotal, hdisplay, clock, cpp;
  706.         int line_time_us, line_count;
  707.         int entries, tlb_miss;
  708.  
  709.         crtc = intel_get_crtc_for_plane(dev, plane);
  710.         if (!intel_crtc_active(crtc)) {
  711.                 *cursor_wm = cursor->guard_size;
  712.                 *plane_wm = display->guard_size;
  713.                 return false;
  714.         }
  715.  
  716.         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  717.         clock = adjusted_mode->crtc_clock;
  718.         htotal = adjusted_mode->crtc_htotal;
  719.         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  720.         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  721.  
  722.         /* Use the small buffer method to calculate plane watermark */
  723.         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
  724.         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  725.         if (tlb_miss > 0)
  726.                 entries += tlb_miss;
  727.         entries = DIV_ROUND_UP(entries, display->cacheline_size);
  728.         *plane_wm = entries + display->guard_size;
  729.         if (*plane_wm > (int)display->max_wm)
  730.                 *plane_wm = display->max_wm;
  731.  
  732.         /* Use the large buffer method to calculate cursor watermark */
  733.         line_time_us = max(htotal * 1000 / clock, 1);
  734.         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  735.         entries = line_count * crtc->cursor->state->crtc_w * cpp;
  736.         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  737.         if (tlb_miss > 0)
  738.                 entries += tlb_miss;
  739.         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  740.         *cursor_wm = entries + cursor->guard_size;
  741.         if (*cursor_wm > (int)cursor->max_wm)
  742.                 *cursor_wm = (int)cursor->max_wm;
  743.  
  744.         return true;
  745. }
  746.  
  747. /*
  748.  * Check the wm result.
  749.  *
  750.  * If any calculated watermark values is larger than the maximum value that
  751.  * can be programmed into the associated watermark register, that watermark
  752.  * must be disabled.
  753.  */
  754. static bool g4x_check_srwm(struct drm_device *dev,
  755.                            int display_wm, int cursor_wm,
  756.                            const struct intel_watermark_params *display,
  757.                            const struct intel_watermark_params *cursor)
  758. {
  759.         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  760.                       display_wm, cursor_wm);
  761.  
  762.         if (display_wm > display->max_wm) {
  763.                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  764.                               display_wm, display->max_wm);
  765.                 return false;
  766.         }
  767.  
  768.         if (cursor_wm > cursor->max_wm) {
  769.                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  770.                               cursor_wm, cursor->max_wm);
  771.                 return false;
  772.         }
  773.  
  774.         if (!(display_wm || cursor_wm)) {
  775.                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  776.                 return false;
  777.         }
  778.  
  779.         return true;
  780. }
  781.  
  782. static bool g4x_compute_srwm(struct drm_device *dev,
  783.                              int plane,
  784.                              int latency_ns,
  785.                              const struct intel_watermark_params *display,
  786.                              const struct intel_watermark_params *cursor,
  787.                              int *display_wm, int *cursor_wm)
  788. {
  789.         struct drm_crtc *crtc;
  790.         const struct drm_display_mode *adjusted_mode;
  791.         int hdisplay, htotal, cpp, clock;
  792.         unsigned long line_time_us;
  793.         int line_count, line_size;
  794.         int small, large;
  795.         int entries;
  796.  
  797.         if (!latency_ns) {
  798.                 *display_wm = *cursor_wm = 0;
  799.                 return false;
  800.         }
  801.  
  802.         crtc = intel_get_crtc_for_plane(dev, plane);
  803.         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  804.         clock = adjusted_mode->crtc_clock;
  805.         htotal = adjusted_mode->crtc_htotal;
  806.         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  807.         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  808.  
  809.         line_time_us = max(htotal * 1000 / clock, 1);
  810.         line_count = (latency_ns / line_time_us + 1000) / 1000;
  811.         line_size = hdisplay * cpp;
  812.  
  813.         /* Use the minimum of the small and large buffer method for primary */
  814.         small = ((clock * cpp / 1000) * latency_ns) / 1000;
  815.         large = line_count * line_size;
  816.  
  817.         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  818.         *display_wm = entries + display->guard_size;
  819.  
  820.         /* calculate the self-refresh watermark for display cursor */
  821.         entries = line_count * cpp * crtc->cursor->state->crtc_w;
  822.         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  823.         *cursor_wm = entries + cursor->guard_size;
  824.  
  825.         return g4x_check_srwm(dev,
  826.                               *display_wm, *cursor_wm,
  827.                               display, cursor);
  828. }
  829.  
  830. #define FW_WM_VLV(value, plane) \
  831.         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  832.  
  833. static void vlv_write_wm_values(struct intel_crtc *crtc,
  834.                                 const struct vlv_wm_values *wm)
  835. {
  836.         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  837.         enum pipe pipe = crtc->pipe;
  838.  
  839.         I915_WRITE(VLV_DDL(pipe),
  840.                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  841.                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  842.                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  843.                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  844.  
  845.         I915_WRITE(DSPFW1,
  846.                    FW_WM(wm->sr.plane, SR) |
  847.                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  848.                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  849.                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  850.         I915_WRITE(DSPFW2,
  851.                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  852.                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  853.                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  854.         I915_WRITE(DSPFW3,
  855.                    FW_WM(wm->sr.cursor, CURSOR_SR));
  856.  
  857.         if (IS_CHERRYVIEW(dev_priv)) {
  858.                 I915_WRITE(DSPFW7_CHV,
  859.                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  860.                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  861.                 I915_WRITE(DSPFW8_CHV,
  862.                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  863.                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  864.                 I915_WRITE(DSPFW9_CHV,
  865.                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  866.                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  867.                 I915_WRITE(DSPHOWM,
  868.                            FW_WM(wm->sr.plane >> 9, SR_HI) |
  869.                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  870.                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  871.                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  872.                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  873.                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  874.                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  875.                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  876.                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  877.                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  878.         } else {
  879.                 I915_WRITE(DSPFW7,
  880.                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  881.                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  882.                 I915_WRITE(DSPHOWM,
  883.                            FW_WM(wm->sr.plane >> 9, SR_HI) |
  884.                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  885.                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  886.                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  887.                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  888.                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  889.                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  890.         }
  891.  
  892.         /* zero (unused) WM1 watermarks */
  893.         I915_WRITE(DSPFW4, 0);
  894.         I915_WRITE(DSPFW5, 0);
  895.         I915_WRITE(DSPFW6, 0);
  896.         I915_WRITE(DSPHOWM1, 0);
  897.  
  898.         POSTING_READ(DSPFW1);
  899. }
  900.  
  901. #undef FW_WM_VLV
  902.  
  903. enum vlv_wm_level {
  904.         VLV_WM_LEVEL_PM2,
  905.         VLV_WM_LEVEL_PM5,
  906.         VLV_WM_LEVEL_DDR_DVFS,
  907. };
  908.  
  909. /* latency must be in 0.1us units. */
  910. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  911.                                    unsigned int pipe_htotal,
  912.                                    unsigned int horiz_pixels,
  913.                                    unsigned int cpp,
  914.                                    unsigned int latency)
  915. {
  916.         unsigned int ret;
  917.  
  918.         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  919.         ret = (ret + 1) * horiz_pixels * cpp;
  920.         ret = DIV_ROUND_UP(ret, 64);
  921.  
  922.         return ret;
  923. }
  924.  
  925. static void vlv_setup_wm_latency(struct drm_device *dev)
  926. {
  927.         struct drm_i915_private *dev_priv = dev->dev_private;
  928.  
  929.         /* all latencies in usec */
  930.         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  931.  
  932.         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  933.  
  934.         if (IS_CHERRYVIEW(dev_priv)) {
  935.                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  936.                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  937.  
  938.                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  939.         }
  940. }
  941.  
  942. static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
  943.                                      struct intel_crtc *crtc,
  944.                                      const struct intel_plane_state *state,
  945.                                      int level)
  946. {
  947.         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  948.         int clock, htotal, cpp, width, wm;
  949.  
  950.         if (dev_priv->wm.pri_latency[level] == 0)
  951.                 return USHRT_MAX;
  952.  
  953.         if (!state->visible)
  954.                 return 0;
  955.  
  956.         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  957.         clock = crtc->config->base.adjusted_mode.crtc_clock;
  958.         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
  959.         width = crtc->config->pipe_src_w;
  960.         if (WARN_ON(htotal == 0))
  961.                 htotal = 1;
  962.  
  963.         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  964.                 /*
  965.                  * FIXME the formula gives values that are
  966.                  * too big for the cursor FIFO, and hence we
  967.                  * would never be able to use cursors. For
  968.                  * now just hardcode the watermark.
  969.                  */
  970.                 wm = 63;
  971.         } else {
  972.                 wm = vlv_wm_method2(clock, htotal, width, cpp,
  973.                                     dev_priv->wm.pri_latency[level] * 10);
  974.         }
  975.  
  976.         return min_t(int, wm, USHRT_MAX);
  977. }
  978.  
  979. static void vlv_compute_fifo(struct intel_crtc *crtc)
  980. {
  981.         struct drm_device *dev = crtc->base.dev;
  982.         struct vlv_wm_state *wm_state = &crtc->wm_state;
  983.         struct intel_plane *plane;
  984.         unsigned int total_rate = 0;
  985.         const int fifo_size = 512 - 1;
  986.         int fifo_extra, fifo_left = fifo_size;
  987.  
  988.         for_each_intel_plane_on_crtc(dev, crtc, plane) {
  989.                 struct intel_plane_state *state =
  990.                         to_intel_plane_state(plane->base.state);
  991.  
  992.                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  993.                         continue;
  994.  
  995.                 if (state->visible) {
  996.                         wm_state->num_active_planes++;
  997.                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  998.                 }
  999.         }
  1000.  
  1001.         for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1002.                 struct intel_plane_state *state =
  1003.                         to_intel_plane_state(plane->base.state);
  1004.                 unsigned int rate;
  1005.  
  1006.                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  1007.                         plane->wm.fifo_size = 63;
  1008.                         continue;
  1009.                 }
  1010.  
  1011.                 if (!state->visible) {
  1012.                         plane->wm.fifo_size = 0;
  1013.                         continue;
  1014.                 }
  1015.  
  1016.                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  1017.                 plane->wm.fifo_size = fifo_size * rate / total_rate;
  1018.                 fifo_left -= plane->wm.fifo_size;
  1019.         }
  1020.  
  1021.         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
  1022.  
  1023.         /* spread the remainder evenly */
  1024.         for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1025.                 int plane_extra;
  1026.  
  1027.                 if (fifo_left == 0)
  1028.                         break;
  1029.  
  1030.                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  1031.                         continue;
  1032.  
  1033.                 /* give it all to the first plane if none are active */
  1034.                 if (plane->wm.fifo_size == 0 &&
  1035.                     wm_state->num_active_planes)
  1036.                         continue;
  1037.  
  1038.                 plane_extra = min(fifo_extra, fifo_left);
  1039.                 plane->wm.fifo_size += plane_extra;
  1040.                 fifo_left -= plane_extra;
  1041.         }
  1042.  
  1043.         WARN_ON(fifo_left != 0);
  1044. }
  1045.  
  1046. static void vlv_invert_wms(struct intel_crtc *crtc)
  1047. {
  1048.         struct vlv_wm_state *wm_state = &crtc->wm_state;
  1049.         int level;
  1050.  
  1051.         for (level = 0; level < wm_state->num_levels; level++) {
  1052.                 struct drm_device *dev = crtc->base.dev;
  1053.                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  1054.                 struct intel_plane *plane;
  1055.  
  1056.                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
  1057.                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
  1058.  
  1059.                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1060.                         switch (plane->base.type) {
  1061.                                 int sprite;
  1062.                         case DRM_PLANE_TYPE_CURSOR:
  1063.                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
  1064.                                         wm_state->wm[level].cursor;
  1065.                                 break;
  1066.                         case DRM_PLANE_TYPE_PRIMARY:
  1067.                                 wm_state->wm[level].primary = plane->wm.fifo_size -
  1068.                                         wm_state->wm[level].primary;
  1069.                                 break;
  1070.                         case DRM_PLANE_TYPE_OVERLAY:
  1071.                                 sprite = plane->plane;
  1072.                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
  1073.                                         wm_state->wm[level].sprite[sprite];
  1074.                                 break;
  1075.                         }
  1076.                 }
  1077.         }
  1078. }
  1079.  
  1080. static void vlv_compute_wm(struct intel_crtc *crtc)
  1081. {
  1082.         struct drm_device *dev = crtc->base.dev;
  1083.         struct vlv_wm_state *wm_state = &crtc->wm_state;
  1084.         struct intel_plane *plane;
  1085.         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  1086.         int level;
  1087.  
  1088.         memset(wm_state, 0, sizeof(*wm_state));
  1089.  
  1090.         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
  1091.         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
  1092.  
  1093.         wm_state->num_active_planes = 0;
  1094.  
  1095.         vlv_compute_fifo(crtc);
  1096.  
  1097.         if (wm_state->num_active_planes != 1)
  1098.                 wm_state->cxsr = false;
  1099.  
  1100.         if (wm_state->cxsr) {
  1101.                 for (level = 0; level < wm_state->num_levels; level++) {
  1102.                         wm_state->sr[level].plane = sr_fifo_size;
  1103.                         wm_state->sr[level].cursor = 63;
  1104.                 }
  1105.         }
  1106.  
  1107.         for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1108.                 struct intel_plane_state *state =
  1109.                         to_intel_plane_state(plane->base.state);
  1110.  
  1111.                 if (!state->visible)
  1112.                         continue;
  1113.  
  1114.                 /* normal watermarks */
  1115.                 for (level = 0; level < wm_state->num_levels; level++) {
  1116.                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
  1117.                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
  1118.  
  1119.                         /* hack */
  1120.                         if (WARN_ON(level == 0 && wm > max_wm))
  1121.                                 wm = max_wm;
  1122.  
  1123.                         if (wm > plane->wm.fifo_size)
  1124.                                 break;
  1125.  
  1126.                         switch (plane->base.type) {
  1127.                                 int sprite;
  1128.                         case DRM_PLANE_TYPE_CURSOR:
  1129.                                 wm_state->wm[level].cursor = wm;
  1130.                                 break;
  1131.                         case DRM_PLANE_TYPE_PRIMARY:
  1132.                                 wm_state->wm[level].primary = wm;
  1133.                                 break;
  1134.                         case DRM_PLANE_TYPE_OVERLAY:
  1135.                                 sprite = plane->plane;
  1136.                                 wm_state->wm[level].sprite[sprite] = wm;
  1137.                                 break;
  1138.                         }
  1139.                 }
  1140.  
  1141.                 wm_state->num_levels = level;
  1142.  
  1143.                 if (!wm_state->cxsr)
  1144.                         continue;
  1145.  
  1146.                 /* maxfifo watermarks */
  1147.                 switch (plane->base.type) {
  1148.                         int sprite, level;
  1149.                 case DRM_PLANE_TYPE_CURSOR:
  1150.                         for (level = 0; level < wm_state->num_levels; level++)
  1151.                                 wm_state->sr[level].cursor =
  1152.                                         wm_state->wm[level].cursor;
  1153.                         break;
  1154.                 case DRM_PLANE_TYPE_PRIMARY:
  1155.                         for (level = 0; level < wm_state->num_levels; level++)
  1156.                                 wm_state->sr[level].plane =
  1157.                                         min(wm_state->sr[level].plane,
  1158.                                             wm_state->wm[level].primary);
  1159.                         break;
  1160.                 case DRM_PLANE_TYPE_OVERLAY:
  1161.                         sprite = plane->plane;
  1162.                         for (level = 0; level < wm_state->num_levels; level++)
  1163.                                 wm_state->sr[level].plane =
  1164.                                         min(wm_state->sr[level].plane,
  1165.                                             wm_state->wm[level].sprite[sprite]);
  1166.                         break;
  1167.                 }
  1168.         }
  1169.  
  1170.         /* clear any (partially) filled invalid levels */
  1171.         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
  1172.                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
  1173.                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
  1174.         }
  1175.  
  1176.         vlv_invert_wms(crtc);
  1177. }
  1178.  
  1179. #define VLV_FIFO(plane, value) \
  1180.         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1181.  
  1182. static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
  1183. {
  1184.         struct drm_device *dev = crtc->base.dev;
  1185.         struct drm_i915_private *dev_priv = to_i915(dev);
  1186.         struct intel_plane *plane;
  1187.         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
  1188.  
  1189.         for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1190.                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  1191.                         WARN_ON(plane->wm.fifo_size != 63);
  1192.                         continue;
  1193.                 }
  1194.  
  1195.                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1196.                         sprite0_start = plane->wm.fifo_size;
  1197.                 else if (plane->plane == 0)
  1198.                         sprite1_start = sprite0_start + plane->wm.fifo_size;
  1199.                 else
  1200.                         fifo_size = sprite1_start + plane->wm.fifo_size;
  1201.         }
  1202.  
  1203.         WARN_ON(fifo_size != 512 - 1);
  1204.  
  1205.         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
  1206.                       pipe_name(crtc->pipe), sprite0_start,
  1207.                       sprite1_start, fifo_size);
  1208.  
  1209.         switch (crtc->pipe) {
  1210.                 uint32_t dsparb, dsparb2, dsparb3;
  1211.         case PIPE_A:
  1212.                 dsparb = I915_READ(DSPARB);
  1213.                 dsparb2 = I915_READ(DSPARB2);
  1214.  
  1215.                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1216.                             VLV_FIFO(SPRITEB, 0xff));
  1217.                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1218.                            VLV_FIFO(SPRITEB, sprite1_start));
  1219.  
  1220.                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1221.                              VLV_FIFO(SPRITEB_HI, 0x1));
  1222.                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1223.                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1224.  
  1225.                 I915_WRITE(DSPARB, dsparb);
  1226.                 I915_WRITE(DSPARB2, dsparb2);
  1227.                 break;
  1228.         case PIPE_B:
  1229.                 dsparb = I915_READ(DSPARB);
  1230.                 dsparb2 = I915_READ(DSPARB2);
  1231.  
  1232.                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1233.                             VLV_FIFO(SPRITED, 0xff));
  1234.                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1235.                            VLV_FIFO(SPRITED, sprite1_start));
  1236.  
  1237.                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1238.                              VLV_FIFO(SPRITED_HI, 0xff));
  1239.                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1240.                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1241.  
  1242.                 I915_WRITE(DSPARB, dsparb);
  1243.                 I915_WRITE(DSPARB2, dsparb2);
  1244.                 break;
  1245.         case PIPE_C:
  1246.                 dsparb3 = I915_READ(DSPARB3);
  1247.                 dsparb2 = I915_READ(DSPARB2);
  1248.  
  1249.                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1250.                              VLV_FIFO(SPRITEF, 0xff));
  1251.                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1252.                             VLV_FIFO(SPRITEF, sprite1_start));
  1253.  
  1254.                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1255.                              VLV_FIFO(SPRITEF_HI, 0xff));
  1256.                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1257.                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1258.  
  1259.                 I915_WRITE(DSPARB3, dsparb3);
  1260.                 I915_WRITE(DSPARB2, dsparb2);
  1261.                 break;
  1262.         default:
  1263.                 break;
  1264.         }
  1265. }
  1266.  
  1267. #undef VLV_FIFO
  1268.  
  1269. static void vlv_merge_wm(struct drm_device *dev,
  1270.                          struct vlv_wm_values *wm)
  1271. {
  1272.         struct intel_crtc *crtc;
  1273.         int num_active_crtcs = 0;
  1274.  
  1275.         wm->level = to_i915(dev)->wm.max_level;
  1276.         wm->cxsr = true;
  1277.  
  1278.         for_each_intel_crtc(dev, crtc) {
  1279.                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
  1280.  
  1281.                 if (!crtc->active)
  1282.                         continue;
  1283.  
  1284.                 if (!wm_state->cxsr)
  1285.                         wm->cxsr = false;
  1286.  
  1287.                 num_active_crtcs++;
  1288.                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1289.         }
  1290.  
  1291.         if (num_active_crtcs != 1)
  1292.                 wm->cxsr = false;
  1293.  
  1294.         if (num_active_crtcs > 1)
  1295.                 wm->level = VLV_WM_LEVEL_PM2;
  1296.  
  1297.         for_each_intel_crtc(dev, crtc) {
  1298.                 struct vlv_wm_state *wm_state = &crtc->wm_state;
  1299.                 enum pipe pipe = crtc->pipe;
  1300.  
  1301.                 if (!crtc->active)
  1302.                         continue;
  1303.  
  1304.                 wm->pipe[pipe] = wm_state->wm[wm->level];
  1305.                 if (wm->cxsr)
  1306.                         wm->sr = wm_state->sr[wm->level];
  1307.  
  1308.                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
  1309.                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
  1310.                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
  1311.                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
  1312.         }
  1313. }
  1314.  
  1315. static void vlv_update_wm(struct drm_crtc *crtc)
  1316. {
  1317.         struct drm_device *dev = crtc->dev;
  1318.         struct drm_i915_private *dev_priv = dev->dev_private;
  1319.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1320.         enum pipe pipe = intel_crtc->pipe;
  1321.         struct vlv_wm_values wm = {};
  1322.  
  1323.         vlv_compute_wm(intel_crtc);
  1324.         vlv_merge_wm(dev, &wm);
  1325.  
  1326.         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
  1327.                 /* FIXME should be part of crtc atomic commit */
  1328.                 vlv_pipe_set_fifo_size(intel_crtc);
  1329.                 return;
  1330.         }
  1331.  
  1332.         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
  1333.             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
  1334.                 chv_set_memory_dvfs(dev_priv, false);
  1335.  
  1336.         if (wm.level < VLV_WM_LEVEL_PM5 &&
  1337.             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
  1338.                 chv_set_memory_pm5(dev_priv, false);
  1339.  
  1340.         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
  1341.                 intel_set_memory_cxsr(dev_priv, false);
  1342.  
  1343.         /* FIXME should be part of crtc atomic commit */
  1344.         vlv_pipe_set_fifo_size(intel_crtc);
  1345.  
  1346.         vlv_write_wm_values(intel_crtc, &wm);
  1347.  
  1348.         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  1349.                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
  1350.                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  1351.                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
  1352.                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
  1353.  
  1354.         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
  1355.                 intel_set_memory_cxsr(dev_priv, true);
  1356.  
  1357.         if (wm.level >= VLV_WM_LEVEL_PM5 &&
  1358.             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
  1359.                 chv_set_memory_pm5(dev_priv, true);
  1360.  
  1361.         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
  1362.             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
  1363.                 chv_set_memory_dvfs(dev_priv, true);
  1364.  
  1365.         dev_priv->wm.vlv = wm;
  1366. }
  1367.  
  1368. #define single_plane_enabled(mask) is_power_of_2(mask)
  1369.  
  1370. static void g4x_update_wm(struct drm_crtc *crtc)
  1371. {
  1372.         struct drm_device *dev = crtc->dev;
  1373.         static const int sr_latency_ns = 12000;
  1374.         struct drm_i915_private *dev_priv = dev->dev_private;
  1375.         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1376.         int plane_sr, cursor_sr;
  1377.         unsigned int enabled = 0;
  1378.         bool cxsr_enabled;
  1379.  
  1380.         if (g4x_compute_wm0(dev, PIPE_A,
  1381.                             &g4x_wm_info, pessimal_latency_ns,
  1382.                             &g4x_cursor_wm_info, pessimal_latency_ns,
  1383.                             &planea_wm, &cursora_wm))
  1384.                 enabled |= 1 << PIPE_A;
  1385.  
  1386.         if (g4x_compute_wm0(dev, PIPE_B,
  1387.                             &g4x_wm_info, pessimal_latency_ns,
  1388.                             &g4x_cursor_wm_info, pessimal_latency_ns,
  1389.                             &planeb_wm, &cursorb_wm))
  1390.                 enabled |= 1 << PIPE_B;
  1391.  
  1392.         if (single_plane_enabled(enabled) &&
  1393.             g4x_compute_srwm(dev, ffs(enabled) - 1,
  1394.                              sr_latency_ns,
  1395.                              &g4x_wm_info,
  1396.                              &g4x_cursor_wm_info,
  1397.                              &plane_sr, &cursor_sr)) {
  1398.                 cxsr_enabled = true;
  1399.         } else {
  1400.                 cxsr_enabled = false;
  1401.                 intel_set_memory_cxsr(dev_priv, false);
  1402.                 plane_sr = cursor_sr = 0;
  1403.         }
  1404.  
  1405.         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1406.                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1407.                       planea_wm, cursora_wm,
  1408.                       planeb_wm, cursorb_wm,
  1409.                       plane_sr, cursor_sr);
  1410.  
  1411.         I915_WRITE(DSPFW1,
  1412.                    FW_WM(plane_sr, SR) |
  1413.                    FW_WM(cursorb_wm, CURSORB) |
  1414.                    FW_WM(planeb_wm, PLANEB) |
  1415.                    FW_WM(planea_wm, PLANEA));
  1416.         I915_WRITE(DSPFW2,
  1417.                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1418.                    FW_WM(cursora_wm, CURSORA));
  1419.         /* HPLL off in SR has some issues on G4x... disable it */
  1420.         I915_WRITE(DSPFW3,
  1421.                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1422.                    FW_WM(cursor_sr, CURSOR_SR));
  1423.  
  1424.         if (cxsr_enabled)
  1425.                 intel_set_memory_cxsr(dev_priv, true);
  1426. }
  1427.  
  1428. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1429. {
  1430.         struct drm_device *dev = unused_crtc->dev;
  1431.         struct drm_i915_private *dev_priv = dev->dev_private;
  1432.         struct drm_crtc *crtc;
  1433.         int srwm = 1;
  1434.         int cursor_sr = 16;
  1435.         bool cxsr_enabled;
  1436.  
  1437.         /* Calc sr entries for one plane configs */
  1438.         crtc = single_enabled_crtc(dev);
  1439.         if (crtc) {
  1440.                 /* self-refresh has much higher latency */
  1441.                 static const int sr_latency_ns = 12000;
  1442.                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1443.                 int clock = adjusted_mode->crtc_clock;
  1444.                 int htotal = adjusted_mode->crtc_htotal;
  1445.                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1446.                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1447.                 unsigned long line_time_us;
  1448.                 int entries;
  1449.  
  1450.                 line_time_us = max(htotal * 1000 / clock, 1);
  1451.  
  1452.                 /* Use ns/us then divide to preserve precision */
  1453.                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1454.                         cpp * hdisplay;
  1455.                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1456.                 srwm = I965_FIFO_SIZE - entries;
  1457.                 if (srwm < 0)
  1458.                         srwm = 1;
  1459.                 srwm &= 0x1ff;
  1460.                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1461.                               entries, srwm);
  1462.  
  1463.                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1464.                         cpp * crtc->cursor->state->crtc_w;
  1465.                 entries = DIV_ROUND_UP(entries,
  1466.                                           i965_cursor_wm_info.cacheline_size);
  1467.                 cursor_sr = i965_cursor_wm_info.fifo_size -
  1468.                         (entries + i965_cursor_wm_info.guard_size);
  1469.  
  1470.                 if (cursor_sr > i965_cursor_wm_info.max_wm)
  1471.                         cursor_sr = i965_cursor_wm_info.max_wm;
  1472.  
  1473.                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1474.                               "cursor %d\n", srwm, cursor_sr);
  1475.  
  1476.                 cxsr_enabled = true;
  1477.         } else {
  1478.                 cxsr_enabled = false;
  1479.                 /* Turn off self refresh if both pipes are enabled */
  1480.                 intel_set_memory_cxsr(dev_priv, false);
  1481.         }
  1482.  
  1483.         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1484.                       srwm);
  1485.  
  1486.         /* 965 has limitations... */
  1487.         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1488.                    FW_WM(8, CURSORB) |
  1489.                    FW_WM(8, PLANEB) |
  1490.                    FW_WM(8, PLANEA));
  1491.         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1492.                    FW_WM(8, PLANEC_OLD));
  1493.         /* update cursor SR watermark */
  1494.         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1495.  
  1496.         if (cxsr_enabled)
  1497.                 intel_set_memory_cxsr(dev_priv, true);
  1498. }
  1499.  
  1500. #undef FW_WM
  1501.  
  1502. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1503. {
  1504.         struct drm_device *dev = unused_crtc->dev;
  1505.         struct drm_i915_private *dev_priv = dev->dev_private;
  1506.         const struct intel_watermark_params *wm_info;
  1507.         uint32_t fwater_lo;
  1508.         uint32_t fwater_hi;
  1509.         int cwm, srwm = 1;
  1510.         int fifo_size;
  1511.         int planea_wm, planeb_wm;
  1512.         struct drm_crtc *crtc, *enabled = NULL;
  1513.  
  1514.         if (IS_I945GM(dev))
  1515.                 wm_info = &i945_wm_info;
  1516.         else if (!IS_GEN2(dev))
  1517.                 wm_info = &i915_wm_info;
  1518.         else
  1519.                 wm_info = &i830_a_wm_info;
  1520.  
  1521.         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1522.         crtc = intel_get_crtc_for_plane(dev, 0);
  1523.         if (intel_crtc_active(crtc)) {
  1524.                 const struct drm_display_mode *adjusted_mode;
  1525.                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1526.                 if (IS_GEN2(dev))
  1527.                         cpp = 4;
  1528.  
  1529.                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1530.                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1531.                                                wm_info, fifo_size, cpp,
  1532.                                                pessimal_latency_ns);
  1533.                 enabled = crtc;
  1534.         } else {
  1535.                 planea_wm = fifo_size - wm_info->guard_size;
  1536.                 if (planea_wm > (long)wm_info->max_wm)
  1537.                         planea_wm = wm_info->max_wm;
  1538.         }
  1539.  
  1540.         if (IS_GEN2(dev))
  1541.                 wm_info = &i830_bc_wm_info;
  1542.  
  1543.         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1544.         crtc = intel_get_crtc_for_plane(dev, 1);
  1545.         if (intel_crtc_active(crtc)) {
  1546.                 const struct drm_display_mode *adjusted_mode;
  1547.                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1548.                 if (IS_GEN2(dev))
  1549.                         cpp = 4;
  1550.  
  1551.                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1552.                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1553.                                                wm_info, fifo_size, cpp,
  1554.                                                pessimal_latency_ns);
  1555.                 if (enabled == NULL)
  1556.                         enabled = crtc;
  1557.                 else
  1558.                         enabled = NULL;
  1559.         } else {
  1560.                 planeb_wm = fifo_size - wm_info->guard_size;
  1561.                 if (planeb_wm > (long)wm_info->max_wm)
  1562.                         planeb_wm = wm_info->max_wm;
  1563.         }
  1564.  
  1565.         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1566.  
  1567.         if (IS_I915GM(dev) && enabled) {
  1568.                 struct drm_i915_gem_object *obj;
  1569.  
  1570.                 obj = intel_fb_obj(enabled->primary->state->fb);
  1571.  
  1572.                 /* self-refresh seems busted with untiled */
  1573.                 if (obj->tiling_mode == I915_TILING_NONE)
  1574.                         enabled = NULL;
  1575.         }
  1576.  
  1577.         /*
  1578.          * Overlay gets an aggressive default since video jitter is bad.
  1579.          */
  1580.         cwm = 2;
  1581.  
  1582.         /* Play safe and disable self-refresh before adjusting watermarks. */
  1583.         intel_set_memory_cxsr(dev_priv, false);
  1584.  
  1585.         /* Calc sr entries for one plane configs */
  1586.         if (HAS_FW_BLC(dev) && enabled) {
  1587.                 /* self-refresh has much higher latency */
  1588.                 static const int sr_latency_ns = 6000;
  1589.                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1590.                 int clock = adjusted_mode->crtc_clock;
  1591.                 int htotal = adjusted_mode->crtc_htotal;
  1592.                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1593.                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
  1594.                 unsigned long line_time_us;
  1595.                 int entries;
  1596.  
  1597.                 line_time_us = max(htotal * 1000 / clock, 1);
  1598.  
  1599.                 /* Use ns/us then divide to preserve precision */
  1600.                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1601.                         cpp * hdisplay;
  1602.                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1603.                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1604.                 srwm = wm_info->fifo_size - entries;
  1605.                 if (srwm < 0)
  1606.                         srwm = 1;
  1607.  
  1608.                 if (IS_I945G(dev) || IS_I945GM(dev))
  1609.                         I915_WRITE(FW_BLC_SELF,
  1610.                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1611.                 else if (IS_I915GM(dev))
  1612.                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1613.         }
  1614.  
  1615.         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1616.                       planea_wm, planeb_wm, cwm, srwm);
  1617.  
  1618.         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1619.         fwater_hi = (cwm & 0x1f);
  1620.  
  1621.         /* Set request length to 8 cachelines per fetch */
  1622.         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1623.         fwater_hi = fwater_hi | (1 << 8);
  1624.  
  1625.         I915_WRITE(FW_BLC, fwater_lo);
  1626.         I915_WRITE(FW_BLC2, fwater_hi);
  1627.  
  1628.         if (enabled)
  1629.                 intel_set_memory_cxsr(dev_priv, true);
  1630. }
  1631.  
  1632. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1633. {
  1634.         struct drm_device *dev = unused_crtc->dev;
  1635.         struct drm_i915_private *dev_priv = dev->dev_private;
  1636.         struct drm_crtc *crtc;
  1637.         const struct drm_display_mode *adjusted_mode;
  1638.         uint32_t fwater_lo;
  1639.         int planea_wm;
  1640.  
  1641.         crtc = single_enabled_crtc(dev);
  1642.         if (crtc == NULL)
  1643.                 return;
  1644.  
  1645.         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1646.         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1647.                                        &i845_wm_info,
  1648.                                        dev_priv->display.get_fifo_size(dev, 0),
  1649.                                        4, pessimal_latency_ns);
  1650.         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1651.         fwater_lo |= (3<<8) | planea_wm;
  1652.  
  1653.         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1654.  
  1655.         I915_WRITE(FW_BLC, fwater_lo);
  1656. }
  1657.  
  1658. uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
  1659. {
  1660.         uint32_t pixel_rate;
  1661.  
  1662.         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
  1663.  
  1664.         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1665.          * adjust the pixel_rate here. */
  1666.  
  1667.         if (pipe_config->pch_pfit.enabled) {
  1668.                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1669.                 uint32_t pfit_size = pipe_config->pch_pfit.size;
  1670.  
  1671.                 pipe_w = pipe_config->pipe_src_w;
  1672.                 pipe_h = pipe_config->pipe_src_h;
  1673.  
  1674.                 pfit_w = (pfit_size >> 16) & 0xFFFF;
  1675.                 pfit_h = pfit_size & 0xFFFF;
  1676.                 if (pipe_w < pfit_w)
  1677.                         pipe_w = pfit_w;
  1678.                 if (pipe_h < pfit_h)
  1679.                         pipe_h = pfit_h;
  1680.  
  1681.                 if (WARN_ON(!pfit_w || !pfit_h))
  1682.                         return pixel_rate;
  1683.  
  1684.                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1685.                                      pfit_w * pfit_h);
  1686.         }
  1687.  
  1688.         return pixel_rate;
  1689. }
  1690.  
  1691. /* latency must be in 0.1us units. */
  1692. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  1693. {
  1694.         uint64_t ret;
  1695.  
  1696.         if (WARN(latency == 0, "Latency value missing\n"))
  1697.                 return UINT_MAX;
  1698.  
  1699.         ret = (uint64_t) pixel_rate * cpp * latency;
  1700.         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1701.  
  1702.         return ret;
  1703. }
  1704.  
  1705. /* latency must be in 0.1us units. */
  1706. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1707.                                uint32_t horiz_pixels, uint8_t cpp,
  1708.                                uint32_t latency)
  1709. {
  1710.         uint32_t ret;
  1711.  
  1712.         if (WARN(latency == 0, "Latency value missing\n"))
  1713.                 return UINT_MAX;
  1714.         if (WARN_ON(!pipe_htotal))
  1715.                 return UINT_MAX;
  1716.  
  1717.         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1718.         ret = (ret + 1) * horiz_pixels * cpp;
  1719.         ret = DIV_ROUND_UP(ret, 64) + 2;
  1720.         return ret;
  1721. }
  1722.  
  1723. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1724.                            uint8_t cpp)
  1725. {
  1726.         /*
  1727.          * Neither of these should be possible since this function shouldn't be
  1728.          * called if the CRTC is off or the plane is invisible.  But let's be
  1729.          * extra paranoid to avoid a potential divide-by-zero if we screw up
  1730.          * elsewhere in the driver.
  1731.          */
  1732.         if (WARN_ON(!cpp))
  1733.                 return 0;
  1734.         if (WARN_ON(!horiz_pixels))
  1735.                 return 0;
  1736.  
  1737.         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  1738. }
  1739.  
  1740. struct ilk_wm_maximums {
  1741.         uint16_t pri;
  1742.         uint16_t spr;
  1743.         uint16_t cur;
  1744.         uint16_t fbc;
  1745. };
  1746.  
  1747. /*
  1748.  * For both WM_PIPE and WM_LP.
  1749.  * mem_value must be in 0.1us units.
  1750.  */
  1751. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  1752.                                    const struct intel_plane_state *pstate,
  1753.                                    uint32_t mem_value,
  1754.                                    bool is_lp)
  1755. {
  1756.         int cpp = pstate->base.fb ?
  1757.                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1758.         uint32_t method1, method2;
  1759.  
  1760.         if (!cstate->base.active || !pstate->visible)
  1761.                 return 0;
  1762.  
  1763.         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1764.  
  1765.         if (!is_lp)
  1766.                 return method1;
  1767.  
  1768.         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1769.                                  cstate->base.adjusted_mode.crtc_htotal,
  1770.                                  drm_rect_width(&pstate->dst),
  1771.                                  cpp, mem_value);
  1772.  
  1773.         return min(method1, method2);
  1774. }
  1775.  
  1776. /*
  1777.  * For both WM_PIPE and WM_LP.
  1778.  * mem_value must be in 0.1us units.
  1779.  */
  1780. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  1781.                                    const struct intel_plane_state *pstate,
  1782.                                    uint32_t mem_value)
  1783. {
  1784.         int cpp = pstate->base.fb ?
  1785.                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1786.         uint32_t method1, method2;
  1787.  
  1788.         if (!cstate->base.active || !pstate->visible)
  1789.                 return 0;
  1790.  
  1791.         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1792.         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1793.                                  cstate->base.adjusted_mode.crtc_htotal,
  1794.                                  drm_rect_width(&pstate->dst),
  1795.                                  cpp, mem_value);
  1796.         return min(method1, method2);
  1797. }
  1798.  
  1799. /*
  1800.  * For both WM_PIPE and WM_LP.
  1801.  * mem_value must be in 0.1us units.
  1802.  */
  1803. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  1804.                                    const struct intel_plane_state *pstate,
  1805.                                    uint32_t mem_value)
  1806. {
  1807.         /*
  1808.          * We treat the cursor plane as always-on for the purposes of watermark
  1809.          * calculation.  Until we have two-stage watermark programming merged,
  1810.          * this is necessary to avoid flickering.
  1811.          */
  1812.         int cpp = 4;
  1813.         int width = pstate->visible ? pstate->base.crtc_w : 64;
  1814.  
  1815.         if (!cstate->base.active)
  1816.                 return 0;
  1817.  
  1818.         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1819.                               cstate->base.adjusted_mode.crtc_htotal,
  1820.                               width, cpp, mem_value);
  1821. }
  1822.  
  1823. /* Only for WM_LP. */
  1824. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1825.                                    const struct intel_plane_state *pstate,
  1826.                                    uint32_t pri_val)
  1827. {
  1828.         int cpp = pstate->base.fb ?
  1829.                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1830.  
  1831.         if (!cstate->base.active || !pstate->visible)
  1832.                 return 0;
  1833.  
  1834.         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
  1835. }
  1836.  
  1837. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1838. {
  1839.         if (INTEL_INFO(dev)->gen >= 8)
  1840.                 return 3072;
  1841.         else if (INTEL_INFO(dev)->gen >= 7)
  1842.                 return 768;
  1843.         else
  1844.                 return 512;
  1845. }
  1846.  
  1847. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1848.                                          int level, bool is_sprite)
  1849. {
  1850.         if (INTEL_INFO(dev)->gen >= 8)
  1851.                 /* BDW primary/sprite plane watermarks */
  1852.                 return level == 0 ? 255 : 2047;
  1853.         else if (INTEL_INFO(dev)->gen >= 7)
  1854.                 /* IVB/HSW primary/sprite plane watermarks */
  1855.                 return level == 0 ? 127 : 1023;
  1856.         else if (!is_sprite)
  1857.                 /* ILK/SNB primary plane watermarks */
  1858.                 return level == 0 ? 127 : 511;
  1859.         else
  1860.                 /* ILK/SNB sprite plane watermarks */
  1861.                 return level == 0 ? 63 : 255;
  1862. }
  1863.  
  1864. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1865.                                           int level)
  1866. {
  1867.         if (INTEL_INFO(dev)->gen >= 7)
  1868.                 return level == 0 ? 63 : 255;
  1869.         else
  1870.                 return level == 0 ? 31 : 63;
  1871. }
  1872.  
  1873. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1874. {
  1875.         if (INTEL_INFO(dev)->gen >= 8)
  1876.                 return 31;
  1877.         else
  1878.                 return 15;
  1879. }
  1880.  
  1881. /* Calculate the maximum primary/sprite plane watermark */
  1882. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1883.                                      int level,
  1884.                                      const struct intel_wm_config *config,
  1885.                                      enum intel_ddb_partitioning ddb_partitioning,
  1886.                                      bool is_sprite)
  1887. {
  1888.         unsigned int fifo_size = ilk_display_fifo_size(dev);
  1889.  
  1890.         /* if sprites aren't enabled, sprites get nothing */
  1891.         if (is_sprite && !config->sprites_enabled)
  1892.                 return 0;
  1893.  
  1894.         /* HSW allows LP1+ watermarks even with multiple pipes */
  1895.         if (level == 0 || config->num_pipes_active > 1) {
  1896.                 fifo_size /= INTEL_INFO(dev)->num_pipes;
  1897.  
  1898.                 /*
  1899.                  * For some reason the non self refresh
  1900.                  * FIFO size is only half of the self
  1901.                  * refresh FIFO size on ILK/SNB.
  1902.                  */
  1903.                 if (INTEL_INFO(dev)->gen <= 6)
  1904.                         fifo_size /= 2;
  1905.         }
  1906.  
  1907.         if (config->sprites_enabled) {
  1908.                 /* level 0 is always calculated with 1:1 split */
  1909.                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1910.                         if (is_sprite)
  1911.                                 fifo_size *= 5;
  1912.                         fifo_size /= 6;
  1913.                 } else {
  1914.                         fifo_size /= 2;
  1915.                 }
  1916.         }
  1917.  
  1918.         /* clamp to max that the registers can hold */
  1919.         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1920. }
  1921.  
  1922. /* Calculate the maximum cursor plane watermark */
  1923. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1924.                                       int level,
  1925.                                       const struct intel_wm_config *config)
  1926. {
  1927.         /* HSW LP1+ watermarks w/ multiple pipes */
  1928.         if (level > 0 && config->num_pipes_active > 1)
  1929.                 return 64;
  1930.  
  1931.         /* otherwise just report max that registers can hold */
  1932.         return ilk_cursor_wm_reg_max(dev, level);
  1933. }
  1934.  
  1935. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1936.                                     int level,
  1937.                                     const struct intel_wm_config *config,
  1938.                                     enum intel_ddb_partitioning ddb_partitioning,
  1939.                                     struct ilk_wm_maximums *max)
  1940. {
  1941.         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1942.         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1943.         max->cur = ilk_cursor_wm_max(dev, level, config);
  1944.         max->fbc = ilk_fbc_wm_reg_max(dev);
  1945. }
  1946.  
  1947. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1948.                                         int level,
  1949.                                         struct ilk_wm_maximums *max)
  1950. {
  1951.         max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1952.         max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1953.         max->cur = ilk_cursor_wm_reg_max(dev, level);
  1954.         max->fbc = ilk_fbc_wm_reg_max(dev);
  1955. }
  1956.  
  1957. static bool ilk_validate_wm_level(int level,
  1958.                                   const struct ilk_wm_maximums *max,
  1959.                                   struct intel_wm_level *result)
  1960. {
  1961.         bool ret;
  1962.  
  1963.         /* already determined to be invalid? */
  1964.         if (!result->enable)
  1965.                 return false;
  1966.  
  1967.         result->enable = result->pri_val <= max->pri &&
  1968.                          result->spr_val <= max->spr &&
  1969.                          result->cur_val <= max->cur;
  1970.  
  1971.         ret = result->enable;
  1972.  
  1973.         /*
  1974.          * HACK until we can pre-compute everything,
  1975.          * and thus fail gracefully if LP0 watermarks
  1976.          * are exceeded...
  1977.          */
  1978.         if (level == 0 && !result->enable) {
  1979.                 if (result->pri_val > max->pri)
  1980.                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1981.                                       level, result->pri_val, max->pri);
  1982.                 if (result->spr_val > max->spr)
  1983.                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1984.                                       level, result->spr_val, max->spr);
  1985.                 if (result->cur_val > max->cur)
  1986.                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1987.                                       level, result->cur_val, max->cur);
  1988.  
  1989.                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1990.                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1991.                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1992.                 result->enable = true;
  1993.         }
  1994.  
  1995.         return ret;
  1996. }
  1997.  
  1998. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1999.                                  const struct intel_crtc *intel_crtc,
  2000.                                  int level,
  2001.                                  struct intel_crtc_state *cstate,
  2002.                                  struct intel_plane_state *pristate,
  2003.                                  struct intel_plane_state *sprstate,
  2004.                                  struct intel_plane_state *curstate,
  2005.                                  struct intel_wm_level *result)
  2006. {
  2007.         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2008.         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2009.         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2010.  
  2011.         /* WM1+ latency values stored in 0.5us units */
  2012.         if (level > 0) {
  2013.                 pri_latency *= 5;
  2014.                 spr_latency *= 5;
  2015.                 cur_latency *= 5;
  2016.         }
  2017.  
  2018.         result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  2019.                                              pri_latency, level);
  2020.         result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  2021.         result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  2022.         result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  2023.         result->enable = true;
  2024. }
  2025.  
  2026. static uint32_t
  2027. hsw_compute_linetime_wm(struct drm_device *dev,
  2028.                         struct intel_crtc_state *cstate)
  2029. {
  2030.         struct drm_i915_private *dev_priv = dev->dev_private;
  2031.         const struct drm_display_mode *adjusted_mode =
  2032.                 &cstate->base.adjusted_mode;
  2033.         u32 linetime, ips_linetime;
  2034.  
  2035.         if (!cstate->base.active)
  2036.                 return 0;
  2037.         if (WARN_ON(adjusted_mode->crtc_clock == 0))
  2038.                 return 0;
  2039.         if (WARN_ON(dev_priv->cdclk_freq == 0))
  2040.                 return 0;
  2041.  
  2042.         /* The WM are computed with base on how long it takes to fill a single
  2043.          * row at the given clock rate, multiplied by 8.
  2044.          * */
  2045.         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2046.                                      adjusted_mode->crtc_clock);
  2047.         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2048.                                          dev_priv->cdclk_freq);
  2049.  
  2050.         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2051.                PIPE_WM_LINETIME_TIME(linetime);
  2052. }
  2053.  
  2054. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  2055. {
  2056.         struct drm_i915_private *dev_priv = dev->dev_private;
  2057.  
  2058.         if (IS_GEN9(dev)) {
  2059.                 uint32_t val;
  2060.                 int ret, i;
  2061.                 int level, max_level = ilk_wm_max_level(dev);
  2062.  
  2063.                 /* read the first set of memory latencies[0:3] */
  2064.                 val = 0; /* data0 to be programmed to 0 for first set */
  2065.                 mutex_lock(&dev_priv->rps.hw_lock);
  2066.                 ret = sandybridge_pcode_read(dev_priv,
  2067.                                              GEN9_PCODE_READ_MEM_LATENCY,
  2068.                                              &val);
  2069.                 mutex_unlock(&dev_priv->rps.hw_lock);
  2070.  
  2071.                 if (ret) {
  2072.                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2073.                         return;
  2074.                 }
  2075.  
  2076.                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2077.                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2078.                                 GEN9_MEM_LATENCY_LEVEL_MASK;
  2079.                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2080.                                 GEN9_MEM_LATENCY_LEVEL_MASK;
  2081.                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2082.                                 GEN9_MEM_LATENCY_LEVEL_MASK;
  2083.  
  2084.                 /* read the second set of memory latencies[4:7] */
  2085.                 val = 1; /* data0 to be programmed to 1 for second set */
  2086.                 mutex_lock(&dev_priv->rps.hw_lock);
  2087.                 ret = sandybridge_pcode_read(dev_priv,
  2088.                                              GEN9_PCODE_READ_MEM_LATENCY,
  2089.                                              &val);
  2090.                 mutex_unlock(&dev_priv->rps.hw_lock);
  2091.                 if (ret) {
  2092.                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2093.                         return;
  2094.                 }
  2095.  
  2096.                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2097.                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2098.                                 GEN9_MEM_LATENCY_LEVEL_MASK;
  2099.                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2100.                                 GEN9_MEM_LATENCY_LEVEL_MASK;
  2101.                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2102.                                 GEN9_MEM_LATENCY_LEVEL_MASK;
  2103.  
  2104.                 /*
  2105.                  * WaWmMemoryReadLatency:skl
  2106.                  *
  2107.                  * punit doesn't take into account the read latency so we need
  2108.                  * to add 2us to the various latency levels we retrieve from
  2109.                  * the punit.
  2110.                  *   - W0 is a bit special in that it's the only level that
  2111.                  *   can't be disabled if we want to have display working, so
  2112.                  *   we always add 2us there.
  2113.                  *   - For levels >=1, punit returns 0us latency when they are
  2114.                  *   disabled, so we respect that and don't add 2us then
  2115.                  *
  2116.                  * Additionally, if a level n (n > 1) has a 0us latency, all
  2117.                  * levels m (m >= n) need to be disabled. We make sure to
  2118.                  * sanitize the values out of the punit to satisfy this
  2119.                  * requirement.
  2120.                  */
  2121.                 wm[0] += 2;
  2122.                 for (level = 1; level <= max_level; level++)
  2123.                         if (wm[level] != 0)
  2124.                                 wm[level] += 2;
  2125.                         else {
  2126.                                 for (i = level + 1; i <= max_level; i++)
  2127.                                         wm[i] = 0;
  2128.  
  2129.                                 break;
  2130.                         }
  2131.         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2132.                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2133.  
  2134.                 wm[0] = (sskpd >> 56) & 0xFF;
  2135.                 if (wm[0] == 0)
  2136.                         wm[0] = sskpd & 0xF;
  2137.                 wm[1] = (sskpd >> 4) & 0xFF;
  2138.                 wm[2] = (sskpd >> 12) & 0xFF;
  2139.                 wm[3] = (sskpd >> 20) & 0x1FF;
  2140.                 wm[4] = (sskpd >> 32) & 0x1FF;
  2141.         } else if (INTEL_INFO(dev)->gen >= 6) {
  2142.                 uint32_t sskpd = I915_READ(MCH_SSKPD);
  2143.  
  2144.                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2145.                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2146.                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2147.                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2148.         } else if (INTEL_INFO(dev)->gen >= 5) {
  2149.                 uint32_t mltr = I915_READ(MLTR_ILK);
  2150.  
  2151.                 /* ILK primary LP0 latency is 700 ns */
  2152.                 wm[0] = 7;
  2153.                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2154.                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2155.         }
  2156. }
  2157.  
  2158. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2159. {
  2160.         /* ILK sprite LP0 latency is 1300 ns */
  2161.         if (INTEL_INFO(dev)->gen == 5)
  2162.                 wm[0] = 13;
  2163. }
  2164.  
  2165. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2166. {
  2167.         /* ILK cursor LP0 latency is 1300 ns */
  2168.         if (INTEL_INFO(dev)->gen == 5)
  2169.                 wm[0] = 13;
  2170.  
  2171.         /* WaDoubleCursorLP3Latency:ivb */
  2172.         if (IS_IVYBRIDGE(dev))
  2173.                 wm[3] *= 2;
  2174. }
  2175.  
  2176. int ilk_wm_max_level(const struct drm_device *dev)
  2177. {
  2178.         /* how many WM levels are we expecting */
  2179.         if (INTEL_INFO(dev)->gen >= 9)
  2180.                 return 7;
  2181.         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2182.                 return 4;
  2183.         else if (INTEL_INFO(dev)->gen >= 6)
  2184.                 return 3;
  2185.         else
  2186.                 return 2;
  2187. }
  2188.  
  2189. static void intel_print_wm_latency(struct drm_device *dev,
  2190.                                    const char *name,
  2191.                                    const uint16_t wm[8])
  2192. {
  2193.         int level, max_level = ilk_wm_max_level(dev);
  2194.  
  2195.         for (level = 0; level <= max_level; level++) {
  2196.                 unsigned int latency = wm[level];
  2197.  
  2198.                 if (latency == 0) {
  2199.                         DRM_ERROR("%s WM%d latency not provided\n",
  2200.                                   name, level);
  2201.                         continue;
  2202.                 }
  2203.  
  2204.                 /*
  2205.                  * - latencies are in us on gen9.
  2206.                  * - before then, WM1+ latency values are in 0.5us units
  2207.                  */
  2208.                 if (IS_GEN9(dev))
  2209.                         latency *= 10;
  2210.                 else if (level > 0)
  2211.                         latency *= 5;
  2212.  
  2213.                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2214.                               name, level, wm[level],
  2215.                               latency / 10, latency % 10);
  2216.         }
  2217. }
  2218.  
  2219. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  2220.                                     uint16_t wm[5], uint16_t min)
  2221. {
  2222.         int level, max_level = ilk_wm_max_level(dev_priv->dev);
  2223.  
  2224.         if (wm[0] >= min)
  2225.                 return false;
  2226.  
  2227.         wm[0] = max(wm[0], min);
  2228.         for (level = 1; level <= max_level; level++)
  2229.                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  2230.  
  2231.         return true;
  2232. }
  2233.  
  2234. static void snb_wm_latency_quirk(struct drm_device *dev)
  2235. {
  2236.         struct drm_i915_private *dev_priv = dev->dev_private;
  2237.         bool changed;
  2238.  
  2239.         /*
  2240.          * The BIOS provided WM memory latency values are often
  2241.          * inadequate for high resolution displays. Adjust them.
  2242.          */
  2243.         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  2244.                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  2245.                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  2246.  
  2247.         if (!changed)
  2248.                 return;
  2249.  
  2250.         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  2251.         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2252.         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2253.         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2254. }
  2255.  
  2256. static void ilk_setup_wm_latency(struct drm_device *dev)
  2257. {
  2258.         struct drm_i915_private *dev_priv = dev->dev_private;
  2259.  
  2260.         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2261.  
  2262.         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2263.                sizeof(dev_priv->wm.pri_latency));
  2264.         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2265.                sizeof(dev_priv->wm.pri_latency));
  2266.  
  2267.         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2268.         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2269.  
  2270.         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2271.         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2272.         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2273.  
  2274.         if (IS_GEN6(dev))
  2275.                 snb_wm_latency_quirk(dev);
  2276. }
  2277.  
  2278. static void skl_setup_wm_latency(struct drm_device *dev)
  2279. {
  2280.         struct drm_i915_private *dev_priv = dev->dev_private;
  2281.  
  2282.         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  2283.         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  2284. }
  2285.  
  2286. /* Compute new watermarks for the pipe */
  2287. static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
  2288.                                struct drm_atomic_state *state)
  2289. {
  2290.         struct intel_pipe_wm *pipe_wm;
  2291.         struct drm_device *dev = intel_crtc->base.dev;
  2292.         const struct drm_i915_private *dev_priv = dev->dev_private;
  2293.         struct intel_crtc_state *cstate = NULL;
  2294.         struct intel_plane *intel_plane;
  2295.         struct drm_plane_state *ps;
  2296.         struct intel_plane_state *pristate = NULL;
  2297.         struct intel_plane_state *sprstate = NULL;
  2298.         struct intel_plane_state *curstate = NULL;
  2299.         int level, max_level = ilk_wm_max_level(dev);
  2300.         /* LP0 watermark maximums depend on this pipe alone */
  2301.         struct intel_wm_config config = {
  2302.                 .num_pipes_active = 1,
  2303.         };
  2304.         struct ilk_wm_maximums max;
  2305.  
  2306.         cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  2307.         if (IS_ERR(cstate))
  2308.                 return PTR_ERR(cstate);
  2309.  
  2310.         pipe_wm = &cstate->wm.optimal.ilk;
  2311.         memset(pipe_wm, 0, sizeof(*pipe_wm));
  2312.  
  2313.         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2314.                 ps = drm_atomic_get_plane_state(state,
  2315.                                                 &intel_plane->base);
  2316.                 if (IS_ERR(ps))
  2317.                         return PTR_ERR(ps);
  2318.  
  2319.                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  2320.                         pristate = to_intel_plane_state(ps);
  2321.                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  2322.                         sprstate = to_intel_plane_state(ps);
  2323.                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2324.                         curstate = to_intel_plane_state(ps);
  2325.         }
  2326.  
  2327.         config.sprites_enabled = sprstate->visible;
  2328.         config.sprites_scaled = sprstate->visible &&
  2329.                 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
  2330.                 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
  2331.  
  2332.         pipe_wm->pipe_enabled = cstate->base.active;
  2333.         pipe_wm->sprites_enabled = config.sprites_enabled;
  2334.         pipe_wm->sprites_scaled = config.sprites_scaled;
  2335.  
  2336.         /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2337.         if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
  2338.                 max_level = 1;
  2339.  
  2340.         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2341.         if (config.sprites_scaled)
  2342.                 max_level = 0;
  2343.  
  2344.         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  2345.                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
  2346.  
  2347.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2348.                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
  2349.  
  2350.         /* LP0 watermarks always use 1/2 DDB partitioning */
  2351.         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2352.  
  2353.         /* At least LP0 must be valid */
  2354.         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  2355.                 return -EINVAL;
  2356.  
  2357.         ilk_compute_wm_reg_maximums(dev, 1, &max);
  2358.  
  2359.         for (level = 1; level <= max_level; level++) {
  2360.                 struct intel_wm_level wm = {};
  2361.  
  2362.                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  2363.                                      pristate, sprstate, curstate, &wm);
  2364.  
  2365.                 /*
  2366.                  * Disable any watermark level that exceeds the
  2367.                  * register maximums since such watermarks are
  2368.                  * always invalid.
  2369.                  */
  2370.                 if (!ilk_validate_wm_level(level, &max, &wm))
  2371.                         break;
  2372.  
  2373.                 pipe_wm->wm[level] = wm;
  2374.         }
  2375.  
  2376.         return 0;
  2377. }
  2378.  
  2379. /*
  2380.  * Merge the watermarks from all active pipes for a specific level.
  2381.  */
  2382. static void ilk_merge_wm_level(struct drm_device *dev,
  2383.                                int level,
  2384.                                struct intel_wm_level *ret_wm)
  2385. {
  2386.         const struct intel_crtc *intel_crtc;
  2387.  
  2388.         ret_wm->enable = true;
  2389.  
  2390.         for_each_intel_crtc(dev, intel_crtc) {
  2391.                 const struct intel_crtc_state *cstate =
  2392.                         to_intel_crtc_state(intel_crtc->base.state);
  2393.                 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
  2394.                 const struct intel_wm_level *wm = &active->wm[level];
  2395.  
  2396.                 if (!active->pipe_enabled)
  2397.                         continue;
  2398.  
  2399.                 /*
  2400.                  * The watermark values may have been used in the past,
  2401.                  * so we must maintain them in the registers for some
  2402.                  * time even if the level is now disabled.
  2403.                  */
  2404.                 if (!wm->enable)
  2405.                         ret_wm->enable = false;
  2406.  
  2407.                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2408.                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2409.                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2410.                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2411.         }
  2412. }
  2413.  
  2414. /*
  2415.  * Merge all low power watermarks for all active pipes.
  2416.  */
  2417. static void ilk_wm_merge(struct drm_device *dev,
  2418.                          const struct intel_wm_config *config,
  2419.                          const struct ilk_wm_maximums *max,
  2420.                          struct intel_pipe_wm *merged)
  2421. {
  2422.         struct drm_i915_private *dev_priv = dev->dev_private;
  2423.         int level, max_level = ilk_wm_max_level(dev);
  2424.         int last_enabled_level = max_level;
  2425.  
  2426.         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2427.         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2428.             config->num_pipes_active > 1)
  2429.                 return;
  2430.  
  2431.         /* ILK: FBC WM must be disabled always */
  2432.         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2433.  
  2434.         /* merge each WM1+ level */
  2435.         for (level = 1; level <= max_level; level++) {
  2436.                 struct intel_wm_level *wm = &merged->wm[level];
  2437.  
  2438.                 ilk_merge_wm_level(dev, level, wm);
  2439.  
  2440.                 if (level > last_enabled_level)
  2441.                         wm->enable = false;
  2442.                 else if (!ilk_validate_wm_level(level, max, wm))
  2443.                         /* make sure all following levels get disabled */
  2444.                         last_enabled_level = level - 1;
  2445.  
  2446.                 /*
  2447.                  * The spec says it is preferred to disable
  2448.                  * FBC WMs instead of disabling a WM level.
  2449.                  */
  2450.                 if (wm->fbc_val > max->fbc) {
  2451.                         if (wm->enable)
  2452.                                 merged->fbc_wm_enabled = false;
  2453.                         wm->fbc_val = 0;
  2454.                 }
  2455.         }
  2456.  
  2457.         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2458.         /*
  2459.          * FIXME this is racy. FBC might get enabled later.
  2460.          * What we should check here is whether FBC can be
  2461.          * enabled sometime later.
  2462.          */
  2463.         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
  2464.             intel_fbc_is_active(dev_priv)) {
  2465.                 for (level = 2; level <= max_level; level++) {
  2466.                         struct intel_wm_level *wm = &merged->wm[level];
  2467.  
  2468.                         wm->enable = false;
  2469.                 }
  2470.         }
  2471. }
  2472.  
  2473. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2474. {
  2475.         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2476.         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2477. }
  2478.  
  2479. /* The value we need to program into the WM_LPx latency field */
  2480. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2481. {
  2482.         struct drm_i915_private *dev_priv = dev->dev_private;
  2483.  
  2484.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2485.                 return 2 * level;
  2486.         else
  2487.                 return dev_priv->wm.pri_latency[level];
  2488. }
  2489.  
  2490. static void ilk_compute_wm_results(struct drm_device *dev,
  2491.                                    const struct intel_pipe_wm *merged,
  2492.                                    enum intel_ddb_partitioning partitioning,
  2493.                                    struct ilk_wm_values *results)
  2494. {
  2495.         struct intel_crtc *intel_crtc;
  2496.         int level, wm_lp;
  2497.  
  2498.         results->enable_fbc_wm = merged->fbc_wm_enabled;
  2499.         results->partitioning = partitioning;
  2500.  
  2501.         /* LP1+ register values */
  2502.         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2503.                 const struct intel_wm_level *r;
  2504.  
  2505.                 level = ilk_wm_lp_to_level(wm_lp, merged);
  2506.  
  2507.                 r = &merged->wm[level];
  2508.  
  2509.                 /*
  2510.                  * Maintain the watermark values even if the level is
  2511.                  * disabled. Doing otherwise could cause underruns.
  2512.                  */
  2513.                 results->wm_lp[wm_lp - 1] =
  2514.                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2515.                         (r->pri_val << WM1_LP_SR_SHIFT) |
  2516.                         r->cur_val;
  2517.  
  2518.                 if (r->enable)
  2519.                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2520.  
  2521.                 if (INTEL_INFO(dev)->gen >= 8)
  2522.                         results->wm_lp[wm_lp - 1] |=
  2523.                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2524.                 else
  2525.                         results->wm_lp[wm_lp - 1] |=
  2526.                                 r->fbc_val << WM1_LP_FBC_SHIFT;
  2527.  
  2528.                 /*
  2529.                  * Always set WM1S_LP_EN when spr_val != 0, even if the
  2530.                  * level is disabled. Doing otherwise could cause underruns.
  2531.                  */
  2532.                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2533.                         WARN_ON(wm_lp != 1);
  2534.                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2535.                 } else
  2536.                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2537.         }
  2538.  
  2539.         /* LP0 register values */
  2540.         for_each_intel_crtc(dev, intel_crtc) {
  2541.                 const struct intel_crtc_state *cstate =
  2542.                         to_intel_crtc_state(intel_crtc->base.state);
  2543.                 enum pipe pipe = intel_crtc->pipe;
  2544.                 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
  2545.  
  2546.                 if (WARN_ON(!r->enable))
  2547.                         continue;
  2548.  
  2549.                 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
  2550.  
  2551.                 results->wm_pipe[pipe] =
  2552.                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2553.                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2554.                         r->cur_val;
  2555.         }
  2556. }
  2557.  
  2558. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2559.  * case both are at the same level. Prefer r1 in case they're the same. */
  2560. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2561.                                                   struct intel_pipe_wm *r1,
  2562.                                                   struct intel_pipe_wm *r2)
  2563. {
  2564.         int level, max_level = ilk_wm_max_level(dev);
  2565.         int level1 = 0, level2 = 0;
  2566.  
  2567.         for (level = 1; level <= max_level; level++) {
  2568.                 if (r1->wm[level].enable)
  2569.                         level1 = level;
  2570.                 if (r2->wm[level].enable)
  2571.                         level2 = level;
  2572.         }
  2573.  
  2574.         if (level1 == level2) {
  2575.                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2576.                         return r2;
  2577.                 else
  2578.                         return r1;
  2579.         } else if (level1 > level2) {
  2580.                 return r1;
  2581.         } else {
  2582.                 return r2;
  2583.         }
  2584. }
  2585.  
  2586. /* dirty bits used to track which watermarks need changes */
  2587. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2588. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2589. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2590. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2591. #define WM_DIRTY_FBC (1 << 24)
  2592. #define WM_DIRTY_DDB (1 << 25)
  2593.  
  2594. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2595.                                          const struct ilk_wm_values *old,
  2596.                                          const struct ilk_wm_values *new)
  2597. {
  2598.         unsigned int dirty = 0;
  2599.         enum pipe pipe;
  2600.         int wm_lp;
  2601.  
  2602.         for_each_pipe(dev_priv, pipe) {
  2603.                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2604.                         dirty |= WM_DIRTY_LINETIME(pipe);
  2605.                         /* Must disable LP1+ watermarks too */
  2606.                         dirty |= WM_DIRTY_LP_ALL;
  2607.                 }
  2608.  
  2609.                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2610.                         dirty |= WM_DIRTY_PIPE(pipe);
  2611.                         /* Must disable LP1+ watermarks too */
  2612.                         dirty |= WM_DIRTY_LP_ALL;
  2613.                 }
  2614.         }
  2615.  
  2616.         if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2617.                 dirty |= WM_DIRTY_FBC;
  2618.                 /* Must disable LP1+ watermarks too */
  2619.                 dirty |= WM_DIRTY_LP_ALL;
  2620.         }
  2621.  
  2622.         if (old->partitioning != new->partitioning) {
  2623.                 dirty |= WM_DIRTY_DDB;
  2624.                 /* Must disable LP1+ watermarks too */
  2625.                 dirty |= WM_DIRTY_LP_ALL;
  2626.         }
  2627.  
  2628.         /* LP1+ watermarks already deemed dirty, no need to continue */
  2629.         if (dirty & WM_DIRTY_LP_ALL)
  2630.                 return dirty;
  2631.  
  2632.         /* Find the lowest numbered LP1+ watermark in need of an update... */
  2633.         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2634.                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2635.                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2636.                         break;
  2637.         }
  2638.  
  2639.         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2640.         for (; wm_lp <= 3; wm_lp++)
  2641.                 dirty |= WM_DIRTY_LP(wm_lp);
  2642.  
  2643.         return dirty;
  2644. }
  2645.  
  2646. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2647.                                unsigned int dirty)
  2648. {
  2649.         struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2650.         bool changed = false;
  2651.  
  2652.         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2653.                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2654.                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2655.                 changed = true;
  2656.         }
  2657.         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2658.                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2659.                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2660.                 changed = true;
  2661.         }
  2662.         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2663.                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2664.                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2665.                 changed = true;
  2666.         }
  2667.  
  2668.         /*
  2669.          * Don't touch WM1S_LP_EN here.
  2670.          * Doing so could cause underruns.
  2671.          */
  2672.  
  2673.         return changed;
  2674. }
  2675.  
  2676. /*
  2677.  * The spec says we shouldn't write when we don't need, because every write
  2678.  * causes WMs to be re-evaluated, expending some power.
  2679.  */
  2680. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2681.                                 struct ilk_wm_values *results)
  2682. {
  2683.         struct drm_device *dev = dev_priv->dev;
  2684.         struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2685.         unsigned int dirty;
  2686.         uint32_t val;
  2687.  
  2688.         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2689.         if (!dirty)
  2690.                 return;
  2691.  
  2692.         _ilk_disable_lp_wm(dev_priv, dirty);
  2693.  
  2694.         if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2695.                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2696.         if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2697.                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2698.         if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2699.                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2700.  
  2701.         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2702.                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2703.         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2704.                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2705.         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2706.                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2707.  
  2708.         if (dirty & WM_DIRTY_DDB) {
  2709.                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2710.                         val = I915_READ(WM_MISC);
  2711.                         if (results->partitioning == INTEL_DDB_PART_1_2)
  2712.                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
  2713.                         else
  2714.                                 val |= WM_MISC_DATA_PARTITION_5_6;
  2715.                         I915_WRITE(WM_MISC, val);
  2716.                 } else {
  2717.                         val = I915_READ(DISP_ARB_CTL2);
  2718.                         if (results->partitioning == INTEL_DDB_PART_1_2)
  2719.                                 val &= ~DISP_DATA_PARTITION_5_6;
  2720.                         else
  2721.                                 val |= DISP_DATA_PARTITION_5_6;
  2722.                         I915_WRITE(DISP_ARB_CTL2, val);
  2723.                 }
  2724.         }
  2725.  
  2726.         if (dirty & WM_DIRTY_FBC) {
  2727.                 val = I915_READ(DISP_ARB_CTL);
  2728.                 if (results->enable_fbc_wm)
  2729.                         val &= ~DISP_FBC_WM_DIS;
  2730.                 else
  2731.                         val |= DISP_FBC_WM_DIS;
  2732.                 I915_WRITE(DISP_ARB_CTL, val);
  2733.         }
  2734.  
  2735.         if (dirty & WM_DIRTY_LP(1) &&
  2736.             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2737.                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2738.  
  2739.         if (INTEL_INFO(dev)->gen >= 7) {
  2740.                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2741.                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2742.                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2743.                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2744.         }
  2745.  
  2746.         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2747.                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2748.         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2749.                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2750.         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2751.                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2752.  
  2753.         dev_priv->wm.hw = *results;
  2754. }
  2755.  
  2756. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2757. {
  2758.         struct drm_i915_private *dev_priv = dev->dev_private;
  2759.  
  2760.         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2761. }
  2762.  
  2763. /*
  2764.  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2765.  * different active planes.
  2766.  */
  2767.  
  2768. #define SKL_DDB_SIZE            896     /* in blocks */
  2769. #define BXT_DDB_SIZE            512
  2770.  
  2771. /*
  2772.  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
  2773.  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
  2774.  * other universal planes are in indices 1..n.  Note that this may leave unused
  2775.  * indices between the top "sprite" plane and the cursor.
  2776.  */
  2777. static int
  2778. skl_wm_plane_id(const struct intel_plane *plane)
  2779. {
  2780.         switch (plane->base.type) {
  2781.         case DRM_PLANE_TYPE_PRIMARY:
  2782.                 return 0;
  2783.         case DRM_PLANE_TYPE_CURSOR:
  2784.                 return PLANE_CURSOR;
  2785.         case DRM_PLANE_TYPE_OVERLAY:
  2786.                 return plane->plane + 1;
  2787.         default:
  2788.                 MISSING_CASE(plane->base.type);
  2789.                 return plane->plane;
  2790.         }
  2791. }
  2792.  
  2793. static void
  2794. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2795.                                    const struct intel_crtc_state *cstate,
  2796.                                    const struct intel_wm_config *config,
  2797.                                    struct skl_ddb_entry *alloc /* out */)
  2798. {
  2799.         struct drm_crtc *for_crtc = cstate->base.crtc;
  2800.         struct drm_crtc *crtc;
  2801.         unsigned int pipe_size, ddb_size;
  2802.         int nth_active_pipe;
  2803.  
  2804.         if (!cstate->base.active) {
  2805.                 alloc->start = 0;
  2806.                 alloc->end = 0;
  2807.                 return;
  2808.         }
  2809.  
  2810.         if (IS_BROXTON(dev))
  2811.                 ddb_size = BXT_DDB_SIZE;
  2812.         else
  2813.                 ddb_size = SKL_DDB_SIZE;
  2814.  
  2815.         ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2816.  
  2817.         nth_active_pipe = 0;
  2818.         for_each_crtc(dev, crtc) {
  2819.                 if (!to_intel_crtc(crtc)->active)
  2820.                         continue;
  2821.  
  2822.                 if (crtc == for_crtc)
  2823.                         break;
  2824.  
  2825.                 nth_active_pipe++;
  2826.         }
  2827.  
  2828.         pipe_size = ddb_size / config->num_pipes_active;
  2829.         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2830.         alloc->end = alloc->start + pipe_size;
  2831. }
  2832.  
  2833. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2834. {
  2835.         if (config->num_pipes_active == 1)
  2836.                 return 32;
  2837.  
  2838.         return 8;
  2839. }
  2840.  
  2841. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2842. {
  2843.         entry->start = reg & 0x3ff;
  2844.         entry->end = (reg >> 16) & 0x3ff;
  2845.         if (entry->end)
  2846.                 entry->end += 1;
  2847. }
  2848.  
  2849. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2850.                           struct skl_ddb_allocation *ddb /* out */)
  2851. {
  2852.         enum pipe pipe;
  2853.         int plane;
  2854.         u32 val;
  2855.  
  2856.         memset(ddb, 0, sizeof(*ddb));
  2857.  
  2858.         for_each_pipe(dev_priv, pipe) {
  2859.                 enum intel_display_power_domain power_domain;
  2860.  
  2861.                 power_domain = POWER_DOMAIN_PIPE(pipe);
  2862.                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  2863.                         continue;
  2864.  
  2865.                 for_each_plane(dev_priv, pipe, plane) {
  2866.                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2867.                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2868.                                                    val);
  2869.                 }
  2870.  
  2871.                 val = I915_READ(CUR_BUF_CFG(pipe));
  2872.                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
  2873.                                            val);
  2874.  
  2875.                 intel_display_power_put(dev_priv, power_domain);
  2876.         }
  2877. }
  2878.  
  2879. static unsigned int
  2880. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  2881.                              const struct drm_plane_state *pstate,
  2882.                              int y)
  2883. {
  2884.         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  2885.         struct drm_framebuffer *fb = pstate->fb;
  2886.         uint32_t width = 0, height = 0;
  2887.  
  2888.         width = drm_rect_width(&intel_pstate->src) >> 16;
  2889.         height = drm_rect_height(&intel_pstate->src) >> 16;
  2890.  
  2891.         if (intel_rotation_90_or_270(pstate->rotation))
  2892.                 swap(width, height);
  2893.  
  2894.         /* for planar format */
  2895.         if (fb->pixel_format == DRM_FORMAT_NV12) {
  2896.                 if (y)  /* y-plane data rate */
  2897.                         return width * height *
  2898.                                 drm_format_plane_cpp(fb->pixel_format, 0);
  2899.                 else    /* uv-plane data rate */
  2900.                         return (width / 2) * (height / 2) *
  2901.                                 drm_format_plane_cpp(fb->pixel_format, 1);
  2902.         }
  2903.  
  2904.         /* for packed formats */
  2905.         return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
  2906. }
  2907.  
  2908. /*
  2909.  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2910.  * a 8192x4096@32bpp framebuffer:
  2911.  *   3 * 4096 * 8192  * 4 < 2^32
  2912.  */
  2913. static unsigned int
  2914. skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
  2915. {
  2916.         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2917.         struct drm_device *dev = intel_crtc->base.dev;
  2918.         const struct intel_plane *intel_plane;
  2919.         unsigned int total_data_rate = 0;
  2920.  
  2921.         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2922.                 const struct drm_plane_state *pstate = intel_plane->base.state;
  2923.  
  2924.                 if (pstate->fb == NULL)
  2925.                         continue;
  2926.  
  2927.                 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2928.                         continue;
  2929.  
  2930.                 /* packed/uv */
  2931.                 total_data_rate += skl_plane_relative_data_rate(cstate,
  2932.                                                                 pstate,
  2933.                                                                 0);
  2934.  
  2935.                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
  2936.                         /* y-plane */
  2937.                         total_data_rate += skl_plane_relative_data_rate(cstate,
  2938.                                                                         pstate,
  2939.                                                                         1);
  2940.         }
  2941.  
  2942.         return total_data_rate;
  2943. }
  2944.  
  2945. static void
  2946. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  2947.                       struct skl_ddb_allocation *ddb /* out */)
  2948. {
  2949.         struct drm_crtc *crtc = cstate->base.crtc;
  2950.         struct drm_device *dev = crtc->dev;
  2951.         struct drm_i915_private *dev_priv = to_i915(dev);
  2952.         struct intel_wm_config *config = &dev_priv->wm.config;
  2953.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2954.         struct intel_plane *intel_plane;
  2955.         enum pipe pipe = intel_crtc->pipe;
  2956.         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2957.         uint16_t alloc_size, start, cursor_blocks;
  2958.         uint16_t minimum[I915_MAX_PLANES];
  2959.         uint16_t y_minimum[I915_MAX_PLANES];
  2960.         unsigned int total_data_rate;
  2961.  
  2962.         skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
  2963.         alloc_size = skl_ddb_entry_size(alloc);
  2964.         if (alloc_size == 0) {
  2965.                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2966.                 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
  2967.                        sizeof(ddb->plane[pipe][PLANE_CURSOR]));
  2968.                 return;
  2969.         }
  2970.  
  2971.         cursor_blocks = skl_cursor_allocation(config);
  2972.         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
  2973.         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  2974.  
  2975.         alloc_size -= cursor_blocks;
  2976.         alloc->end -= cursor_blocks;
  2977.  
  2978.         /* 1. Allocate the mininum required blocks for each active plane */
  2979.         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2980.                 struct drm_plane *plane = &intel_plane->base;
  2981.                 struct drm_framebuffer *fb = plane->state->fb;
  2982.                 int id = skl_wm_plane_id(intel_plane);
  2983.  
  2984.                 if (!to_intel_plane_state(plane->state)->visible)
  2985.                         continue;
  2986.  
  2987.                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2988.                         continue;
  2989.  
  2990.                 minimum[id] = 8;
  2991.                 alloc_size -= minimum[id];
  2992.                 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
  2993.                 alloc_size -= y_minimum[id];
  2994.         }
  2995.  
  2996.         /*
  2997.          * 2. Distribute the remaining space in proportion to the amount of
  2998.          * data each plane needs to fetch from memory.
  2999.          *
  3000.          * FIXME: we may not allocate every single block here.
  3001.          */
  3002.         total_data_rate = skl_get_total_relative_data_rate(cstate);
  3003.  
  3004.         start = alloc->start;
  3005.         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  3006.                 struct drm_plane *plane = &intel_plane->base;
  3007.                 struct drm_plane_state *pstate = intel_plane->base.state;
  3008.                 unsigned int data_rate, y_data_rate;
  3009.                 uint16_t plane_blocks, y_plane_blocks = 0;
  3010.                 int id = skl_wm_plane_id(intel_plane);
  3011.  
  3012.                 if (!to_intel_plane_state(pstate)->visible)
  3013.                         continue;
  3014.                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
  3015.                         continue;
  3016.  
  3017.                 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
  3018.  
  3019.                 /*
  3020.                  * allocation for (packed formats) or (uv-plane part of planar format):
  3021.                  * promote the expression to 64 bits to avoid overflowing, the
  3022.                  * result is < available as data_rate / total_data_rate < 1
  3023.                  */
  3024.                 plane_blocks = minimum[id];
  3025.                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  3026.                                         total_data_rate);
  3027.  
  3028.                 ddb->plane[pipe][id].start = start;
  3029.                 ddb->plane[pipe][id].end = start + plane_blocks;
  3030.  
  3031.                 start += plane_blocks;
  3032.  
  3033.                 /*
  3034.                  * allocation for y_plane part of planar format:
  3035.                  */
  3036.                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
  3037.                         y_data_rate = skl_plane_relative_data_rate(cstate,
  3038.                                                                    pstate,
  3039.                                                                    1);
  3040.                         y_plane_blocks = y_minimum[id];
  3041.                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  3042.                                                 total_data_rate);
  3043.  
  3044.                         ddb->y_plane[pipe][id].start = start;
  3045.                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
  3046.  
  3047.                         start += y_plane_blocks;
  3048.                 }
  3049.  
  3050.         }
  3051.  
  3052. }
  3053.  
  3054. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  3055. {
  3056.         /* TODO: Take into account the scalers once we support them */
  3057.         return config->base.adjusted_mode.crtc_clock;
  3058. }
  3059.  
  3060. /*
  3061.  * The max latency should be 257 (max the punit can code is 255 and we add 2us
  3062.  * for the read latency) and cpp should always be <= 8, so that
  3063.  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  3064.  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  3065. */
  3066. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  3067. {
  3068.         uint32_t wm_intermediate_val, ret;
  3069.  
  3070.         if (latency == 0)
  3071.                 return UINT_MAX;
  3072.  
  3073.         wm_intermediate_val = latency * pixel_rate * cpp / 512;
  3074.         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  3075.  
  3076.         return ret;
  3077. }
  3078.  
  3079. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  3080.                                uint32_t horiz_pixels, uint8_t cpp,
  3081.                                uint64_t tiling, uint32_t latency)
  3082. {
  3083.         uint32_t ret;
  3084.         uint32_t plane_bytes_per_line, plane_blocks_per_line;
  3085.         uint32_t wm_intermediate_val;
  3086.  
  3087.         if (latency == 0)
  3088.                 return UINT_MAX;
  3089.  
  3090.         plane_bytes_per_line = horiz_pixels * cpp;
  3091.  
  3092.         if (tiling == I915_FORMAT_MOD_Y_TILED ||
  3093.             tiling == I915_FORMAT_MOD_Yf_TILED) {
  3094.                 plane_bytes_per_line *= 4;
  3095.                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  3096.                 plane_blocks_per_line /= 4;
  3097.         } else {
  3098.                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  3099.         }
  3100.  
  3101.         wm_intermediate_val = latency * pixel_rate;
  3102.         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  3103.                                 plane_blocks_per_line;
  3104.  
  3105.         return ret;
  3106. }
  3107.  
  3108. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  3109.                                        const struct intel_crtc *intel_crtc)
  3110. {
  3111.         struct drm_device *dev = intel_crtc->base.dev;
  3112.         struct drm_i915_private *dev_priv = dev->dev_private;
  3113.         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  3114.  
  3115.         /*
  3116.          * If ddb allocation of pipes changed, it may require recalculation of
  3117.          * watermarks
  3118.          */
  3119.         if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
  3120.                 return true;
  3121.  
  3122.         return false;
  3123. }
  3124.  
  3125. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  3126.                                  struct intel_crtc_state *cstate,
  3127.                                  struct intel_plane *intel_plane,
  3128.                                  uint16_t ddb_allocation,
  3129.                                  int level,
  3130.                                  uint16_t *out_blocks, /* out */
  3131.                                  uint8_t *out_lines /* out */)
  3132. {
  3133.         struct drm_plane *plane = &intel_plane->base;
  3134.         struct drm_framebuffer *fb = plane->state->fb;
  3135.         struct intel_plane_state *intel_pstate =
  3136.                                         to_intel_plane_state(plane->state);
  3137.         uint32_t latency = dev_priv->wm.skl_latency[level];
  3138.         uint32_t method1, method2;
  3139.         uint32_t plane_bytes_per_line, plane_blocks_per_line;
  3140.         uint32_t res_blocks, res_lines;
  3141.         uint32_t selected_result;
  3142.         uint8_t cpp;
  3143.         uint32_t width = 0, height = 0;
  3144.  
  3145.         if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
  3146.                 return false;
  3147.  
  3148.         width = drm_rect_width(&intel_pstate->src) >> 16;
  3149.         height = drm_rect_height(&intel_pstate->src) >> 16;
  3150.  
  3151.         if (intel_rotation_90_or_270(plane->state->rotation))
  3152.                 swap(width, height);
  3153.  
  3154.         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
  3155.         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
  3156.                                  cpp, latency);
  3157.         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
  3158.                                  cstate->base.adjusted_mode.crtc_htotal,
  3159.                                  width,
  3160.                                  cpp,
  3161.                                  fb->modifier[0],
  3162.                                  latency);
  3163.  
  3164.         plane_bytes_per_line = width * cpp;
  3165.         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  3166.  
  3167.         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  3168.             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
  3169.                 uint32_t min_scanlines = 4;
  3170.                 uint32_t y_tile_minimum;
  3171.                 if (intel_rotation_90_or_270(plane->state->rotation)) {
  3172.                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
  3173.                                 drm_format_plane_cpp(fb->pixel_format, 1) :
  3174.                                 drm_format_plane_cpp(fb->pixel_format, 0);
  3175.  
  3176.                         switch (cpp) {
  3177.                         case 1:
  3178.                                 min_scanlines = 16;
  3179.                                 break;
  3180.                         case 2:
  3181.                                 min_scanlines = 8;
  3182.                                 break;
  3183.                         case 8:
  3184.                                 WARN(1, "Unsupported pixel depth for rotation");
  3185.                         }
  3186.                 }
  3187.                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
  3188.                 selected_result = max(method2, y_tile_minimum);
  3189.         } else {
  3190.                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
  3191.                         selected_result = min(method1, method2);
  3192.                 else
  3193.                         selected_result = method1;
  3194.         }
  3195.  
  3196.         res_blocks = selected_result + 1;
  3197.         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  3198.  
  3199.         if (level >= 1 && level <= 7) {
  3200.                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  3201.                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
  3202.                         res_lines += 4;
  3203.                 else
  3204.                         res_blocks++;
  3205.         }
  3206.  
  3207.         if (res_blocks >= ddb_allocation || res_lines > 31)
  3208.                 return false;
  3209.  
  3210.         *out_blocks = res_blocks;
  3211.         *out_lines = res_lines;
  3212.  
  3213.         return true;
  3214. }
  3215.  
  3216. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  3217.                                  struct skl_ddb_allocation *ddb,
  3218.                                  struct intel_crtc_state *cstate,
  3219.                                  int level,
  3220.                                  struct skl_wm_level *result)
  3221. {
  3222.         struct drm_device *dev = dev_priv->dev;
  3223.         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3224.         struct intel_plane *intel_plane;
  3225.         uint16_t ddb_blocks;
  3226.         enum pipe pipe = intel_crtc->pipe;
  3227.  
  3228.         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  3229.                 int i = skl_wm_plane_id(intel_plane);
  3230.  
  3231.                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  3232.  
  3233.                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  3234.                                                 cstate,
  3235.                                                 intel_plane,
  3236.                                                 ddb_blocks,
  3237.                                                 level,
  3238.                                                 &result->plane_res_b[i],
  3239.                                                 &result->plane_res_l[i]);
  3240.         }
  3241. }
  3242.  
  3243. static uint32_t
  3244. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  3245. {
  3246.         if (!cstate->base.active)
  3247.                 return 0;
  3248.  
  3249.         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
  3250.                 return 0;
  3251.  
  3252.         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
  3253.                             skl_pipe_pixel_rate(cstate));
  3254. }
  3255.  
  3256. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  3257.                                       struct skl_wm_level *trans_wm /* out */)
  3258. {
  3259.         struct drm_crtc *crtc = cstate->base.crtc;
  3260.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3261.         struct intel_plane *intel_plane;
  3262.  
  3263.         if (!cstate->base.active)
  3264.                 return;
  3265.  
  3266.         /* Until we know more, just disable transition WMs */
  3267.         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
  3268.                 int i = skl_wm_plane_id(intel_plane);
  3269.  
  3270.                 trans_wm->plane_en[i] = false;
  3271.         }
  3272. }
  3273.  
  3274. static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
  3275.                                 struct skl_ddb_allocation *ddb,
  3276.                                 struct skl_pipe_wm *pipe_wm)
  3277. {
  3278.         struct drm_device *dev = cstate->base.crtc->dev;
  3279.         const struct drm_i915_private *dev_priv = dev->dev_private;
  3280.         int level, max_level = ilk_wm_max_level(dev);
  3281.  
  3282.         for (level = 0; level <= max_level; level++) {
  3283.                 skl_compute_wm_level(dev_priv, ddb, cstate,
  3284.                                      level, &pipe_wm->wm[level]);
  3285.         }
  3286.         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  3287.  
  3288.         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
  3289. }
  3290.  
  3291. static void skl_compute_wm_results(struct drm_device *dev,
  3292.                                    struct skl_pipe_wm *p_wm,
  3293.                                    struct skl_wm_values *r,
  3294.                                    struct intel_crtc *intel_crtc)
  3295. {
  3296.         int level, max_level = ilk_wm_max_level(dev);
  3297.         enum pipe pipe = intel_crtc->pipe;
  3298.         uint32_t temp;
  3299.         int i;
  3300.  
  3301.         for (level = 0; level <= max_level; level++) {
  3302.                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3303.                         temp = 0;
  3304.  
  3305.                         temp |= p_wm->wm[level].plane_res_l[i] <<
  3306.                                         PLANE_WM_LINES_SHIFT;
  3307.                         temp |= p_wm->wm[level].plane_res_b[i];
  3308.                         if (p_wm->wm[level].plane_en[i])
  3309.                                 temp |= PLANE_WM_EN;
  3310.  
  3311.                         r->plane[pipe][i][level] = temp;
  3312.                 }
  3313.  
  3314.                 temp = 0;
  3315.  
  3316.                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  3317.                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
  3318.  
  3319.                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
  3320.                         temp |= PLANE_WM_EN;
  3321.  
  3322.                 r->plane[pipe][PLANE_CURSOR][level] = temp;
  3323.  
  3324.         }
  3325.  
  3326.         /* transition WMs */
  3327.         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3328.                 temp = 0;
  3329.                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  3330.                 temp |= p_wm->trans_wm.plane_res_b[i];
  3331.                 if (p_wm->trans_wm.plane_en[i])
  3332.                         temp |= PLANE_WM_EN;
  3333.  
  3334.                 r->plane_trans[pipe][i] = temp;
  3335.         }
  3336.  
  3337.         temp = 0;
  3338.         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  3339.         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
  3340.         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
  3341.                 temp |= PLANE_WM_EN;
  3342.  
  3343.         r->plane_trans[pipe][PLANE_CURSOR] = temp;
  3344.  
  3345.         r->wm_linetime[pipe] = p_wm->linetime;
  3346. }
  3347.  
  3348. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  3349.                                 i915_reg_t reg,
  3350.                                 const struct skl_ddb_entry *entry)
  3351. {
  3352.         if (entry->end)
  3353.                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  3354.         else
  3355.                 I915_WRITE(reg, 0);
  3356. }
  3357.  
  3358. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  3359.                                 const struct skl_wm_values *new)
  3360. {
  3361.         struct drm_device *dev = dev_priv->dev;
  3362.         struct intel_crtc *crtc;
  3363.  
  3364.         for_each_intel_crtc(dev, crtc) {
  3365.                 int i, level, max_level = ilk_wm_max_level(dev);
  3366.                 enum pipe pipe = crtc->pipe;
  3367.  
  3368.                 if (!new->dirty[pipe])
  3369.                         continue;
  3370.  
  3371.                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  3372.  
  3373.                 for (level = 0; level <= max_level; level++) {
  3374.                         for (i = 0; i < intel_num_planes(crtc); i++)
  3375.                                 I915_WRITE(PLANE_WM(pipe, i, level),
  3376.                                            new->plane[pipe][i][level]);
  3377.                         I915_WRITE(CUR_WM(pipe, level),
  3378.                                    new->plane[pipe][PLANE_CURSOR][level]);
  3379.                 }
  3380.                 for (i = 0; i < intel_num_planes(crtc); i++)
  3381.                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
  3382.                                    new->plane_trans[pipe][i]);
  3383.                 I915_WRITE(CUR_WM_TRANS(pipe),
  3384.                            new->plane_trans[pipe][PLANE_CURSOR]);
  3385.  
  3386.                 for (i = 0; i < intel_num_planes(crtc); i++) {
  3387.                         skl_ddb_entry_write(dev_priv,
  3388.                                             PLANE_BUF_CFG(pipe, i),
  3389.                                             &new->ddb.plane[pipe][i]);
  3390.                         skl_ddb_entry_write(dev_priv,
  3391.                                             PLANE_NV12_BUF_CFG(pipe, i),
  3392.                                             &new->ddb.y_plane[pipe][i]);
  3393.                 }
  3394.  
  3395.                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  3396.                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
  3397.         }
  3398. }
  3399.  
  3400. /*
  3401.  * When setting up a new DDB allocation arrangement, we need to correctly
  3402.  * sequence the times at which the new allocations for the pipes are taken into
  3403.  * account or we'll have pipes fetching from space previously allocated to
  3404.  * another pipe.
  3405.  *
  3406.  * Roughly the sequence looks like:
  3407.  *  1. re-allocate the pipe(s) with the allocation being reduced and not
  3408.  *     overlapping with a previous light-up pipe (another way to put it is:
  3409.  *     pipes with their new allocation strickly included into their old ones).
  3410.  *  2. re-allocate the other pipes that get their allocation reduced
  3411.  *  3. allocate the pipes having their allocation increased
  3412.  *
  3413.  * Steps 1. and 2. are here to take care of the following case:
  3414.  * - Initially DDB looks like this:
  3415.  *     |   B    |   C    |
  3416.  * - enable pipe A.
  3417.  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  3418.  *   allocation
  3419.  *     |  A  |  B  |  C  |
  3420.  *
  3421.  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  3422.  */
  3423.  
  3424. static void
  3425. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  3426. {
  3427.         int plane;
  3428.  
  3429.         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  3430.  
  3431.         for_each_plane(dev_priv, pipe, plane) {
  3432.                 I915_WRITE(PLANE_SURF(pipe, plane),
  3433.                            I915_READ(PLANE_SURF(pipe, plane)));
  3434.         }
  3435.         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3436. }
  3437.  
  3438. static bool
  3439. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  3440.                             const struct skl_ddb_allocation *new,
  3441.                             enum pipe pipe)
  3442. {
  3443.         uint16_t old_size, new_size;
  3444.  
  3445.         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  3446.         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  3447.  
  3448.         return old_size != new_size &&
  3449.                new->pipe[pipe].start >= old->pipe[pipe].start &&
  3450.                new->pipe[pipe].end <= old->pipe[pipe].end;
  3451. }
  3452.  
  3453. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  3454.                                 struct skl_wm_values *new_values)
  3455. {
  3456.         struct drm_device *dev = dev_priv->dev;
  3457.         struct skl_ddb_allocation *cur_ddb, *new_ddb;
  3458.         bool reallocated[I915_MAX_PIPES] = {};
  3459.         struct intel_crtc *crtc;
  3460.         enum pipe pipe;
  3461.  
  3462.         new_ddb = &new_values->ddb;
  3463.         cur_ddb = &dev_priv->wm.skl_hw.ddb;
  3464.  
  3465.         /*
  3466.          * First pass: flush the pipes with the new allocation contained into
  3467.          * the old space.
  3468.          *
  3469.          * We'll wait for the vblank on those pipes to ensure we can safely
  3470.          * re-allocate the freed space without this pipe fetching from it.
  3471.          */
  3472.         for_each_intel_crtc(dev, crtc) {
  3473.                 if (!crtc->active)
  3474.                         continue;
  3475.  
  3476.                 pipe = crtc->pipe;
  3477.  
  3478.                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  3479.                         continue;
  3480.  
  3481.                 skl_wm_flush_pipe(dev_priv, pipe, 1);
  3482.                 intel_wait_for_vblank(dev, pipe);
  3483.  
  3484.                 reallocated[pipe] = true;
  3485.         }
  3486.  
  3487.  
  3488.         /*
  3489.          * Second pass: flush the pipes that are having their allocation
  3490.          * reduced, but overlapping with a previous allocation.
  3491.          *
  3492.          * Here as well we need to wait for the vblank to make sure the freed
  3493.          * space is not used anymore.
  3494.          */
  3495.         for_each_intel_crtc(dev, crtc) {
  3496.                 if (!crtc->active)
  3497.                         continue;
  3498.  
  3499.                 pipe = crtc->pipe;
  3500.  
  3501.                 if (reallocated[pipe])
  3502.                         continue;
  3503.  
  3504.                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  3505.                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  3506.                         skl_wm_flush_pipe(dev_priv, pipe, 2);
  3507.                         intel_wait_for_vblank(dev, pipe);
  3508.                         reallocated[pipe] = true;
  3509.                 }
  3510.         }
  3511.  
  3512.         /*
  3513.          * Third pass: flush the pipes that got more space allocated.
  3514.          *
  3515.          * We don't need to actively wait for the update here, next vblank
  3516.          * will just get more DDB space with the correct WM values.
  3517.          */
  3518.         for_each_intel_crtc(dev, crtc) {
  3519.                 if (!crtc->active)
  3520.                         continue;
  3521.  
  3522.                 pipe = crtc->pipe;
  3523.  
  3524.                 /*
  3525.                  * At this point, only the pipes more space than before are
  3526.                  * left to re-allocate.
  3527.                  */
  3528.                 if (reallocated[pipe])
  3529.                         continue;
  3530.  
  3531.                 skl_wm_flush_pipe(dev_priv, pipe, 3);
  3532.         }
  3533. }
  3534.  
  3535. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  3536.                                struct skl_ddb_allocation *ddb, /* out */
  3537.                                struct skl_pipe_wm *pipe_wm /* out */)
  3538. {
  3539.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3540.         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3541.  
  3542.         skl_allocate_pipe_ddb(cstate, ddb);
  3543.         skl_compute_pipe_wm(cstate, ddb, pipe_wm);
  3544.  
  3545.         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
  3546.                 return false;
  3547.  
  3548.         intel_crtc->wm.active.skl = *pipe_wm;
  3549.  
  3550.         return true;
  3551. }
  3552.  
  3553. static void skl_update_other_pipe_wm(struct drm_device *dev,
  3554.                                      struct drm_crtc *crtc,
  3555.                                      struct skl_wm_values *r)
  3556. {
  3557.         struct intel_crtc *intel_crtc;
  3558.         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  3559.  
  3560.         /*
  3561.          * If the WM update hasn't changed the allocation for this_crtc (the
  3562.          * crtc we are currently computing the new WM values for), other
  3563.          * enabled crtcs will keep the same allocation and we don't need to
  3564.          * recompute anything for them.
  3565.          */
  3566.         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  3567.                 return;
  3568.  
  3569.         /*
  3570.          * Otherwise, because of this_crtc being freshly enabled/disabled, the
  3571.          * other active pipes need new DDB allocation and WM values.
  3572.          */
  3573.         for_each_intel_crtc(dev, intel_crtc) {
  3574.                 struct skl_pipe_wm pipe_wm = {};
  3575.                 bool wm_changed;
  3576.  
  3577.                 if (this_crtc->pipe == intel_crtc->pipe)
  3578.                         continue;
  3579.  
  3580.                 if (!intel_crtc->active)
  3581.                         continue;
  3582.  
  3583.                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  3584.                                                 &r->ddb, &pipe_wm);
  3585.  
  3586.                 /*
  3587.                  * If we end up re-computing the other pipe WM values, it's
  3588.                  * because it was really needed, so we expect the WM values to
  3589.                  * be different.
  3590.                  */
  3591.                 WARN_ON(!wm_changed);
  3592.  
  3593.                 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
  3594.                 r->dirty[intel_crtc->pipe] = true;
  3595.         }
  3596. }
  3597.  
  3598. static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
  3599. {
  3600.         watermarks->wm_linetime[pipe] = 0;
  3601.         memset(watermarks->plane[pipe], 0,
  3602.                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
  3603.         memset(watermarks->plane_trans[pipe],
  3604.                0, sizeof(uint32_t) * I915_MAX_PLANES);
  3605.         watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
  3606.  
  3607.         /* Clear ddb entries for pipe */
  3608.         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
  3609.         memset(&watermarks->ddb.plane[pipe], 0,
  3610.                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3611.         memset(&watermarks->ddb.y_plane[pipe], 0,
  3612.                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3613.         memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
  3614.                sizeof(struct skl_ddb_entry));
  3615.  
  3616. }
  3617.  
  3618. static void skl_update_wm(struct drm_crtc *crtc)
  3619. {
  3620.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3621.         struct drm_device *dev = crtc->dev;
  3622.         struct drm_i915_private *dev_priv = dev->dev_private;
  3623.         struct skl_wm_values *results = &dev_priv->wm.skl_results;
  3624.         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3625.         struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
  3626.  
  3627.  
  3628.         /* Clear all dirty flags */
  3629.         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
  3630.  
  3631.         skl_clear_wm(results, intel_crtc->pipe);
  3632.  
  3633.         if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
  3634.                 return;
  3635.  
  3636.         skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
  3637.         results->dirty[intel_crtc->pipe] = true;
  3638.  
  3639.         skl_update_other_pipe_wm(dev, crtc, results);
  3640.         skl_write_wm_values(dev_priv, results);
  3641.         skl_flush_wm_values(dev_priv, results);
  3642.  
  3643.         /* store the new configuration */
  3644.         dev_priv->wm.skl_hw = *results;
  3645. }
  3646.  
  3647. static void ilk_compute_wm_config(struct drm_device *dev,
  3648.                                   struct intel_wm_config *config)
  3649. {
  3650.         struct intel_crtc *crtc;
  3651.  
  3652.         /* Compute the currently _active_ config */
  3653.         for_each_intel_crtc(dev, crtc) {
  3654.                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  3655.  
  3656.                 if (!wm->pipe_enabled)
  3657.                         continue;
  3658.  
  3659.                 config->sprites_enabled |= wm->sprites_enabled;
  3660.                 config->sprites_scaled |= wm->sprites_scaled;
  3661.                 config->num_pipes_active++;
  3662.         }
  3663. }
  3664.  
  3665. static void ilk_program_watermarks(struct intel_crtc_state *cstate)
  3666. {
  3667.         struct drm_crtc *crtc = cstate->base.crtc;
  3668.         struct drm_device *dev = crtc->dev;
  3669.         struct drm_i915_private *dev_priv = to_i915(dev);
  3670.         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  3671.         struct ilk_wm_maximums max;
  3672.         struct intel_wm_config config = {};
  3673.         struct ilk_wm_values results = {};
  3674.         enum intel_ddb_partitioning partitioning;
  3675.  
  3676.         ilk_compute_wm_config(dev, &config);
  3677.  
  3678.         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  3679.         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  3680.  
  3681.         /* 5/6 split only in single pipe config on IVB+ */
  3682.         if (INTEL_INFO(dev)->gen >= 7 &&
  3683.             config.num_pipes_active == 1 && config.sprites_enabled) {
  3684.                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  3685.                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  3686.  
  3687.                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  3688.         } else {
  3689.                 best_lp_wm = &lp_wm_1_2;
  3690.         }
  3691.  
  3692.         partitioning = (best_lp_wm == &lp_wm_1_2) ?
  3693.                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  3694.  
  3695.         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  3696.  
  3697.         ilk_write_wm_values(dev_priv, &results);
  3698. }
  3699.  
  3700. static void ilk_update_wm(struct drm_crtc *crtc)
  3701. {
  3702.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3703.         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3704.  
  3705.         WARN_ON(cstate->base.active != intel_crtc->active);
  3706.  
  3707.         /*
  3708.          * IVB workaround: must disable low power watermarks for at least
  3709.          * one frame before enabling scaling.  LP watermarks can be re-enabled
  3710.          * when scaling is disabled.
  3711.          *
  3712.          * WaCxSRDisabledForSpriteScaling:ivb
  3713.          */
  3714.         if (cstate->disable_lp_wm) {
  3715.                 ilk_disable_lp_wm(crtc->dev);
  3716.                 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
  3717.         }
  3718.  
  3719.         intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
  3720.  
  3721.         ilk_program_watermarks(cstate);
  3722. }
  3723.  
  3724. static void skl_pipe_wm_active_state(uint32_t val,
  3725.                                      struct skl_pipe_wm *active,
  3726.                                      bool is_transwm,
  3727.                                      bool is_cursor,
  3728.                                      int i,
  3729.                                      int level)
  3730. {
  3731.         bool is_enabled = (val & PLANE_WM_EN) != 0;
  3732.  
  3733.         if (!is_transwm) {
  3734.                 if (!is_cursor) {
  3735.                         active->wm[level].plane_en[i] = is_enabled;
  3736.                         active->wm[level].plane_res_b[i] =
  3737.                                         val & PLANE_WM_BLOCKS_MASK;
  3738.                         active->wm[level].plane_res_l[i] =
  3739.                                         (val >> PLANE_WM_LINES_SHIFT) &
  3740.                                                 PLANE_WM_LINES_MASK;
  3741.                 } else {
  3742.                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
  3743.                         active->wm[level].plane_res_b[PLANE_CURSOR] =
  3744.                                         val & PLANE_WM_BLOCKS_MASK;
  3745.                         active->wm[level].plane_res_l[PLANE_CURSOR] =
  3746.                                         (val >> PLANE_WM_LINES_SHIFT) &
  3747.                                                 PLANE_WM_LINES_MASK;
  3748.                 }
  3749.         } else {
  3750.                 if (!is_cursor) {
  3751.                         active->trans_wm.plane_en[i] = is_enabled;
  3752.                         active->trans_wm.plane_res_b[i] =
  3753.                                         val & PLANE_WM_BLOCKS_MASK;
  3754.                         active->trans_wm.plane_res_l[i] =
  3755.                                         (val >> PLANE_WM_LINES_SHIFT) &
  3756.                                                 PLANE_WM_LINES_MASK;
  3757.                 } else {
  3758.                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
  3759.                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
  3760.                                         val & PLANE_WM_BLOCKS_MASK;
  3761.                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
  3762.                                         (val >> PLANE_WM_LINES_SHIFT) &
  3763.                                                 PLANE_WM_LINES_MASK;
  3764.                 }
  3765.         }
  3766. }
  3767.  
  3768. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3769. {
  3770.         struct drm_device *dev = crtc->dev;
  3771.         struct drm_i915_private *dev_priv = dev->dev_private;
  3772.         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  3773.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3774.         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3775.         struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
  3776.         enum pipe pipe = intel_crtc->pipe;
  3777.         int level, i, max_level;
  3778.         uint32_t temp;
  3779.  
  3780.         max_level = ilk_wm_max_level(dev);
  3781.  
  3782.         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3783.  
  3784.         for (level = 0; level <= max_level; level++) {
  3785.                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3786.                         hw->plane[pipe][i][level] =
  3787.                                         I915_READ(PLANE_WM(pipe, i, level));
  3788.                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
  3789.         }
  3790.  
  3791.         for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3792.                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  3793.         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
  3794.  
  3795.         if (!intel_crtc->active)
  3796.                 return;
  3797.  
  3798.         hw->dirty[pipe] = true;
  3799.  
  3800.         active->linetime = hw->wm_linetime[pipe];
  3801.  
  3802.         for (level = 0; level <= max_level; level++) {
  3803.                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3804.                         temp = hw->plane[pipe][i][level];
  3805.                         skl_pipe_wm_active_state(temp, active, false,
  3806.                                                 false, i, level);
  3807.                 }
  3808.                 temp = hw->plane[pipe][PLANE_CURSOR][level];
  3809.                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
  3810.         }
  3811.  
  3812.         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3813.                 temp = hw->plane_trans[pipe][i];
  3814.                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  3815.         }
  3816.  
  3817.         temp = hw->plane_trans[pipe][PLANE_CURSOR];
  3818.         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  3819.  
  3820.         intel_crtc->wm.active.skl = *active;
  3821. }
  3822.  
  3823. void skl_wm_get_hw_state(struct drm_device *dev)
  3824. {
  3825.         struct drm_i915_private *dev_priv = dev->dev_private;
  3826.         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  3827.         struct drm_crtc *crtc;
  3828.  
  3829.         skl_ddb_get_hw_state(dev_priv, ddb);
  3830.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  3831.                 skl_pipe_wm_get_hw_state(crtc);
  3832. }
  3833.  
  3834. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3835. {
  3836.         struct drm_device *dev = crtc->dev;
  3837.         struct drm_i915_private *dev_priv = dev->dev_private;
  3838.         struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3839.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3840.         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3841.         struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
  3842.         enum pipe pipe = intel_crtc->pipe;
  3843.         static const i915_reg_t wm0_pipe_reg[] = {
  3844.                 [PIPE_A] = WM0_PIPEA_ILK,
  3845.                 [PIPE_B] = WM0_PIPEB_ILK,
  3846.                 [PIPE_C] = WM0_PIPEC_IVB,
  3847.         };
  3848.  
  3849.         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3850.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3851.                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3852.  
  3853.         memset(active, 0, sizeof(*active));
  3854.  
  3855.         active->pipe_enabled = intel_crtc->active;
  3856.  
  3857.         if (active->pipe_enabled) {
  3858.                 u32 tmp = hw->wm_pipe[pipe];
  3859.  
  3860.                 /*
  3861.                  * For active pipes LP0 watermark is marked as
  3862.                  * enabled, and LP1+ watermaks as disabled since
  3863.                  * we can't really reverse compute them in case
  3864.                  * multiple pipes are active.
  3865.                  */
  3866.                 active->wm[0].enable = true;
  3867.                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3868.                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3869.                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3870.                 active->linetime = hw->wm_linetime[pipe];
  3871.         } else {
  3872.                 int level, max_level = ilk_wm_max_level(dev);
  3873.  
  3874.                 /*
  3875.                  * For inactive pipes, all watermark levels
  3876.                  * should be marked as enabled but zeroed,
  3877.                  * which is what we'd compute them to.
  3878.                  */
  3879.                 for (level = 0; level <= max_level; level++)
  3880.                         active->wm[level].enable = true;
  3881.         }
  3882.  
  3883.         intel_crtc->wm.active.ilk = *active;
  3884. }
  3885.  
  3886. #define _FW_WM(value, plane) \
  3887.         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  3888. #define _FW_WM_VLV(value, plane) \
  3889.         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  3890.  
  3891. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  3892.                                struct vlv_wm_values *wm)
  3893. {
  3894.         enum pipe pipe;
  3895.         uint32_t tmp;
  3896.  
  3897.         for_each_pipe(dev_priv, pipe) {
  3898.                 tmp = I915_READ(VLV_DDL(pipe));
  3899.  
  3900.                 wm->ddl[pipe].primary =
  3901.                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3902.                 wm->ddl[pipe].cursor =
  3903.                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3904.                 wm->ddl[pipe].sprite[0] =
  3905.                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3906.                 wm->ddl[pipe].sprite[1] =
  3907.                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3908.         }
  3909.  
  3910.         tmp = I915_READ(DSPFW1);
  3911.         wm->sr.plane = _FW_WM(tmp, SR);
  3912.         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
  3913.         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
  3914.         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
  3915.  
  3916.         tmp = I915_READ(DSPFW2);
  3917.         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
  3918.         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
  3919.         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
  3920.  
  3921.         tmp = I915_READ(DSPFW3);
  3922.         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  3923.  
  3924.         if (IS_CHERRYVIEW(dev_priv)) {
  3925.                 tmp = I915_READ(DSPFW7_CHV);
  3926.                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3927.                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3928.  
  3929.                 tmp = I915_READ(DSPFW8_CHV);
  3930.                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
  3931.                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
  3932.  
  3933.                 tmp = I915_READ(DSPFW9_CHV);
  3934.                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
  3935.                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
  3936.  
  3937.                 tmp = I915_READ(DSPHOWM);
  3938.                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3939.                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  3940.                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  3941.                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
  3942.                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3943.                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3944.                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3945.                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3946.                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3947.                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3948.         } else {
  3949.                 tmp = I915_READ(DSPFW7);
  3950.                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3951.                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3952.  
  3953.                 tmp = I915_READ(DSPHOWM);
  3954.                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3955.                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3956.                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3957.                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3958.                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3959.                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3960.                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3961.         }
  3962. }
  3963.  
  3964. #undef _FW_WM
  3965. #undef _FW_WM_VLV
  3966.  
  3967. void vlv_wm_get_hw_state(struct drm_device *dev)
  3968. {
  3969.         struct drm_i915_private *dev_priv = to_i915(dev);
  3970.         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  3971.         struct intel_plane *plane;
  3972.         enum pipe pipe;
  3973.         u32 val;
  3974.  
  3975.         vlv_read_wm_values(dev_priv, wm);
  3976.  
  3977.         for_each_intel_plane(dev, plane) {
  3978.                 switch (plane->base.type) {
  3979.                         int sprite;
  3980.                 case DRM_PLANE_TYPE_CURSOR:
  3981.                         plane->wm.fifo_size = 63;
  3982.                         break;
  3983.                 case DRM_PLANE_TYPE_PRIMARY:
  3984.                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
  3985.                         break;
  3986.                 case DRM_PLANE_TYPE_OVERLAY:
  3987.                         sprite = plane->plane;
  3988.                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
  3989.                         break;
  3990.                 }
  3991.         }
  3992.  
  3993.         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  3994.         wm->level = VLV_WM_LEVEL_PM2;
  3995.  
  3996.         if (IS_CHERRYVIEW(dev_priv)) {
  3997.                 mutex_lock(&dev_priv->rps.hw_lock);
  3998.  
  3999.                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  4000.                 if (val & DSP_MAXFIFO_PM5_ENABLE)
  4001.                         wm->level = VLV_WM_LEVEL_PM5;
  4002.  
  4003.                 /*
  4004.                  * If DDR DVFS is disabled in the BIOS, Punit
  4005.                  * will never ack the request. So if that happens
  4006.                  * assume we don't have to enable/disable DDR DVFS
  4007.                  * dynamically. To test that just set the REQ_ACK
  4008.                  * bit to poke the Punit, but don't change the
  4009.                  * HIGH/LOW bits so that we don't actually change
  4010.                  * the current state.
  4011.                  */
  4012.                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4013.                 val |= FORCE_DDR_FREQ_REQ_ACK;
  4014.                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  4015.  
  4016.                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  4017.                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  4018.                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  4019.                                       "assuming DDR DVFS is disabled\n");
  4020.                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  4021.                 } else {
  4022.                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4023.                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  4024.                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
  4025.                 }
  4026.  
  4027.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4028.         }
  4029.  
  4030.         for_each_pipe(dev_priv, pipe)
  4031.                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  4032.                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
  4033.                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
  4034.  
  4035.         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  4036.                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  4037. }
  4038.  
  4039. void ilk_wm_get_hw_state(struct drm_device *dev)
  4040. {
  4041.         struct drm_i915_private *dev_priv = dev->dev_private;
  4042.         struct ilk_wm_values *hw = &dev_priv->wm.hw;
  4043.         struct drm_crtc *crtc;
  4044.  
  4045.         for_each_crtc(dev, crtc)
  4046.                 ilk_pipe_wm_get_hw_state(crtc);
  4047.  
  4048.         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  4049.         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  4050.         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  4051.  
  4052.         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  4053.         if (INTEL_INFO(dev)->gen >= 7) {
  4054.                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  4055.                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  4056.         }
  4057.  
  4058.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  4059.                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  4060.                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4061.         else if (IS_IVYBRIDGE(dev))
  4062.                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  4063.                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4064.  
  4065.         hw->enable_fbc_wm =
  4066.                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  4067. }
  4068.  
  4069. /**
  4070.  * intel_update_watermarks - update FIFO watermark values based on current modes
  4071.  *
  4072.  * Calculate watermark values for the various WM regs based on current mode
  4073.  * and plane configuration.
  4074.  *
  4075.  * There are several cases to deal with here:
  4076.  *   - normal (i.e. non-self-refresh)
  4077.  *   - self-refresh (SR) mode
  4078.  *   - lines are large relative to FIFO size (buffer can hold up to 2)
  4079.  *   - lines are small relative to FIFO size (buffer can hold more than 2
  4080.  *     lines), so need to account for TLB latency
  4081.  *
  4082.  *   The normal calculation is:
  4083.  *     watermark = dotclock * bytes per pixel * latency
  4084.  *   where latency is platform & configuration dependent (we assume pessimal
  4085.  *   values here).
  4086.  *
  4087.  *   The SR calculation is:
  4088.  *     watermark = (trunc(latency/line time)+1) * surface width *
  4089.  *       bytes per pixel
  4090.  *   where
  4091.  *     line time = htotal / dotclock
  4092.  *     surface width = hdisplay for normal plane and 64 for cursor
  4093.  *   and latency is assumed to be high, as above.
  4094.  *
  4095.  * The final value programmed to the register should always be rounded up,
  4096.  * and include an extra 2 entries to account for clock crossings.
  4097.  *
  4098.  * We don't use the sprite, so we can ignore that.  And on Crestline we have
  4099.  * to set the non-SR watermarks to 8.
  4100.  */
  4101. void intel_update_watermarks(struct drm_crtc *crtc)
  4102. {
  4103.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4104.  
  4105.         if (dev_priv->display.update_wm)
  4106.                 dev_priv->display.update_wm(crtc);
  4107. }
  4108.  
  4109. /*
  4110.  * Lock protecting IPS related data structures
  4111.  */
  4112. DEFINE_SPINLOCK(mchdev_lock);
  4113.  
  4114. /* Global for IPS driver to get at the current i915 device. Protected by
  4115.  * mchdev_lock. */
  4116. static struct drm_i915_private *i915_mch_dev;
  4117.  
  4118. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  4119. {
  4120.         struct drm_i915_private *dev_priv = dev->dev_private;
  4121.         u16 rgvswctl;
  4122.  
  4123.         assert_spin_locked(&mchdev_lock);
  4124.  
  4125.         rgvswctl = I915_READ16(MEMSWCTL);
  4126.         if (rgvswctl & MEMCTL_CMD_STS) {
  4127.                 DRM_DEBUG("gpu busy, RCS change rejected\n");
  4128.                 return false; /* still busy with another command */
  4129.         }
  4130.  
  4131.         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4132.                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4133.         I915_WRITE16(MEMSWCTL, rgvswctl);
  4134.         POSTING_READ16(MEMSWCTL);
  4135.  
  4136.         rgvswctl |= MEMCTL_CMD_STS;
  4137.         I915_WRITE16(MEMSWCTL, rgvswctl);
  4138.  
  4139.         return true;
  4140. }
  4141.  
  4142. static void ironlake_enable_drps(struct drm_device *dev)
  4143. {
  4144.         struct drm_i915_private *dev_priv = dev->dev_private;
  4145.         u32 rgvmodectl;
  4146.         u8 fmax, fmin, fstart, vstart;
  4147.  
  4148.         spin_lock_irq(&mchdev_lock);
  4149.  
  4150.         rgvmodectl = I915_READ(MEMMODECTL);
  4151.  
  4152.         /* Enable temp reporting */
  4153.         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  4154.         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  4155.  
  4156.         /* 100ms RC evaluation intervals */
  4157.         I915_WRITE(RCUPEI, 100000);
  4158.         I915_WRITE(RCDNEI, 100000);
  4159.  
  4160.         /* Set max/min thresholds to 90ms and 80ms respectively */
  4161.         I915_WRITE(RCBMAXAVG, 90000);
  4162.         I915_WRITE(RCBMINAVG, 80000);
  4163.  
  4164.         I915_WRITE(MEMIHYST, 1);
  4165.  
  4166.         /* Set up min, max, and cur for interrupt handling */
  4167.         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4168.         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4169.         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4170.                 MEMMODE_FSTART_SHIFT;
  4171.  
  4172.         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  4173.                 PXVFREQ_PX_SHIFT;
  4174.  
  4175.         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  4176.         dev_priv->ips.fstart = fstart;
  4177.  
  4178.         dev_priv->ips.max_delay = fstart;
  4179.         dev_priv->ips.min_delay = fmin;
  4180.         dev_priv->ips.cur_delay = fstart;
  4181.  
  4182.         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  4183.                          fmax, fmin, fstart);
  4184.  
  4185.         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4186.  
  4187.         /*
  4188.          * Interrupts will be enabled in ironlake_irq_postinstall
  4189.          */
  4190.  
  4191.         I915_WRITE(VIDSTART, vstart);
  4192.         POSTING_READ(VIDSTART);
  4193.  
  4194.         rgvmodectl |= MEMMODE_SWMODE_EN;
  4195.         I915_WRITE(MEMMODECTL, rgvmodectl);
  4196.  
  4197.         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  4198.                 DRM_ERROR("stuck trying to change perf mode\n");
  4199.         mdelay(1);
  4200.  
  4201.         ironlake_set_drps(dev, fstart);
  4202.  
  4203.         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  4204.                 I915_READ(DDREC) + I915_READ(CSIEC);
  4205.         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  4206.         dev_priv->ips.last_count2 = I915_READ(GFXEC);
  4207.         dev_priv->ips.last_time2 = ktime_get_raw_ns();
  4208.  
  4209.         spin_unlock_irq(&mchdev_lock);
  4210. }
  4211.  
  4212. static void ironlake_disable_drps(struct drm_device *dev)
  4213. {
  4214.         struct drm_i915_private *dev_priv = dev->dev_private;
  4215.         u16 rgvswctl;
  4216.  
  4217.         spin_lock_irq(&mchdev_lock);
  4218.  
  4219.         rgvswctl = I915_READ16(MEMSWCTL);
  4220.  
  4221.         /* Ack interrupts, disable EFC interrupt */
  4222.         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4223.         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4224.         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4225.         I915_WRITE(DEIIR, DE_PCU_EVENT);
  4226.         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4227.  
  4228.         /* Go back to the starting frequency */
  4229.         ironlake_set_drps(dev, dev_priv->ips.fstart);
  4230.         mdelay(1);
  4231.         rgvswctl |= MEMCTL_CMD_STS;
  4232.         I915_WRITE(MEMSWCTL, rgvswctl);
  4233.         mdelay(1);
  4234.  
  4235.         spin_unlock_irq(&mchdev_lock);
  4236. }
  4237.  
  4238. /* There's a funny hw issue where the hw returns all 0 when reading from
  4239.  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  4240.  * ourselves, instead of doing a rmw cycle (which might result in us clearing
  4241.  * all limits and the gpu stuck at whatever frequency it is at atm).
  4242.  */
  4243. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  4244. {
  4245.         u32 limits;
  4246.  
  4247.         /* Only set the down limit when we've reached the lowest level to avoid
  4248.          * getting more interrupts, otherwise leave this clear. This prevents a
  4249.          * race in the hw when coming out of rc6: There's a tiny window where
  4250.          * the hw runs at the minimal clock before selecting the desired
  4251.          * frequency, if the down threshold expires in that window we will not
  4252.          * receive a down interrupt. */
  4253.         if (IS_GEN9(dev_priv->dev)) {
  4254.                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
  4255.                 if (val <= dev_priv->rps.min_freq_softlimit)
  4256.                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  4257.         } else {
  4258.                 limits = dev_priv->rps.max_freq_softlimit << 24;
  4259.                 if (val <= dev_priv->rps.min_freq_softlimit)
  4260.                         limits |= dev_priv->rps.min_freq_softlimit << 16;
  4261.         }
  4262.  
  4263.         return limits;
  4264. }
  4265.  
  4266. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  4267. {
  4268.         int new_power;
  4269.         u32 threshold_up = 0, threshold_down = 0; /* in % */
  4270.         u32 ei_up = 0, ei_down = 0;
  4271.  
  4272.         new_power = dev_priv->rps.power;
  4273.         switch (dev_priv->rps.power) {
  4274.         case LOW_POWER:
  4275.                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  4276.                         new_power = BETWEEN;
  4277.                 break;
  4278.  
  4279.         case BETWEEN:
  4280.                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  4281.                         new_power = LOW_POWER;
  4282.                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  4283.                         new_power = HIGH_POWER;
  4284.                 break;
  4285.  
  4286.         case HIGH_POWER:
  4287.                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  4288.                         new_power = BETWEEN;
  4289.                 break;
  4290.         }
  4291.         /* Max/min bins are special */
  4292.         if (val <= dev_priv->rps.min_freq_softlimit)
  4293.                 new_power = LOW_POWER;
  4294.         if (val >= dev_priv->rps.max_freq_softlimit)
  4295.                 new_power = HIGH_POWER;
  4296.         if (new_power == dev_priv->rps.power)
  4297.                 return;
  4298.  
  4299.         /* Note the units here are not exactly 1us, but 1280ns. */
  4300.         switch (new_power) {
  4301.         case LOW_POWER:
  4302.                 /* Upclock if more than 95% busy over 16ms */
  4303.                 ei_up = 16000;
  4304.                 threshold_up = 95;
  4305.  
  4306.                 /* Downclock if less than 85% busy over 32ms */
  4307.                 ei_down = 32000;
  4308.                 threshold_down = 85;
  4309.                 break;
  4310.  
  4311.         case BETWEEN:
  4312.                 /* Upclock if more than 90% busy over 13ms */
  4313.                 ei_up = 13000;
  4314.                 threshold_up = 90;
  4315.  
  4316.                 /* Downclock if less than 75% busy over 32ms */
  4317.                 ei_down = 32000;
  4318.                 threshold_down = 75;
  4319.                 break;
  4320.  
  4321.         case HIGH_POWER:
  4322.                 /* Upclock if more than 85% busy over 10ms */
  4323.                 ei_up = 10000;
  4324.                 threshold_up = 85;
  4325.  
  4326.                 /* Downclock if less than 60% busy over 32ms */
  4327.                 ei_down = 32000;
  4328.                 threshold_down = 60;
  4329.                 break;
  4330.         }
  4331.  
  4332.         I915_WRITE(GEN6_RP_UP_EI,
  4333.                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
  4334.         I915_WRITE(GEN6_RP_UP_THRESHOLD,
  4335.                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  4336.  
  4337.         I915_WRITE(GEN6_RP_DOWN_EI,
  4338.                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
  4339.         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  4340.                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  4341.  
  4342.          I915_WRITE(GEN6_RP_CONTROL,
  4343.                     GEN6_RP_MEDIA_TURBO |
  4344.                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4345.                     GEN6_RP_MEDIA_IS_GFX |
  4346.                     GEN6_RP_ENABLE |
  4347.                     GEN6_RP_UP_BUSY_AVG |
  4348.                     GEN6_RP_DOWN_IDLE_AVG);
  4349.  
  4350.         dev_priv->rps.power = new_power;
  4351.         dev_priv->rps.up_threshold = threshold_up;
  4352.         dev_priv->rps.down_threshold = threshold_down;
  4353.         dev_priv->rps.last_adj = 0;
  4354. }
  4355.  
  4356. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  4357. {
  4358.         u32 mask = 0;
  4359.  
  4360.         if (val > dev_priv->rps.min_freq_softlimit)
  4361.                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  4362.         if (val < dev_priv->rps.max_freq_softlimit)
  4363.                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  4364.  
  4365.         mask &= dev_priv->pm_rps_events;
  4366.  
  4367.         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  4368. }
  4369.  
  4370. /* gen6_set_rps is called to update the frequency request, but should also be
  4371.  * called when the range (min_delay and max_delay) is modified so that we can
  4372.  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  4373. static void gen6_set_rps(struct drm_device *dev, u8 val)
  4374. {
  4375.         struct drm_i915_private *dev_priv = dev->dev_private;
  4376.  
  4377.         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  4378.         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  4379.                 return;
  4380.  
  4381.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4382.         WARN_ON(val > dev_priv->rps.max_freq);
  4383.         WARN_ON(val < dev_priv->rps.min_freq);
  4384.  
  4385.         /* min/max delay may still have been modified so be sure to
  4386.          * write the limits value.
  4387.          */
  4388.         if (val != dev_priv->rps.cur_freq) {
  4389.                 gen6_set_rps_thresholds(dev_priv, val);
  4390.  
  4391.                 if (IS_GEN9(dev))
  4392.                         I915_WRITE(GEN6_RPNSWREQ,
  4393.                                    GEN9_FREQUENCY(val));
  4394.                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  4395.                         I915_WRITE(GEN6_RPNSWREQ,
  4396.                                    HSW_FREQUENCY(val));
  4397.                 else
  4398.                         I915_WRITE(GEN6_RPNSWREQ,
  4399.                                    GEN6_FREQUENCY(val) |
  4400.                                    GEN6_OFFSET(0) |
  4401.                                    GEN6_AGGRESSIVE_TURBO);
  4402.         }
  4403.  
  4404.         /* Make sure we continue to get interrupts
  4405.          * until we hit the minimum or maximum frequencies.
  4406.          */
  4407.         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  4408.         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  4409.  
  4410.         POSTING_READ(GEN6_RPNSWREQ);
  4411.  
  4412.         dev_priv->rps.cur_freq = val;
  4413.         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  4414. }
  4415.  
  4416. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  4417. {
  4418.         struct drm_i915_private *dev_priv = dev->dev_private;
  4419.  
  4420.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4421.         WARN_ON(val > dev_priv->rps.max_freq);
  4422.         WARN_ON(val < dev_priv->rps.min_freq);
  4423.  
  4424.         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  4425.                       "Odd GPU freq value\n"))
  4426.                 val &= ~1;
  4427.  
  4428.         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  4429.  
  4430.         if (val != dev_priv->rps.cur_freq) {
  4431.                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  4432.                 if (!IS_CHERRYVIEW(dev_priv))
  4433.                         gen6_set_rps_thresholds(dev_priv, val);
  4434.         }
  4435.  
  4436.         dev_priv->rps.cur_freq = val;
  4437.         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  4438. }
  4439.  
  4440. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  4441.  *
  4442.  * * If Gfx is Idle, then
  4443.  * 1. Forcewake Media well.
  4444.  * 2. Request idle freq.
  4445.  * 3. Release Forcewake of Media well.
  4446. */
  4447. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  4448. {
  4449.         u32 val = dev_priv->rps.idle_freq;
  4450.  
  4451.         if (dev_priv->rps.cur_freq <= val)
  4452.                 return;
  4453.  
  4454.         /* Wake up the media well, as that takes a lot less
  4455.          * power than the Render well. */
  4456.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  4457.         valleyview_set_rps(dev_priv->dev, val);
  4458.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  4459. }
  4460.  
  4461. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  4462. {
  4463.         mutex_lock(&dev_priv->rps.hw_lock);
  4464.         if (dev_priv->rps.enabled) {
  4465.                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  4466.                         gen6_rps_reset_ei(dev_priv);
  4467.                 I915_WRITE(GEN6_PMINTRMSK,
  4468.                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  4469.         }
  4470.         mutex_unlock(&dev_priv->rps.hw_lock);
  4471. }
  4472.  
  4473. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  4474. {
  4475.         struct drm_device *dev = dev_priv->dev;
  4476.  
  4477.         mutex_lock(&dev_priv->rps.hw_lock);
  4478.         if (dev_priv->rps.enabled) {
  4479.                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  4480.                         vlv_set_rps_idle(dev_priv);
  4481.                 else
  4482.                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4483.                 dev_priv->rps.last_adj = 0;
  4484.                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  4485.         }
  4486.         mutex_unlock(&dev_priv->rps.hw_lock);
  4487.  
  4488.         spin_lock(&dev_priv->rps.client_lock);
  4489.         while (!list_empty(&dev_priv->rps.clients))
  4490.                 list_del_init(dev_priv->rps.clients.next);
  4491.         spin_unlock(&dev_priv->rps.client_lock);
  4492. }
  4493.  
  4494. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  4495.                     struct intel_rps_client *rps,
  4496.                     unsigned long submitted)
  4497. {
  4498.         /* This is intentionally racy! We peek at the state here, then
  4499.          * validate inside the RPS worker.
  4500.          */
  4501.         if (!(dev_priv->mm.busy &&
  4502.               dev_priv->rps.enabled &&
  4503.               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
  4504.                 return;
  4505.  
  4506.         /* Force a RPS boost (and don't count it against the client) if
  4507.          * the GPU is severely congested.
  4508.          */
  4509.         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
  4510.                 rps = NULL;
  4511.  
  4512.         spin_lock(&dev_priv->rps.client_lock);
  4513.         if (rps == NULL || list_empty(&rps->link)) {
  4514.                 spin_lock_irq(&dev_priv->irq_lock);
  4515.                 if (dev_priv->rps.interrupts_enabled) {
  4516.                         dev_priv->rps.client_boost = true;
  4517.                         queue_work(dev_priv->wq, &dev_priv->rps.work);
  4518.                 }
  4519.                 spin_unlock_irq(&dev_priv->irq_lock);
  4520.  
  4521.                 if (rps != NULL) {
  4522.                         list_add(&rps->link, &dev_priv->rps.clients);
  4523.                         rps->boosts++;
  4524.                 } else
  4525.                         dev_priv->rps.boosts++;
  4526.         }
  4527.         spin_unlock(&dev_priv->rps.client_lock);
  4528. }
  4529.  
  4530. void intel_set_rps(struct drm_device *dev, u8 val)
  4531. {
  4532.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  4533.                 valleyview_set_rps(dev, val);
  4534.         else
  4535.                 gen6_set_rps(dev, val);
  4536. }
  4537.  
  4538. static void gen9_disable_rps(struct drm_device *dev)
  4539. {
  4540.         struct drm_i915_private *dev_priv = dev->dev_private;
  4541.  
  4542.         I915_WRITE(GEN6_RC_CONTROL, 0);
  4543.         I915_WRITE(GEN9_PG_ENABLE, 0);
  4544. }
  4545.  
  4546. static void gen6_disable_rps(struct drm_device *dev)
  4547. {
  4548.         struct drm_i915_private *dev_priv = dev->dev_private;
  4549.  
  4550.         I915_WRITE(GEN6_RC_CONTROL, 0);
  4551.         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  4552. }
  4553.  
  4554. static void cherryview_disable_rps(struct drm_device *dev)
  4555. {
  4556.         struct drm_i915_private *dev_priv = dev->dev_private;
  4557.  
  4558.         I915_WRITE(GEN6_RC_CONTROL, 0);
  4559. }
  4560.  
  4561. static void valleyview_disable_rps(struct drm_device *dev)
  4562. {
  4563.         struct drm_i915_private *dev_priv = dev->dev_private;
  4564.  
  4565.         /* we're doing forcewake before Disabling RC6,
  4566.          * This what the BIOS expects when going into suspend */
  4567.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4568.  
  4569.         I915_WRITE(GEN6_RC_CONTROL, 0);
  4570.  
  4571.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4572. }
  4573.  
  4574. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  4575. {
  4576.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  4577.                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  4578.                         mode = GEN6_RC_CTL_RC6_ENABLE;
  4579.                 else
  4580.                         mode = 0;
  4581.         }
  4582.         if (HAS_RC6p(dev))
  4583.                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  4584.                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  4585.                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  4586.                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  4587.  
  4588.         else
  4589.                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  4590.                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  4591. }
  4592.  
  4593. static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
  4594. {
  4595.         struct drm_i915_private *dev_priv = dev->dev_private;
  4596.         bool enable_rc6 = true;
  4597.         unsigned long rc6_ctx_base;
  4598.  
  4599.         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  4600.                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
  4601.                 enable_rc6 = false;
  4602.         }
  4603.  
  4604.         /*
  4605.          * The exact context size is not known for BXT, so assume a page size
  4606.          * for this check.
  4607.          */
  4608.         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  4609.         if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
  4610.               (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
  4611.                                         dev_priv->gtt.stolen_reserved_size))) {
  4612.                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
  4613.                 enable_rc6 = false;
  4614.         }
  4615.  
  4616.         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  4617.               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  4618.               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  4619.               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  4620.                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
  4621.                 enable_rc6 = false;
  4622.         }
  4623.  
  4624.         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
  4625.                                             GEN6_RC_CTL_HW_ENABLE)) &&
  4626.             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
  4627.              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
  4628.                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
  4629.                 enable_rc6 = false;
  4630.         }
  4631.  
  4632.         return enable_rc6;
  4633. }
  4634.  
  4635. int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  4636. {
  4637.         /* No RC6 before Ironlake and code is gone for ilk. */
  4638.         if (INTEL_INFO(dev)->gen < 6)
  4639.                 return 0;
  4640.  
  4641.         if (!enable_rc6)
  4642.                 return 0;
  4643.  
  4644.         if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
  4645.                 DRM_INFO("RC6 disabled by BIOS\n");
  4646.                 return 0;
  4647.         }
  4648.  
  4649.         /* Respect the kernel parameter if it is set */
  4650.         if (enable_rc6 >= 0) {
  4651.                 int mask;
  4652.  
  4653.                 if (HAS_RC6p(dev))
  4654.                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  4655.                                INTEL_RC6pp_ENABLE;
  4656.                 else
  4657.                         mask = INTEL_RC6_ENABLE;
  4658.  
  4659.                 if ((enable_rc6 & mask) != enable_rc6)
  4660.                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  4661.                                       enable_rc6 & mask, enable_rc6, mask);
  4662.  
  4663.                 return enable_rc6 & mask;
  4664.         }
  4665.  
  4666.         if (IS_IVYBRIDGE(dev))
  4667.                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  4668.  
  4669.         return INTEL_RC6_ENABLE;
  4670. }
  4671.  
  4672. int intel_enable_rc6(const struct drm_device *dev)
  4673. {
  4674.         return i915.enable_rc6;
  4675. }
  4676.  
  4677. static void gen6_init_rps_frequencies(struct drm_device *dev)
  4678. {
  4679.         struct drm_i915_private *dev_priv = dev->dev_private;
  4680.         uint32_t rp_state_cap;
  4681.         u32 ddcc_status = 0;
  4682.         int ret;
  4683.  
  4684.         /* All of these values are in units of 50MHz */
  4685.         dev_priv->rps.cur_freq          = 0;
  4686.         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  4687.         if (IS_BROXTON(dev)) {
  4688.                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  4689.                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  4690.                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
  4691.                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
  4692.         } else {
  4693.                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  4694.                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
  4695.                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
  4696.                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  4697.         }
  4698.  
  4699.         /* hw_max = RP0 until we check for overclocking */
  4700.         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
  4701.  
  4702.         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  4703.         if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
  4704.             IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4705.                 ret = sandybridge_pcode_read(dev_priv,
  4706.                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  4707.                                         &ddcc_status);
  4708.                 if (0 == ret)
  4709.                         dev_priv->rps.efficient_freq =
  4710.                                 clamp_t(u8,
  4711.                                         ((ddcc_status >> 8) & 0xff),
  4712.                                         dev_priv->rps.min_freq,
  4713.                                         dev_priv->rps.max_freq);
  4714.         }
  4715.  
  4716.         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4717.                 /* Store the frequency values in 16.66 MHZ units, which is
  4718.                    the natural hardware unit for SKL */
  4719.                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  4720.                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  4721.                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  4722.                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  4723.                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  4724.         }
  4725.  
  4726.         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4727.  
  4728.         /* Preserve min/max settings in case of re-init */
  4729.         if (dev_priv->rps.max_freq_softlimit == 0)
  4730.                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4731.  
  4732.         if (dev_priv->rps.min_freq_softlimit == 0) {
  4733.                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  4734.                         dev_priv->rps.min_freq_softlimit =
  4735.                                 max_t(int, dev_priv->rps.efficient_freq,
  4736.                                       intel_freq_opcode(dev_priv, 450));
  4737.                 else
  4738.                         dev_priv->rps.min_freq_softlimit =
  4739.                                 dev_priv->rps.min_freq;
  4740.         }
  4741. }
  4742.  
  4743. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  4744. static void gen9_enable_rps(struct drm_device *dev)
  4745. {
  4746.         struct drm_i915_private *dev_priv = dev->dev_private;
  4747.  
  4748.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4749.  
  4750.         gen6_init_rps_frequencies(dev);
  4751.  
  4752.         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  4753.         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  4754.                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4755.                 return;
  4756.         }
  4757.  
  4758.         /* Program defaults and thresholds for RPS*/
  4759.         I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4760.                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  4761.  
  4762.         /* 1 second timeout*/
  4763.         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  4764.                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
  4765.  
  4766.         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  4767.  
  4768.         /* Leaning on the below call to gen6_set_rps to program/setup the
  4769.          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  4770.          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  4771.         dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4772.         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  4773.  
  4774.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4775. }
  4776.  
  4777. static void gen9_enable_rc6(struct drm_device *dev)
  4778. {
  4779.         struct drm_i915_private *dev_priv = dev->dev_private;
  4780.         struct intel_engine_cs *ring;
  4781.         uint32_t rc6_mask = 0;
  4782.         int unused;
  4783.  
  4784.         /* 1a: Software RC state - RC0 */
  4785.         I915_WRITE(GEN6_RC_STATE, 0);
  4786.  
  4787.         /* 1b: Get forcewake during program sequence. Although the driver
  4788.          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4789.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4790.  
  4791.         /* 2a: Disable RC states. */
  4792.         I915_WRITE(GEN6_RC_CONTROL, 0);
  4793.  
  4794.         /* 2b: Program RC6 thresholds.*/
  4795.  
  4796.         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  4797.         if (IS_SKYLAKE(dev))
  4798.                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  4799.         else
  4800.                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  4801.         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4802.         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4803.         for_each_ring(ring, dev_priv, unused)
  4804.                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4805.  
  4806.         if (HAS_GUC_UCODE(dev))
  4807.                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  4808.  
  4809.         I915_WRITE(GEN6_RC_SLEEP, 0);
  4810.  
  4811.         /* 2c: Program Coarse Power Gating Policies. */
  4812.         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  4813.         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  4814.  
  4815.         /* 3a: Enable RC6 */
  4816.         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4817.                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4818.         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  4819.         /* WaRsUseTimeoutMode */
  4820.         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
  4821.             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  4822.                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
  4823.                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4824.                            GEN7_RC_CTL_TO_MODE |
  4825.                            rc6_mask);
  4826.         } else {
  4827.                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  4828.                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4829.                            GEN6_RC_CTL_EI_MODE(1) |
  4830.                            rc6_mask);
  4831.         }
  4832.  
  4833.         /*
  4834.          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  4835.          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  4836.          */
  4837.         if (NEEDS_WaRsDisableCoarsePowerGating(dev))
  4838.                 I915_WRITE(GEN9_PG_ENABLE, 0);
  4839.         else
  4840.                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  4841.                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  4842.  
  4843.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4844.  
  4845. }
  4846.  
  4847. static void gen8_enable_rps(struct drm_device *dev)
  4848. {
  4849.         struct drm_i915_private *dev_priv = dev->dev_private;
  4850.         struct intel_engine_cs *ring;
  4851.         uint32_t rc6_mask = 0;
  4852.         int unused;
  4853.  
  4854.         /* 1a: Software RC state - RC0 */
  4855.         I915_WRITE(GEN6_RC_STATE, 0);
  4856.  
  4857.         /* 1c & 1d: Get forcewake during program sequence. Although the driver
  4858.          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4859.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4860.  
  4861.         /* 2a: Disable RC states. */
  4862.         I915_WRITE(GEN6_RC_CONTROL, 0);
  4863.  
  4864.         /* Initialize rps frequencies */
  4865.         gen6_init_rps_frequencies(dev);
  4866.  
  4867.         /* 2b: Program RC6 thresholds.*/
  4868.         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4869.         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4870.         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4871.         for_each_ring(ring, dev_priv, unused)
  4872.                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4873.         I915_WRITE(GEN6_RC_SLEEP, 0);
  4874.         if (IS_BROADWELL(dev))
  4875.                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  4876.         else
  4877.                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  4878.  
  4879.         /* 3: Enable RC6 */
  4880.         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4881.                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4882.         intel_print_rc6_info(dev, rc6_mask);
  4883.         if (IS_BROADWELL(dev))
  4884.                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4885.                                 GEN7_RC_CTL_TO_MODE |
  4886.                                 rc6_mask);
  4887.         else
  4888.                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4889.                                 GEN6_RC_CTL_EI_MODE(1) |
  4890.                                 rc6_mask);
  4891.  
  4892.         /* 4 Program defaults and thresholds for RPS*/
  4893.         I915_WRITE(GEN6_RPNSWREQ,
  4894.                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4895.         I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4896.                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4897.         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  4898.         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  4899.  
  4900.         /* Docs recommend 900MHz, and 300 MHz respectively */
  4901.         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  4902.                    dev_priv->rps.max_freq_softlimit << 24 |
  4903.                    dev_priv->rps.min_freq_softlimit << 16);
  4904.  
  4905.         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  4906.         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  4907.         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  4908.         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  4909.  
  4910.         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4911.  
  4912.         /* 5: Enable RPS */
  4913.         I915_WRITE(GEN6_RP_CONTROL,
  4914.                    GEN6_RP_MEDIA_TURBO |
  4915.                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4916.                    GEN6_RP_MEDIA_IS_GFX |
  4917.                    GEN6_RP_ENABLE |
  4918.                    GEN6_RP_UP_BUSY_AVG |
  4919.                    GEN6_RP_DOWN_IDLE_AVG);
  4920.  
  4921.         /* 6: Ring frequency + overclocking (our driver does this later */
  4922.  
  4923.         dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4924.         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4925.  
  4926.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4927. }
  4928.  
  4929. static void gen6_enable_rps(struct drm_device *dev)
  4930. {
  4931.         struct drm_i915_private *dev_priv = dev->dev_private;
  4932.         struct intel_engine_cs *ring;
  4933.         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  4934.         u32 gtfifodbg;
  4935.         int rc6_mode;
  4936.         int i, ret;
  4937.  
  4938.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4939.  
  4940.         /* Here begins a magic sequence of register writes to enable
  4941.          * auto-downclocking.
  4942.          *
  4943.          * Perhaps there might be some value in exposing these to
  4944.          * userspace...
  4945.          */
  4946.         I915_WRITE(GEN6_RC_STATE, 0);
  4947.  
  4948.         /* Clear the DBG now so we don't confuse earlier errors */
  4949.         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4950.                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  4951.                 I915_WRITE(GTFIFODBG, gtfifodbg);
  4952.         }
  4953.  
  4954.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4955.  
  4956.         /* Initialize rps frequencies */
  4957.         gen6_init_rps_frequencies(dev);
  4958.  
  4959.         /* disable the counters and set deterministic thresholds */
  4960.         I915_WRITE(GEN6_RC_CONTROL, 0);
  4961.  
  4962.         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  4963.         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  4964.         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  4965.         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4966.         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4967.  
  4968.         for_each_ring(ring, dev_priv, i)
  4969.                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4970.  
  4971.         I915_WRITE(GEN6_RC_SLEEP, 0);
  4972.         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  4973.         if (IS_IVYBRIDGE(dev))
  4974.                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  4975.         else
  4976.                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  4977.         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  4978.         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  4979.  
  4980.         /* Check if we are enabling RC6 */
  4981.         rc6_mode = intel_enable_rc6(dev_priv->dev);
  4982.         if (rc6_mode & INTEL_RC6_ENABLE)
  4983.                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  4984.  
  4985.         /* We don't use those on Haswell */
  4986.         if (!IS_HASWELL(dev)) {
  4987.                 if (rc6_mode & INTEL_RC6p_ENABLE)
  4988.                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  4989.  
  4990.                 if (rc6_mode & INTEL_RC6pp_ENABLE)
  4991.                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  4992.         }
  4993.  
  4994.         intel_print_rc6_info(dev, rc6_mask);
  4995.  
  4996.         I915_WRITE(GEN6_RC_CONTROL,
  4997.                    rc6_mask |
  4998.                    GEN6_RC_CTL_EI_MODE(1) |
  4999.                    GEN6_RC_CTL_HW_ENABLE);
  5000.  
  5001.         /* Power down if completely idle for over 50ms */
  5002.         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  5003.         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5004.  
  5005.         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  5006.         if (ret)
  5007.                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  5008.  
  5009.         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  5010.         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  5011.                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  5012.                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  5013.                                  (pcu_mbox & 0xff) * 50);
  5014.                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
  5015.         }
  5016.  
  5017.         dev_priv->rps.power = HIGH_POWER; /* force a reset */
  5018.         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  5019.  
  5020.         rc6vids = 0;
  5021.         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  5022.         if (IS_GEN6(dev) && ret) {
  5023.                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  5024.         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  5025.                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  5026.                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  5027.                 rc6vids &= 0xffff00;
  5028.                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
  5029.                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  5030.                 if (ret)
  5031.                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  5032.         }
  5033.  
  5034.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5035. }
  5036.  
  5037. static void __gen6_update_ring_freq(struct drm_device *dev)
  5038. {
  5039.         struct drm_i915_private *dev_priv = dev->dev_private;
  5040.         int min_freq = 15;
  5041.         unsigned int gpu_freq;
  5042.         unsigned int max_ia_freq, min_ring_freq;
  5043.         unsigned int max_gpu_freq, min_gpu_freq;
  5044.         int scaling_factor = 180;
  5045.         struct cpufreq_policy *policy;
  5046.  
  5047.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5048.  
  5049.         max_ia_freq = cpufreq_quick_get_max(0);
  5050.         /*
  5051.                  * Default to measured freq if none found, PCU will ensure we
  5052.                  * don't go over
  5053.          */
  5054.                 max_ia_freq = tsc_khz;
  5055.  
  5056.         /* Convert from kHz to MHz */
  5057.         max_ia_freq /= 1000;
  5058.  
  5059.         min_ring_freq = I915_READ(DCLK) & 0xf;
  5060.         /* convert DDR frequency from units of 266.6MHz to bandwidth */
  5061.         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  5062.  
  5063.         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  5064.                 /* Convert GT frequency to 50 HZ units */
  5065.                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  5066.                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  5067.         } else {
  5068.                 min_gpu_freq = dev_priv->rps.min_freq;
  5069.                 max_gpu_freq = dev_priv->rps.max_freq;
  5070.         }
  5071.  
  5072.         /*
  5073.          * For each potential GPU frequency, load a ring frequency we'd like
  5074.          * to use for memory access.  We do this by specifying the IA frequency
  5075.          * the PCU should use as a reference to determine the ring frequency.
  5076.          */
  5077.         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  5078.                 int diff = max_gpu_freq - gpu_freq;
  5079.                 unsigned int ia_freq = 0, ring_freq = 0;
  5080.  
  5081.                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  5082.                         /*
  5083.                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
  5084.                          * No floor required for ring frequency on SKL.
  5085.                          */
  5086.                         ring_freq = gpu_freq;
  5087.                 } else if (INTEL_INFO(dev)->gen >= 8) {
  5088.                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
  5089.                         ring_freq = max(min_ring_freq, gpu_freq);
  5090.                 } else if (IS_HASWELL(dev)) {
  5091.                         ring_freq = mult_frac(gpu_freq, 5, 4);
  5092.                         ring_freq = max(min_ring_freq, ring_freq);
  5093.                         /* leave ia_freq as the default, chosen by cpufreq */
  5094.                 } else {
  5095.                         /* On older processors, there is no separate ring
  5096.                          * clock domain, so in order to boost the bandwidth
  5097.                          * of the ring, we need to upclock the CPU (ia_freq).
  5098.                          *
  5099.                          * For GPU frequencies less than 750MHz,
  5100.                          * just use the lowest ring freq.
  5101.                          */
  5102.                         if (gpu_freq < min_freq)
  5103.                                 ia_freq = 800;
  5104.                         else
  5105.                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  5106.                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  5107.                 }
  5108.  
  5109.                 sandybridge_pcode_write(dev_priv,
  5110.                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  5111.                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  5112.                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  5113.                                         gpu_freq);
  5114.         }
  5115. }
  5116.  
  5117. void gen6_update_ring_freq(struct drm_device *dev)
  5118. {
  5119.         struct drm_i915_private *dev_priv = dev->dev_private;
  5120.  
  5121.         if (!HAS_CORE_RING_FREQ(dev))
  5122.                 return;
  5123.  
  5124.         mutex_lock(&dev_priv->rps.hw_lock);
  5125.         __gen6_update_ring_freq(dev);
  5126.         mutex_unlock(&dev_priv->rps.hw_lock);
  5127. }
  5128.  
  5129. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  5130. {
  5131.         struct drm_device *dev = dev_priv->dev;
  5132.         u32 val, rp0;
  5133.  
  5134.         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5135.  
  5136.         switch (INTEL_INFO(dev)->eu_total) {
  5137.         case 8:
  5138.                 /* (2 * 4) config */
  5139.                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  5140.                 break;
  5141.         case 12:
  5142.                 /* (2 * 6) config */
  5143.                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  5144.                 break;
  5145.         case 16:
  5146.                 /* (2 * 8) config */
  5147.         default:
  5148.                 /* Setting (2 * 8) Min RP0 for any other combination */
  5149.                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  5150.                 break;
  5151.         }
  5152.  
  5153.         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  5154.  
  5155.         return rp0;
  5156. }
  5157.  
  5158. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5159. {
  5160.         u32 val, rpe;
  5161.  
  5162.         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  5163.         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  5164.  
  5165.         return rpe;
  5166. }
  5167.  
  5168. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5169. {
  5170.         u32 val, rp1;
  5171.  
  5172.         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5173.         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  5174.  
  5175.         return rp1;
  5176. }
  5177.  
  5178. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5179. {
  5180.         u32 val, rp1;
  5181.  
  5182.         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5183.  
  5184.         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  5185.  
  5186.         return rp1;
  5187. }
  5188.  
  5189. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  5190. {
  5191.         u32 val, rp0;
  5192.  
  5193.         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5194.  
  5195.         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  5196.         /* Clamp to max */
  5197.         rp0 = min_t(u32, rp0, 0xea);
  5198.  
  5199.         return rp0;
  5200. }
  5201.  
  5202. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5203. {
  5204.         u32 val, rpe;
  5205.  
  5206.         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  5207.         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  5208.         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  5209.         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  5210.  
  5211.         return rpe;
  5212. }
  5213.  
  5214. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  5215. {
  5216.         u32 val;
  5217.  
  5218.         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  5219.         /*
  5220.          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  5221.          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  5222.          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  5223.          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  5224.          * to make sure it matches what Punit accepts.
  5225.          */
  5226.         return max_t(u32, val, 0xc0);
  5227. }
  5228.  
  5229. /* Check that the pctx buffer wasn't move under us. */
  5230. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  5231. {
  5232.         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5233.  
  5234.         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  5235.                              dev_priv->vlv_pctx->stolen->start);
  5236. }
  5237.  
  5238.  
  5239. /* Check that the pcbr address is not empty. */
  5240. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  5241. {
  5242.         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5243.  
  5244.         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  5245. }
  5246.  
  5247. static void cherryview_setup_pctx(struct drm_device *dev)
  5248. {
  5249.         struct drm_i915_private *dev_priv = dev->dev_private;
  5250.         unsigned long pctx_paddr, paddr;
  5251.         struct i915_gtt *gtt = &dev_priv->gtt;
  5252.         u32 pcbr;
  5253.         int pctx_size = 32*1024;
  5254.  
  5255.         pcbr = I915_READ(VLV_PCBR);
  5256.         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  5257.                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5258.                 paddr = (dev_priv->mm.stolen_base +
  5259.                          (gtt->stolen_size - pctx_size));
  5260.  
  5261.                 pctx_paddr = (paddr & (~4095));
  5262.                 I915_WRITE(VLV_PCBR, pctx_paddr);
  5263.         }
  5264.  
  5265.         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5266. }
  5267.  
  5268. static void valleyview_setup_pctx(struct drm_device *dev)
  5269. {
  5270.         struct drm_i915_private *dev_priv = dev->dev_private;
  5271.         struct drm_i915_gem_object *pctx;
  5272.         unsigned long pctx_paddr;
  5273.         u32 pcbr;
  5274.         int pctx_size = 24*1024;
  5275.  
  5276.         mutex_lock(&dev->struct_mutex);
  5277.  
  5278.         pcbr = I915_READ(VLV_PCBR);
  5279.         if (pcbr) {
  5280.                 /* BIOS set it up already, grab the pre-alloc'd space */
  5281.                 int pcbr_offset;
  5282.  
  5283.                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  5284.                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  5285.                                                                       pcbr_offset,
  5286.                                                                       I915_GTT_OFFSET_NONE,
  5287.                                                                       pctx_size);
  5288.                 goto out;
  5289.         }
  5290.  
  5291.         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5292.  
  5293.         /*
  5294.          * From the Gunit register HAS:
  5295.          * The Gfx driver is expected to program this register and ensure
  5296.          * proper allocation within Gfx stolen memory.  For example, this
  5297.          * register should be programmed such than the PCBR range does not
  5298.          * overlap with other ranges, such as the frame buffer, protected
  5299.          * memory, or any other relevant ranges.
  5300.          */
  5301.         pctx = i915_gem_object_create_stolen(dev, pctx_size);
  5302.         if (!pctx) {
  5303.                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  5304.                 goto out;
  5305.         }
  5306.  
  5307.         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  5308.         I915_WRITE(VLV_PCBR, pctx_paddr);
  5309.  
  5310. out:
  5311.         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5312.         dev_priv->vlv_pctx = pctx;
  5313.         mutex_unlock(&dev->struct_mutex);
  5314. }
  5315.  
  5316. static void valleyview_cleanup_pctx(struct drm_device *dev)
  5317. {
  5318.         struct drm_i915_private *dev_priv = dev->dev_private;
  5319.  
  5320.         if (WARN_ON(!dev_priv->vlv_pctx))
  5321.                 return;
  5322.  
  5323.         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
  5324.         dev_priv->vlv_pctx = NULL;
  5325. }
  5326.  
  5327. static void valleyview_init_gt_powersave(struct drm_device *dev)
  5328. {
  5329.         struct drm_i915_private *dev_priv = dev->dev_private;
  5330.         u32 val;
  5331.  
  5332.         valleyview_setup_pctx(dev);
  5333.  
  5334.         mutex_lock(&dev_priv->rps.hw_lock);
  5335.  
  5336.         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5337.         switch ((val >> 6) & 3) {
  5338.         case 0:
  5339.         case 1:
  5340.                 dev_priv->mem_freq = 800;
  5341.                 break;
  5342.         case 2:
  5343.                 dev_priv->mem_freq = 1066;
  5344.                 break;
  5345.         case 3:
  5346.                 dev_priv->mem_freq = 1333;
  5347.                 break;
  5348.         }
  5349.         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5350.  
  5351.         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  5352.         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  5353.         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5354.                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  5355.                          dev_priv->rps.max_freq);
  5356.  
  5357.         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  5358.         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5359.                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5360.                          dev_priv->rps.efficient_freq);
  5361.  
  5362.         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  5363.         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  5364.                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  5365.                          dev_priv->rps.rp1_freq);
  5366.  
  5367.         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  5368.         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5369.                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  5370.                          dev_priv->rps.min_freq);
  5371.  
  5372.         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  5373.  
  5374.         /* Preserve min/max settings in case of re-init */
  5375.         if (dev_priv->rps.max_freq_softlimit == 0)
  5376.                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  5377.  
  5378.         if (dev_priv->rps.min_freq_softlimit == 0)
  5379.                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  5380.  
  5381.         mutex_unlock(&dev_priv->rps.hw_lock);
  5382. }
  5383.  
  5384. static void cherryview_init_gt_powersave(struct drm_device *dev)
  5385. {
  5386.         struct drm_i915_private *dev_priv = dev->dev_private;
  5387.         u32 val;
  5388.  
  5389.         cherryview_setup_pctx(dev);
  5390.  
  5391.         mutex_lock(&dev_priv->rps.hw_lock);
  5392.  
  5393.         mutex_lock(&dev_priv->sb_lock);
  5394.         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  5395.         mutex_unlock(&dev_priv->sb_lock);
  5396.  
  5397.         switch ((val >> 2) & 0x7) {
  5398.         case 3:
  5399.                 dev_priv->mem_freq = 2000;
  5400.                 break;
  5401.         default:
  5402.                 dev_priv->mem_freq = 1600;
  5403.                 break;
  5404.         }
  5405.         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5406.  
  5407.         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  5408.         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  5409.         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5410.                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  5411.                          dev_priv->rps.max_freq);
  5412.  
  5413.         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  5414.         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5415.                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5416.                          dev_priv->rps.efficient_freq);
  5417.  
  5418.         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  5419.         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  5420.                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  5421.                          dev_priv->rps.rp1_freq);
  5422.  
  5423.         /* PUnit validated range is only [RPe, RP0] */
  5424.         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
  5425.         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5426.                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  5427.                          dev_priv->rps.min_freq);
  5428.  
  5429.         WARN_ONCE((dev_priv->rps.max_freq |
  5430.                    dev_priv->rps.efficient_freq |
  5431.                    dev_priv->rps.rp1_freq |
  5432.                    dev_priv->rps.min_freq) & 1,
  5433.                   "Odd GPU freq values\n");
  5434.  
  5435.         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  5436.  
  5437.         /* Preserve min/max settings in case of re-init */
  5438.         if (dev_priv->rps.max_freq_softlimit == 0)
  5439.                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  5440.  
  5441.         if (dev_priv->rps.min_freq_softlimit == 0)
  5442.                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  5443.  
  5444.         mutex_unlock(&dev_priv->rps.hw_lock);
  5445. }
  5446.  
  5447. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  5448. {
  5449.         valleyview_cleanup_pctx(dev);
  5450. }
  5451.  
  5452. static void cherryview_enable_rps(struct drm_device *dev)
  5453. {
  5454.         struct drm_i915_private *dev_priv = dev->dev_private;
  5455.         struct intel_engine_cs *ring;
  5456.         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  5457.         int i;
  5458.  
  5459.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5460.  
  5461.         gtfifodbg = I915_READ(GTFIFODBG);
  5462.         if (gtfifodbg) {
  5463.                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5464.                                  gtfifodbg);
  5465.                 I915_WRITE(GTFIFODBG, gtfifodbg);
  5466.         }
  5467.  
  5468.         cherryview_check_pctx(dev_priv);
  5469.  
  5470.         /* 1a & 1b: Get forcewake during program sequence. Although the driver
  5471.          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5472.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5473.  
  5474.         /*  Disable RC states. */
  5475.         I915_WRITE(GEN6_RC_CONTROL, 0);
  5476.  
  5477.         /* 2a: Program RC6 thresholds.*/
  5478.         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  5479.         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5480.         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5481.  
  5482.         for_each_ring(ring, dev_priv, i)
  5483.                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  5484.         I915_WRITE(GEN6_RC_SLEEP, 0);
  5485.  
  5486.         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  5487.         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  5488.  
  5489.         /* allows RC6 residency counter to work */
  5490.         I915_WRITE(VLV_COUNTER_CONTROL,
  5491.                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  5492.                                       VLV_MEDIA_RC6_COUNT_EN |
  5493.                                       VLV_RENDER_RC6_COUNT_EN));
  5494.  
  5495.         /* For now we assume BIOS is allocating and populating the PCBR  */
  5496.         pcbr = I915_READ(VLV_PCBR);
  5497.  
  5498.         /* 3: Enable RC6 */
  5499.         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  5500.                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
  5501.                 rc6_mode = GEN7_RC_CTL_TO_MODE;
  5502.  
  5503.         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5504.  
  5505.         /* 4 Program defaults and thresholds for RPS*/
  5506.         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5507.         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5508.         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5509.         I915_WRITE(GEN6_RP_UP_EI, 66000);
  5510.         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5511.  
  5512.         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5513.  
  5514.         /* 5: Enable RPS */
  5515.         I915_WRITE(GEN6_RP_CONTROL,
  5516.                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5517.                    GEN6_RP_MEDIA_IS_GFX |
  5518.                    GEN6_RP_ENABLE |
  5519.                    GEN6_RP_UP_BUSY_AVG |
  5520.                    GEN6_RP_DOWN_IDLE_AVG);
  5521.  
  5522.         /* Setting Fixed Bias */
  5523.         val = VLV_OVERRIDE_EN |
  5524.                   VLV_SOC_TDP_EN |
  5525.                   CHV_BIAS_CPU_50_SOC_50;
  5526.         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5527.  
  5528.         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5529.  
  5530.         /* RPS code assumes GPLL is used */
  5531.         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5532.  
  5533.         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5534.         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5535.  
  5536.         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  5537.         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  5538.                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  5539.                          dev_priv->rps.cur_freq);
  5540.  
  5541.         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  5542.                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5543.                          dev_priv->rps.efficient_freq);
  5544.  
  5545.         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  5546.  
  5547.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5548. }
  5549.  
  5550. static void valleyview_enable_rps(struct drm_device *dev)
  5551. {
  5552.         struct drm_i915_private *dev_priv = dev->dev_private;
  5553.         struct intel_engine_cs *ring;
  5554.         u32 gtfifodbg, val, rc6_mode = 0;
  5555.         int i;
  5556.  
  5557.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5558.  
  5559.         valleyview_check_pctx(dev_priv);
  5560.  
  5561.         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  5562.                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5563.                                  gtfifodbg);
  5564.                 I915_WRITE(GTFIFODBG, gtfifodbg);
  5565.         }
  5566.  
  5567.         /* If VLV, Forcewake all wells, else re-direct to regular path */
  5568.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5569.  
  5570.         /*  Disable RC states. */
  5571.         I915_WRITE(GEN6_RC_CONTROL, 0);
  5572.  
  5573.         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5574.         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5575.         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5576.         I915_WRITE(GEN6_RP_UP_EI, 66000);
  5577.         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5578.  
  5579.         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5580.  
  5581.         I915_WRITE(GEN6_RP_CONTROL,
  5582.                    GEN6_RP_MEDIA_TURBO |
  5583.                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5584.                    GEN6_RP_MEDIA_IS_GFX |
  5585.                    GEN6_RP_ENABLE |
  5586.                    GEN6_RP_UP_BUSY_AVG |
  5587.                    GEN6_RP_DOWN_IDLE_CONT);
  5588.  
  5589.         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  5590.         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5591.         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5592.  
  5593.         for_each_ring(ring, dev_priv, i)
  5594.                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  5595.  
  5596.         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  5597.  
  5598.         /* allows RC6 residency counter to work */
  5599.         I915_WRITE(VLV_COUNTER_CONTROL,
  5600.                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  5601.                                       VLV_RENDER_RC0_COUNT_EN |
  5602.                                       VLV_MEDIA_RC6_COUNT_EN |
  5603.                                       VLV_RENDER_RC6_COUNT_EN));
  5604.  
  5605.         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  5606.                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  5607.  
  5608.         intel_print_rc6_info(dev, rc6_mode);
  5609.  
  5610.         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5611.  
  5612.         /* Setting Fixed Bias */
  5613.         val = VLV_OVERRIDE_EN |
  5614.                   VLV_SOC_TDP_EN |
  5615.                   VLV_BIAS_CPU_125_SOC_875;
  5616.         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5617.  
  5618.         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5619.  
  5620.         /* RPS code assumes GPLL is used */
  5621.         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5622.  
  5623.         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5624.         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5625.  
  5626.         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  5627.         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  5628.                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  5629.                          dev_priv->rps.cur_freq);
  5630.  
  5631.         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  5632.                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5633.                          dev_priv->rps.efficient_freq);
  5634.  
  5635.         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  5636.  
  5637.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5638. }
  5639.  
  5640. static unsigned long intel_pxfreq(u32 vidfreq)
  5641. {
  5642.         unsigned long freq;
  5643.         int div = (vidfreq & 0x3f0000) >> 16;
  5644.         int post = (vidfreq & 0x3000) >> 12;
  5645.         int pre = (vidfreq & 0x7);
  5646.  
  5647.         if (!pre)
  5648.                 return 0;
  5649.  
  5650.         freq = ((div * 133333) / ((1<<post) * pre));
  5651.  
  5652.         return freq;
  5653. }
  5654.  
  5655. static const struct cparams {
  5656.         u16 i;
  5657.         u16 t;
  5658.         u16 m;
  5659.         u16 c;
  5660. } cparams[] = {
  5661.         { 1, 1333, 301, 28664 },
  5662.         { 1, 1066, 294, 24460 },
  5663.         { 1, 800, 294, 25192 },
  5664.         { 0, 1333, 276, 27605 },
  5665.         { 0, 1066, 276, 27605 },
  5666.         { 0, 800, 231, 23784 },
  5667. };
  5668.  
  5669. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  5670. {
  5671.         u64 total_count, diff, ret;
  5672.         u32 count1, count2, count3, m = 0, c = 0;
  5673.         unsigned long now = jiffies_to_msecs(jiffies), diff1;
  5674.         int i;
  5675.  
  5676.         assert_spin_locked(&mchdev_lock);
  5677.  
  5678.         diff1 = now - dev_priv->ips.last_time1;
  5679.  
  5680.         /* Prevent division-by-zero if we are asking too fast.
  5681.          * Also, we don't get interesting results if we are polling
  5682.          * faster than once in 10ms, so just return the saved value
  5683.          * in such cases.
  5684.          */
  5685.         if (diff1 <= 10)
  5686.                 return dev_priv->ips.chipset_power;
  5687.  
  5688.         count1 = I915_READ(DMIEC);
  5689.         count2 = I915_READ(DDREC);
  5690.         count3 = I915_READ(CSIEC);
  5691.  
  5692.         total_count = count1 + count2 + count3;
  5693.  
  5694.         /* FIXME: handle per-counter overflow */
  5695.         if (total_count < dev_priv->ips.last_count1) {
  5696.                 diff = ~0UL - dev_priv->ips.last_count1;
  5697.                 diff += total_count;
  5698.         } else {
  5699.                 diff = total_count - dev_priv->ips.last_count1;
  5700.         }
  5701.  
  5702.         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  5703.                 if (cparams[i].i == dev_priv->ips.c_m &&
  5704.                     cparams[i].t == dev_priv->ips.r_t) {
  5705.                         m = cparams[i].m;
  5706.                         c = cparams[i].c;
  5707.                         break;
  5708.                 }
  5709.         }
  5710.  
  5711.         diff = div_u64(diff, diff1);
  5712.         ret = ((m * diff) + c);
  5713.         ret = div_u64(ret, 10);
  5714.  
  5715.         dev_priv->ips.last_count1 = total_count;
  5716.         dev_priv->ips.last_time1 = now;
  5717.  
  5718.         dev_priv->ips.chipset_power = ret;
  5719.  
  5720.         return ret;
  5721. }
  5722.  
  5723. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  5724. {
  5725.         struct drm_device *dev = dev_priv->dev;
  5726.         unsigned long val;
  5727.  
  5728.         if (INTEL_INFO(dev)->gen != 5)
  5729.                 return 0;
  5730.  
  5731.         spin_lock_irq(&mchdev_lock);
  5732.  
  5733.         val = __i915_chipset_val(dev_priv);
  5734.  
  5735.         spin_unlock_irq(&mchdev_lock);
  5736.  
  5737.         return val;
  5738. }
  5739.  
  5740. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  5741. {
  5742.         unsigned long m, x, b;
  5743.         u32 tsfs;
  5744.  
  5745.         tsfs = I915_READ(TSFS);
  5746.  
  5747.         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  5748.         x = I915_READ8(TR1);
  5749.  
  5750.         b = tsfs & TSFS_INTR_MASK;
  5751.  
  5752.         return ((m * x) / 127) - b;
  5753. }
  5754.  
  5755. static int _pxvid_to_vd(u8 pxvid)
  5756. {
  5757.         if (pxvid == 0)
  5758.                 return 0;
  5759.  
  5760.         if (pxvid >= 8 && pxvid < 31)
  5761.                 pxvid = 31;
  5762.  
  5763.         return (pxvid + 2) * 125;
  5764. }
  5765.  
  5766. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  5767. {
  5768.         struct drm_device *dev = dev_priv->dev;
  5769.         const int vd = _pxvid_to_vd(pxvid);
  5770.         const int vm = vd - 1125;
  5771.  
  5772.         if (INTEL_INFO(dev)->is_mobile)
  5773.                 return vm > 0 ? vm : 0;
  5774.  
  5775.         return vd;
  5776. }
  5777.  
  5778. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  5779. {
  5780.         u64 now, diff, diffms;
  5781.         u32 count;
  5782.  
  5783.         assert_spin_locked(&mchdev_lock);
  5784.  
  5785.         now = ktime_get_raw_ns();
  5786.         diffms = now - dev_priv->ips.last_time2;
  5787.         do_div(diffms, NSEC_PER_MSEC);
  5788.  
  5789.         /* Don't divide by 0 */
  5790.         if (!diffms)
  5791.                 return;
  5792.  
  5793.         count = I915_READ(GFXEC);
  5794.  
  5795.         if (count < dev_priv->ips.last_count2) {
  5796.                 diff = ~0UL - dev_priv->ips.last_count2;
  5797.                 diff += count;
  5798.         } else {
  5799.                 diff = count - dev_priv->ips.last_count2;
  5800.         }
  5801.  
  5802.         dev_priv->ips.last_count2 = count;
  5803.         dev_priv->ips.last_time2 = now;
  5804.  
  5805.         /* More magic constants... */
  5806.         diff = diff * 1181;
  5807.         diff = div_u64(diff, diffms * 10);
  5808.         dev_priv->ips.gfx_power = diff;
  5809. }
  5810.  
  5811. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  5812. {
  5813.         struct drm_device *dev = dev_priv->dev;
  5814.  
  5815.         if (INTEL_INFO(dev)->gen != 5)
  5816.                 return;
  5817.  
  5818.         spin_lock_irq(&mchdev_lock);
  5819.  
  5820.         __i915_update_gfx_val(dev_priv);
  5821.  
  5822.         spin_unlock_irq(&mchdev_lock);
  5823. }
  5824.  
  5825. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  5826. {
  5827.         unsigned long t, corr, state1, corr2, state2;
  5828.         u32 pxvid, ext_v;
  5829.  
  5830.         assert_spin_locked(&mchdev_lock);
  5831.  
  5832.         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  5833.         pxvid = (pxvid >> 24) & 0x7f;
  5834.         ext_v = pvid_to_extvid(dev_priv, pxvid);
  5835.  
  5836.         state1 = ext_v;
  5837.  
  5838.         t = i915_mch_val(dev_priv);
  5839.  
  5840.         /* Revel in the empirically derived constants */
  5841.  
  5842.         /* Correction factor in 1/100000 units */
  5843.         if (t > 80)
  5844.                 corr = ((t * 2349) + 135940);
  5845.         else if (t >= 50)
  5846.                 corr = ((t * 964) + 29317);
  5847.         else /* < 50 */
  5848.                 corr = ((t * 301) + 1004);
  5849.  
  5850.         corr = corr * ((150142 * state1) / 10000 - 78642);
  5851.         corr /= 100000;
  5852.         corr2 = (corr * dev_priv->ips.corr);
  5853.  
  5854.         state2 = (corr2 * state1) / 10000;
  5855.         state2 /= 100; /* convert to mW */
  5856.  
  5857.         __i915_update_gfx_val(dev_priv);
  5858.  
  5859.         return dev_priv->ips.gfx_power + state2;
  5860. }
  5861.  
  5862. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  5863. {
  5864.         struct drm_device *dev = dev_priv->dev;
  5865.         unsigned long val;
  5866.  
  5867.         if (INTEL_INFO(dev)->gen != 5)
  5868.                 return 0;
  5869.  
  5870.         spin_lock_irq(&mchdev_lock);
  5871.  
  5872.         val = __i915_gfx_val(dev_priv);
  5873.  
  5874.         spin_unlock_irq(&mchdev_lock);
  5875.  
  5876.         return val;
  5877. }
  5878.  
  5879. /**
  5880.  * i915_read_mch_val - return value for IPS use
  5881.  *
  5882.  * Calculate and return a value for the IPS driver to use when deciding whether
  5883.  * we have thermal and power headroom to increase CPU or GPU power budget.
  5884.  */
  5885. unsigned long i915_read_mch_val(void)
  5886. {
  5887.         struct drm_i915_private *dev_priv;
  5888.         unsigned long chipset_val, graphics_val, ret = 0;
  5889.  
  5890.         spin_lock_irq(&mchdev_lock);
  5891.         if (!i915_mch_dev)
  5892.                 goto out_unlock;
  5893.         dev_priv = i915_mch_dev;
  5894.  
  5895.         chipset_val = __i915_chipset_val(dev_priv);
  5896.         graphics_val = __i915_gfx_val(dev_priv);
  5897.  
  5898.         ret = chipset_val + graphics_val;
  5899.  
  5900. out_unlock:
  5901.         spin_unlock_irq(&mchdev_lock);
  5902.  
  5903.         return ret;
  5904. }
  5905. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  5906.  
  5907. /**
  5908.  * i915_gpu_raise - raise GPU frequency limit
  5909.  *
  5910.  * Raise the limit; IPS indicates we have thermal headroom.
  5911.  */
  5912. bool i915_gpu_raise(void)
  5913. {
  5914.         struct drm_i915_private *dev_priv;
  5915.         bool ret = true;
  5916.  
  5917.         spin_lock_irq(&mchdev_lock);
  5918.         if (!i915_mch_dev) {
  5919.                 ret = false;
  5920.                 goto out_unlock;
  5921.         }
  5922.         dev_priv = i915_mch_dev;
  5923.  
  5924.         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  5925.                 dev_priv->ips.max_delay--;
  5926.  
  5927. out_unlock:
  5928.         spin_unlock_irq(&mchdev_lock);
  5929.  
  5930.         return ret;
  5931. }
  5932. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  5933.  
  5934. /**
  5935.  * i915_gpu_lower - lower GPU frequency limit
  5936.  *
  5937.  * IPS indicates we're close to a thermal limit, so throttle back the GPU
  5938.  * frequency maximum.
  5939.  */
  5940. bool i915_gpu_lower(void)
  5941. {
  5942.         struct drm_i915_private *dev_priv;
  5943.         bool ret = true;
  5944.  
  5945.         spin_lock_irq(&mchdev_lock);
  5946.         if (!i915_mch_dev) {
  5947.                 ret = false;
  5948.                 goto out_unlock;
  5949.         }
  5950.         dev_priv = i915_mch_dev;
  5951.  
  5952.         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  5953.                 dev_priv->ips.max_delay++;
  5954.  
  5955. out_unlock:
  5956.         spin_unlock_irq(&mchdev_lock);
  5957.  
  5958.         return ret;
  5959. }
  5960. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  5961.  
  5962. /**
  5963.  * i915_gpu_busy - indicate GPU business to IPS
  5964.  *
  5965.  * Tell the IPS driver whether or not the GPU is busy.
  5966.  */
  5967. bool i915_gpu_busy(void)
  5968. {
  5969.         struct drm_i915_private *dev_priv;
  5970.         struct intel_engine_cs *ring;
  5971.         bool ret = false;
  5972.         int i;
  5973.  
  5974.         spin_lock_irq(&mchdev_lock);
  5975.         if (!i915_mch_dev)
  5976.                 goto out_unlock;
  5977.         dev_priv = i915_mch_dev;
  5978.  
  5979.         for_each_ring(ring, dev_priv, i)
  5980.                 ret |= !list_empty(&ring->request_list);
  5981.  
  5982. out_unlock:
  5983.         spin_unlock_irq(&mchdev_lock);
  5984.  
  5985.         return ret;
  5986. }
  5987. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  5988.  
  5989. /**
  5990.  * i915_gpu_turbo_disable - disable graphics turbo
  5991.  *
  5992.  * Disable graphics turbo by resetting the max frequency and setting the
  5993.  * current frequency to the default.
  5994.  */
  5995. bool i915_gpu_turbo_disable(void)
  5996. {
  5997.         struct drm_i915_private *dev_priv;
  5998.         bool ret = true;
  5999.  
  6000.         spin_lock_irq(&mchdev_lock);
  6001.         if (!i915_mch_dev) {
  6002.                 ret = false;
  6003.                 goto out_unlock;
  6004.         }
  6005.         dev_priv = i915_mch_dev;
  6006.  
  6007.         dev_priv->ips.max_delay = dev_priv->ips.fstart;
  6008.  
  6009.         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  6010.                 ret = false;
  6011.  
  6012. out_unlock:
  6013.         spin_unlock_irq(&mchdev_lock);
  6014.  
  6015.         return ret;
  6016. }
  6017. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  6018.  
  6019. /**
  6020.  * Tells the intel_ips driver that the i915 driver is now loaded, if
  6021.  * IPS got loaded first.
  6022.  *
  6023.  * This awkward dance is so that neither module has to depend on the
  6024.  * other in order for IPS to do the appropriate communication of
  6025.  * GPU turbo limits to i915.
  6026.  */
  6027. static void
  6028. ips_ping_for_i915_load(void)
  6029. {
  6030.         void (*link)(void);
  6031.  
  6032. //   link = symbol_get(ips_link_to_i915_driver);
  6033. //   if (link) {
  6034. //       link();
  6035. //       symbol_put(ips_link_to_i915_driver);
  6036. //   }
  6037. }
  6038.  
  6039. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  6040. {
  6041.         /* We only register the i915 ips part with intel-ips once everything is
  6042.          * set up, to avoid intel-ips sneaking in and reading bogus values. */
  6043.         spin_lock_irq(&mchdev_lock);
  6044.         i915_mch_dev = dev_priv;
  6045.         spin_unlock_irq(&mchdev_lock);
  6046.  
  6047.         ips_ping_for_i915_load();
  6048. }
  6049.  
  6050. void intel_gpu_ips_teardown(void)
  6051. {
  6052.         spin_lock_irq(&mchdev_lock);
  6053.         i915_mch_dev = NULL;
  6054.         spin_unlock_irq(&mchdev_lock);
  6055. }
  6056.  
  6057. static void intel_init_emon(struct drm_device *dev)
  6058. {
  6059.         struct drm_i915_private *dev_priv = dev->dev_private;
  6060.         u32 lcfuse;
  6061.         u8 pxw[16];
  6062.         int i;
  6063.  
  6064.         /* Disable to program */
  6065.         I915_WRITE(ECR, 0);
  6066.         POSTING_READ(ECR);
  6067.  
  6068.         /* Program energy weights for various events */
  6069.         I915_WRITE(SDEW, 0x15040d00);
  6070.         I915_WRITE(CSIEW0, 0x007f0000);
  6071.         I915_WRITE(CSIEW1, 0x1e220004);
  6072.         I915_WRITE(CSIEW2, 0x04000004);
  6073.  
  6074.         for (i = 0; i < 5; i++)
  6075.                 I915_WRITE(PEW(i), 0);
  6076.         for (i = 0; i < 3; i++)
  6077.                 I915_WRITE(DEW(i), 0);
  6078.  
  6079.         /* Program P-state weights to account for frequency power adjustment */
  6080.         for (i = 0; i < 16; i++) {
  6081.                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
  6082.                 unsigned long freq = intel_pxfreq(pxvidfreq);
  6083.                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6084.                         PXVFREQ_PX_SHIFT;
  6085.                 unsigned long val;
  6086.  
  6087.                 val = vid * vid;
  6088.                 val *= (freq / 1000);
  6089.                 val *= 255;
  6090.                 val /= (127*127*900);
  6091.                 if (val > 0xff)
  6092.                         DRM_ERROR("bad pxval: %ld\n", val);
  6093.                 pxw[i] = val;
  6094.         }
  6095.         /* Render standby states get 0 weight */
  6096.         pxw[14] = 0;
  6097.         pxw[15] = 0;
  6098.  
  6099.         for (i = 0; i < 4; i++) {
  6100.                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6101.                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6102.                 I915_WRITE(PXW(i), val);
  6103.         }
  6104.  
  6105.         /* Adjust magic regs to magic values (more experimental results) */
  6106.         I915_WRITE(OGW0, 0);
  6107.         I915_WRITE(OGW1, 0);
  6108.         I915_WRITE(EG0, 0x00007f00);
  6109.         I915_WRITE(EG1, 0x0000000e);
  6110.         I915_WRITE(EG2, 0x000e0000);
  6111.         I915_WRITE(EG3, 0x68000300);
  6112.         I915_WRITE(EG4, 0x42000000);
  6113.         I915_WRITE(EG5, 0x00140031);
  6114.         I915_WRITE(EG6, 0);
  6115.         I915_WRITE(EG7, 0);
  6116.  
  6117.         for (i = 0; i < 8; i++)
  6118.                 I915_WRITE(PXWL(i), 0);
  6119.  
  6120.         /* Enable PMON + select events */
  6121.         I915_WRITE(ECR, 0x80000019);
  6122.  
  6123.         lcfuse = I915_READ(LCFUSE02);
  6124.  
  6125.         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  6126. }
  6127.  
  6128. void intel_init_gt_powersave(struct drm_device *dev)
  6129. {
  6130.         struct drm_i915_private *dev_priv = dev->dev_private;
  6131.  
  6132.         /*
  6133.          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  6134.          * requirement.
  6135.          */
  6136.         if (!i915.enable_rc6) {
  6137.                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  6138.                 intel_runtime_pm_get(dev_priv);
  6139.         }
  6140.  
  6141.         if (IS_CHERRYVIEW(dev))
  6142.                 cherryview_init_gt_powersave(dev);
  6143.         else if (IS_VALLEYVIEW(dev))
  6144.                 valleyview_init_gt_powersave(dev);
  6145. }
  6146.  
  6147. void intel_cleanup_gt_powersave(struct drm_device *dev)
  6148. {
  6149.         struct drm_i915_private *dev_priv = dev->dev_private;
  6150.  
  6151.         if (IS_CHERRYVIEW(dev))
  6152.                 return;
  6153.         else if (IS_VALLEYVIEW(dev))
  6154.                 valleyview_cleanup_gt_powersave(dev);
  6155.  
  6156.         if (!i915.enable_rc6)
  6157.                 intel_runtime_pm_put(dev_priv);
  6158. }
  6159.  
  6160. static void gen6_suspend_rps(struct drm_device *dev)
  6161. {
  6162.         struct drm_i915_private *dev_priv = dev->dev_private;
  6163.  
  6164. //   flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  6165.  
  6166.         gen6_disable_rps_interrupts(dev);
  6167. }
  6168.  
  6169. /**
  6170.  * intel_suspend_gt_powersave - suspend PM work and helper threads
  6171.  * @dev: drm device
  6172.  *
  6173.  * We don't want to disable RC6 or other features here, we just want
  6174.  * to make sure any work we've queued has finished and won't bother
  6175.  * us while we're suspended.
  6176.  */
  6177. void intel_suspend_gt_powersave(struct drm_device *dev)
  6178. {
  6179.         struct drm_i915_private *dev_priv = dev->dev_private;
  6180.  
  6181.         if (INTEL_INFO(dev)->gen < 6)
  6182.                 return;
  6183.  
  6184.         gen6_suspend_rps(dev);
  6185.  
  6186.         /* Force GPU to min freq during suspend */
  6187.         gen6_rps_idle(dev_priv);
  6188. }
  6189.  
  6190. void intel_disable_gt_powersave(struct drm_device *dev)
  6191. {
  6192.         struct drm_i915_private *dev_priv = dev->dev_private;
  6193.  
  6194.         if (IS_IRONLAKE_M(dev)) {
  6195.                 ironlake_disable_drps(dev);
  6196.         } else if (INTEL_INFO(dev)->gen >= 6) {
  6197.                 intel_suspend_gt_powersave(dev);
  6198.  
  6199.                 mutex_lock(&dev_priv->rps.hw_lock);
  6200.                 if (INTEL_INFO(dev)->gen >= 9)
  6201.                         gen9_disable_rps(dev);
  6202.                 else if (IS_CHERRYVIEW(dev))
  6203.                         cherryview_disable_rps(dev);
  6204.                 else if (IS_VALLEYVIEW(dev))
  6205.                         valleyview_disable_rps(dev);
  6206.                 else
  6207.                         gen6_disable_rps(dev);
  6208.  
  6209.                 dev_priv->rps.enabled = false;
  6210.                 mutex_unlock(&dev_priv->rps.hw_lock);
  6211.         }
  6212. }
  6213.  
  6214. static void intel_gen6_powersave_work(struct work_struct *work)
  6215. {
  6216.         struct drm_i915_private *dev_priv =
  6217.                 container_of(work, struct drm_i915_private,
  6218.                              rps.delayed_resume_work.work);
  6219.         struct drm_device *dev = dev_priv->dev;
  6220.  
  6221.         mutex_lock(&dev_priv->rps.hw_lock);
  6222.  
  6223.         gen6_reset_rps_interrupts(dev);
  6224.  
  6225.         if (IS_CHERRYVIEW(dev)) {
  6226.                 cherryview_enable_rps(dev);
  6227.         } else if (IS_VALLEYVIEW(dev)) {
  6228.                 valleyview_enable_rps(dev);
  6229.         } else if (INTEL_INFO(dev)->gen >= 9) {
  6230.                 gen9_enable_rc6(dev);
  6231.                 gen9_enable_rps(dev);
  6232.                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  6233.                         __gen6_update_ring_freq(dev);
  6234.         } else if (IS_BROADWELL(dev)) {
  6235.                 gen8_enable_rps(dev);
  6236.                 __gen6_update_ring_freq(dev);
  6237.         } else {
  6238.                 gen6_enable_rps(dev);
  6239.                 __gen6_update_ring_freq(dev);
  6240.         }
  6241.  
  6242.         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  6243.         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  6244.  
  6245.         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  6246.         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  6247.  
  6248.         dev_priv->rps.enabled = true;
  6249.  
  6250.         gen6_enable_rps_interrupts(dev);
  6251.  
  6252.         mutex_unlock(&dev_priv->rps.hw_lock);
  6253.  
  6254.         intel_runtime_pm_put(dev_priv);
  6255. }
  6256.  
  6257. void intel_enable_gt_powersave(struct drm_device *dev)
  6258. {
  6259.         struct drm_i915_private *dev_priv = dev->dev_private;
  6260.  
  6261.         /* Powersaving is controlled by the host when inside a VM */
  6262.         if (intel_vgpu_active(dev))
  6263.                 return;
  6264.  
  6265.         if (IS_IRONLAKE_M(dev)) {
  6266.                 ironlake_enable_drps(dev);
  6267.                 mutex_lock(&dev->struct_mutex);
  6268.                 intel_init_emon(dev);
  6269.                 mutex_unlock(&dev->struct_mutex);
  6270.         } else if (INTEL_INFO(dev)->gen >= 6) {
  6271.                 /*
  6272.                  * PCU communication is slow and this doesn't need to be
  6273.                  * done at any specific time, so do this out of our fast path
  6274.                  * to make resume and init faster.
  6275.                  *
  6276.                  * We depend on the HW RC6 power context save/restore
  6277.                  * mechanism when entering D3 through runtime PM suspend. So
  6278.                  * disable RPM until RPS/RC6 is properly setup. We can only
  6279.                  * get here via the driver load/system resume/runtime resume
  6280.                  * paths, so the _noresume version is enough (and in case of
  6281.                  * runtime resume it's necessary).
  6282.                  */
  6283.                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  6284.                                            round_jiffies_up_relative(HZ)))
  6285.                         intel_runtime_pm_get_noresume(dev_priv);
  6286.         }
  6287. }
  6288.  
  6289. void intel_reset_gt_powersave(struct drm_device *dev)
  6290. {
  6291.         struct drm_i915_private *dev_priv = dev->dev_private;
  6292.  
  6293.         if (INTEL_INFO(dev)->gen < 6)
  6294.                 return;
  6295.  
  6296.         gen6_suspend_rps(dev);
  6297.         dev_priv->rps.enabled = false;
  6298. }
  6299.  
  6300. static void ibx_init_clock_gating(struct drm_device *dev)
  6301. {
  6302.         struct drm_i915_private *dev_priv = dev->dev_private;
  6303.  
  6304.         /*
  6305.          * On Ibex Peak and Cougar Point, we need to disable clock
  6306.          * gating for the panel power sequencer or it will fail to
  6307.          * start up when no ports are active.
  6308.          */
  6309.         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  6310. }
  6311.  
  6312. static void g4x_disable_trickle_feed(struct drm_device *dev)
  6313. {
  6314.         struct drm_i915_private *dev_priv = dev->dev_private;
  6315.         enum pipe pipe;
  6316.  
  6317.         for_each_pipe(dev_priv, pipe) {
  6318.                 I915_WRITE(DSPCNTR(pipe),
  6319.                            I915_READ(DSPCNTR(pipe)) |
  6320.                            DISPPLANE_TRICKLE_FEED_DISABLE);
  6321.  
  6322.                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  6323.                 POSTING_READ(DSPSURF(pipe));
  6324.         }
  6325. }
  6326.  
  6327. static void ilk_init_lp_watermarks(struct drm_device *dev)
  6328. {
  6329.         struct drm_i915_private *dev_priv = dev->dev_private;
  6330.  
  6331.         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  6332.         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  6333.         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  6334.  
  6335.         /*
  6336.          * Don't touch WM1S_LP_EN here.
  6337.          * Doing so could cause underruns.
  6338.          */
  6339. }
  6340.  
  6341. static void ironlake_init_clock_gating(struct drm_device *dev)
  6342. {
  6343.         struct drm_i915_private *dev_priv = dev->dev_private;
  6344.         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6345.  
  6346.         /*
  6347.          * Required for FBC
  6348.          * WaFbcDisableDpfcClockGating:ilk
  6349.          */
  6350.         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  6351.                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  6352.                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  6353.  
  6354.         I915_WRITE(PCH_3DCGDIS0,
  6355.                    MARIUNIT_CLOCK_GATE_DISABLE |
  6356.                    SVSMUNIT_CLOCK_GATE_DISABLE);
  6357.         I915_WRITE(PCH_3DCGDIS1,
  6358.                    VFMUNIT_CLOCK_GATE_DISABLE);
  6359.  
  6360.         /*
  6361.          * According to the spec the following bits should be set in
  6362.          * order to enable memory self-refresh
  6363.          * The bit 22/21 of 0x42004
  6364.          * The bit 5 of 0x42020
  6365.          * The bit 15 of 0x45000
  6366.          */
  6367.         I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6368.                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6369.                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6370.         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  6371.         I915_WRITE(DISP_ARB_CTL,
  6372.                    (I915_READ(DISP_ARB_CTL) |
  6373.                     DISP_FBC_WM_DIS));
  6374.  
  6375.         ilk_init_lp_watermarks(dev);
  6376.  
  6377.         /*
  6378.          * Based on the document from hardware guys the following bits
  6379.          * should be set unconditionally in order to enable FBC.
  6380.          * The bit 22 of 0x42000
  6381.          * The bit 22 of 0x42004
  6382.          * The bit 7,8,9 of 0x42020.
  6383.          */
  6384.         if (IS_IRONLAKE_M(dev)) {
  6385.                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  6386.                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6387.                            I915_READ(ILK_DISPLAY_CHICKEN1) |
  6388.                            ILK_FBCQ_DIS);
  6389.                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6390.                            I915_READ(ILK_DISPLAY_CHICKEN2) |
  6391.                            ILK_DPARB_GATE);
  6392.         }
  6393.  
  6394.         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6395.  
  6396.         I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6397.                    I915_READ(ILK_DISPLAY_CHICKEN2) |
  6398.                    ILK_ELPIN_409_SELECT);
  6399.         I915_WRITE(_3D_CHICKEN2,
  6400.                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6401.                    _3D_CHICKEN2_WM_READ_PIPELINED);
  6402.  
  6403.         /* WaDisableRenderCachePipelinedFlush:ilk */
  6404.         I915_WRITE(CACHE_MODE_0,
  6405.                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  6406.  
  6407.         /* WaDisable_RenderCache_OperationalFlush:ilk */
  6408.         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6409.  
  6410.         g4x_disable_trickle_feed(dev);
  6411.  
  6412.         ibx_init_clock_gating(dev);
  6413. }
  6414.  
  6415. static void cpt_init_clock_gating(struct drm_device *dev)
  6416. {
  6417.         struct drm_i915_private *dev_priv = dev->dev_private;
  6418.         int pipe;
  6419.         uint32_t val;
  6420.  
  6421.         /*
  6422.          * On Ibex Peak and Cougar Point, we need to disable clock
  6423.          * gating for the panel power sequencer or it will fail to
  6424.          * start up when no ports are active.
  6425.          */
  6426.         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  6427.                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  6428.                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
  6429.         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  6430.                    DPLS_EDP_PPS_FIX_DIS);
  6431.         /* The below fixes the weird display corruption, a few pixels shifted
  6432.          * downward, on (only) LVDS of some HP laptops with IVY.
  6433.          */
  6434.         for_each_pipe(dev_priv, pipe) {
  6435.                 val = I915_READ(TRANS_CHICKEN2(pipe));
  6436.                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  6437.                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6438.                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
  6439.                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6440.                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  6441.                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  6442.                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  6443.                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
  6444.         }
  6445.         /* WADP0ClockGatingDisable */
  6446.         for_each_pipe(dev_priv, pipe) {
  6447.                 I915_WRITE(TRANS_CHICKEN1(pipe),
  6448.                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6449.         }
  6450. }
  6451.  
  6452. static void gen6_check_mch_setup(struct drm_device *dev)
  6453. {
  6454.         struct drm_i915_private *dev_priv = dev->dev_private;
  6455.         uint32_t tmp;
  6456.  
  6457.         tmp = I915_READ(MCH_SSKPD);
  6458.         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  6459.                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  6460.                               tmp);
  6461. }
  6462.  
  6463. static void gen6_init_clock_gating(struct drm_device *dev)
  6464. {
  6465.         struct drm_i915_private *dev_priv = dev->dev_private;
  6466.         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6467.  
  6468.         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6469.  
  6470.         I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6471.                    I915_READ(ILK_DISPLAY_CHICKEN2) |
  6472.                    ILK_ELPIN_409_SELECT);
  6473.  
  6474.         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  6475.         I915_WRITE(_3D_CHICKEN,
  6476.                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  6477.  
  6478.         /* WaDisable_RenderCache_OperationalFlush:snb */
  6479.         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6480.  
  6481.         /*
  6482.          * BSpec recoomends 8x4 when MSAA is used,
  6483.          * however in practice 16x4 seems fastest.
  6484.          *
  6485.          * Note that PS/WM thread counts depend on the WIZ hashing
  6486.          * disable bit, which we don't touch here, but it's good
  6487.          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6488.          */
  6489.         I915_WRITE(GEN6_GT_MODE,
  6490.                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6491.  
  6492.         ilk_init_lp_watermarks(dev);
  6493.  
  6494.         I915_WRITE(CACHE_MODE_0,
  6495.                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  6496.  
  6497.         I915_WRITE(GEN6_UCGCTL1,
  6498.                    I915_READ(GEN6_UCGCTL1) |
  6499.                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  6500.                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  6501.  
  6502.         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  6503.          * gating disable must be set.  Failure to set it results in
  6504.          * flickering pixels due to Z write ordering failures after
  6505.          * some amount of runtime in the Mesa "fire" demo, and Unigine
  6506.          * Sanctuary and Tropics, and apparently anything else with
  6507.          * alpha test or pixel discard.
  6508.          *
  6509.          * According to the spec, bit 11 (RCCUNIT) must also be set,
  6510.          * but we didn't debug actual testcases to find it out.
  6511.          *
  6512.          * WaDisableRCCUnitClockGating:snb
  6513.          * WaDisableRCPBUnitClockGating:snb
  6514.          */
  6515.         I915_WRITE(GEN6_UCGCTL2,
  6516.                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  6517.                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  6518.  
  6519.         /* WaStripsFansDisableFastClipPerformanceFix:snb */
  6520.         I915_WRITE(_3D_CHICKEN3,
  6521.                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  6522.  
  6523.         /*
  6524.          * Bspec says:
  6525.          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  6526.          * 3DSTATE_SF number of SF output attributes is more than 16."
  6527.          */
  6528.         I915_WRITE(_3D_CHICKEN3,
  6529.                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  6530.  
  6531.         /*
  6532.          * According to the spec the following bits should be
  6533.          * set in order to enable memory self-refresh and fbc:
  6534.          * The bit21 and bit22 of 0x42000
  6535.          * The bit21 and bit22 of 0x42004
  6536.          * The bit5 and bit7 of 0x42020
  6537.          * The bit14 of 0x70180
  6538.          * The bit14 of 0x71180
  6539.          *
  6540.          * WaFbcAsynchFlipDisableFbcQueue:snb
  6541.          */
  6542.         I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6543.                    I915_READ(ILK_DISPLAY_CHICKEN1) |
  6544.                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6545.         I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6546.                    I915_READ(ILK_DISPLAY_CHICKEN2) |
  6547.                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6548.         I915_WRITE(ILK_DSPCLK_GATE_D,
  6549.                    I915_READ(ILK_DSPCLK_GATE_D) |
  6550.                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
  6551.                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  6552.  
  6553.         g4x_disable_trickle_feed(dev);
  6554.  
  6555.         cpt_init_clock_gating(dev);
  6556.  
  6557.         gen6_check_mch_setup(dev);
  6558. }
  6559.  
  6560. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  6561. {
  6562.         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  6563.  
  6564.         /*
  6565.          * WaVSThreadDispatchOverride:ivb,vlv
  6566.          *
  6567.          * This actually overrides the dispatch
  6568.          * mode for all thread types.
  6569.          */
  6570.         reg &= ~GEN7_FF_SCHED_MASK;
  6571.         reg |= GEN7_FF_TS_SCHED_HW;
  6572.         reg |= GEN7_FF_VS_SCHED_HW;
  6573.         reg |= GEN7_FF_DS_SCHED_HW;
  6574.  
  6575.         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  6576. }
  6577.  
  6578. static void lpt_init_clock_gating(struct drm_device *dev)
  6579. {
  6580.         struct drm_i915_private *dev_priv = dev->dev_private;
  6581.  
  6582.         /*
  6583.          * TODO: this bit should only be enabled when really needed, then
  6584.          * disabled when not needed anymore in order to save power.
  6585.          */
  6586.         if (HAS_PCH_LPT_LP(dev))
  6587.                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
  6588.                            I915_READ(SOUTH_DSPCLK_GATE_D) |
  6589.                            PCH_LP_PARTITION_LEVEL_DISABLE);
  6590.  
  6591.         /* WADPOClockGatingDisable:hsw */
  6592.         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  6593.                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  6594.                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6595. }
  6596.  
  6597. static void lpt_suspend_hw(struct drm_device *dev)
  6598. {
  6599.         struct drm_i915_private *dev_priv = dev->dev_private;
  6600.  
  6601.         if (HAS_PCH_LPT_LP(dev)) {
  6602.                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  6603.  
  6604.                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  6605.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  6606.         }
  6607. }
  6608.  
  6609. static void broadwell_init_clock_gating(struct drm_device *dev)
  6610. {
  6611.         struct drm_i915_private *dev_priv = dev->dev_private;
  6612.         enum pipe pipe;
  6613.         uint32_t misccpctl;
  6614.  
  6615.         ilk_init_lp_watermarks(dev);
  6616.  
  6617.         /* WaSwitchSolVfFArbitrationPriority:bdw */
  6618.         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6619.  
  6620.         /* WaPsrDPAMaskVBlankInSRD:bdw */
  6621.         I915_WRITE(CHICKEN_PAR1_1,
  6622.                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  6623.  
  6624.         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  6625.         for_each_pipe(dev_priv, pipe) {
  6626.                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
  6627.                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
  6628.                            BDW_DPRS_MASK_VBLANK_SRD);
  6629.         }
  6630.  
  6631.         /* WaVSRefCountFullforceMissDisable:bdw */
  6632.         /* WaDSRefCountFullforceMissDisable:bdw */
  6633.         I915_WRITE(GEN7_FF_THREAD_MODE,
  6634.                    I915_READ(GEN7_FF_THREAD_MODE) &
  6635.                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  6636.  
  6637.         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  6638.                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  6639.  
  6640.         /* WaDisableSDEUnitClockGating:bdw */
  6641.         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6642.                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6643.  
  6644.         /*
  6645.          * WaProgramL3SqcReg1Default:bdw
  6646.          * WaTempDisableDOPClkGating:bdw
  6647.          */
  6648.         misccpctl = I915_READ(GEN7_MISCCPCTL);
  6649.         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  6650.         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  6651.         /*
  6652.          * Wait at least 100 clocks before re-enabling clock gating. See
  6653.          * the definition of L3SQCREG1 in BSpec.
  6654.          */
  6655.         POSTING_READ(GEN8_L3SQCREG1);
  6656.         udelay(1);
  6657.         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  6658.  
  6659.         /*
  6660.          * WaGttCachingOffByDefault:bdw
  6661.          * GTT cache may not work with big pages, so if those
  6662.          * are ever enabled GTT cache may need to be disabled.
  6663.          */
  6664.         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  6665.  
  6666.         lpt_init_clock_gating(dev);
  6667. }
  6668.  
  6669. static void haswell_init_clock_gating(struct drm_device *dev)
  6670. {
  6671.         struct drm_i915_private *dev_priv = dev->dev_private;
  6672.  
  6673.         ilk_init_lp_watermarks(dev);
  6674.  
  6675.         /* L3 caching of data atomics doesn't work -- disable it. */
  6676.         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  6677.         I915_WRITE(HSW_ROW_CHICKEN3,
  6678.                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  6679.  
  6680.         /* This is required by WaCatErrorRejectionIssue:hsw */
  6681.         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6682.                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6683.                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6684.  
  6685.         /* WaVSRefCountFullforceMissDisable:hsw */
  6686.         I915_WRITE(GEN7_FF_THREAD_MODE,
  6687.                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  6688.  
  6689.         /* WaDisable_RenderCache_OperationalFlush:hsw */
  6690.         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6691.  
  6692.         /* enable HiZ Raw Stall Optimization */
  6693.         I915_WRITE(CACHE_MODE_0_GEN7,
  6694.                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6695.  
  6696.         /* WaDisable4x2SubspanOptimization:hsw */
  6697.         I915_WRITE(CACHE_MODE_1,
  6698.                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6699.  
  6700.         /*
  6701.          * BSpec recommends 8x4 when MSAA is used,
  6702.          * however in practice 16x4 seems fastest.
  6703.          *
  6704.          * Note that PS/WM thread counts depend on the WIZ hashing
  6705.          * disable bit, which we don't touch here, but it's good
  6706.          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6707.          */
  6708.         I915_WRITE(GEN7_GT_MODE,
  6709.                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6710.  
  6711.         /* WaSampleCChickenBitEnable:hsw */
  6712.         I915_WRITE(HALF_SLICE_CHICKEN3,
  6713.                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  6714.  
  6715.         /* WaSwitchSolVfFArbitrationPriority:hsw */
  6716.         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6717.  
  6718.         /* WaRsPkgCStateDisplayPMReq:hsw */
  6719.         I915_WRITE(CHICKEN_PAR1_1,
  6720.                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  6721.  
  6722.         lpt_init_clock_gating(dev);
  6723. }
  6724.  
  6725. static void ivybridge_init_clock_gating(struct drm_device *dev)
  6726. {
  6727.         struct drm_i915_private *dev_priv = dev->dev_private;
  6728.         uint32_t snpcr;
  6729.  
  6730.         ilk_init_lp_watermarks(dev);
  6731.  
  6732.         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  6733.  
  6734.         /* WaDisableEarlyCull:ivb */
  6735.         I915_WRITE(_3D_CHICKEN3,
  6736.                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6737.  
  6738.         /* WaDisableBackToBackFlipFix:ivb */
  6739.         I915_WRITE(IVB_CHICKEN3,
  6740.                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6741.                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6742.  
  6743.         /* WaDisablePSDDualDispatchEnable:ivb */
  6744.         if (IS_IVB_GT1(dev))
  6745.                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6746.                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6747.  
  6748.         /* WaDisable_RenderCache_OperationalFlush:ivb */
  6749.         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6750.  
  6751.         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  6752.         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  6753.                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  6754.  
  6755.         /* WaApplyL3ControlAndL3ChickenMode:ivb */
  6756.         I915_WRITE(GEN7_L3CNTLREG1,
  6757.                         GEN7_WA_FOR_GEN7_L3_CONTROL);
  6758.         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  6759.                    GEN7_WA_L3_CHICKEN_MODE);
  6760.         if (IS_IVB_GT1(dev))
  6761.                 I915_WRITE(GEN7_ROW_CHICKEN2,
  6762.                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6763.         else {
  6764.                 /* must write both registers */
  6765.                 I915_WRITE(GEN7_ROW_CHICKEN2,
  6766.                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6767.                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  6768.                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6769.         }
  6770.  
  6771.         /* WaForceL3Serialization:ivb */
  6772.         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6773.                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6774.  
  6775.         /*
  6776.          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6777.          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  6778.          */
  6779.         I915_WRITE(GEN6_UCGCTL2,
  6780.                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6781.  
  6782.         /* This is required by WaCatErrorRejectionIssue:ivb */
  6783.         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6784.                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6785.                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6786.  
  6787.         g4x_disable_trickle_feed(dev);
  6788.  
  6789.         gen7_setup_fixed_func_scheduler(dev_priv);
  6790.  
  6791.         if (0) { /* causes HiZ corruption on ivb:gt1 */
  6792.                 /* enable HiZ Raw Stall Optimization */
  6793.                 I915_WRITE(CACHE_MODE_0_GEN7,
  6794.                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6795.         }
  6796.  
  6797.         /* WaDisable4x2SubspanOptimization:ivb */
  6798.         I915_WRITE(CACHE_MODE_1,
  6799.                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6800.  
  6801.         /*
  6802.          * BSpec recommends 8x4 when MSAA is used,
  6803.          * however in practice 16x4 seems fastest.
  6804.          *
  6805.          * Note that PS/WM thread counts depend on the WIZ hashing
  6806.          * disable bit, which we don't touch here, but it's good
  6807.          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6808.          */
  6809.         I915_WRITE(GEN7_GT_MODE,
  6810.                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6811.  
  6812.         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  6813.         snpcr &= ~GEN6_MBC_SNPCR_MASK;
  6814.         snpcr |= GEN6_MBC_SNPCR_MED;
  6815.         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  6816.  
  6817.         if (!HAS_PCH_NOP(dev))
  6818.                 cpt_init_clock_gating(dev);
  6819.  
  6820.         gen6_check_mch_setup(dev);
  6821. }
  6822.  
  6823. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  6824. {
  6825.         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  6826.  
  6827.         /*
  6828.          * Disable trickle feed and enable pnd deadline calculation
  6829.          */
  6830.         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  6831.         I915_WRITE(CBR1_VLV, 0);
  6832. }
  6833.  
  6834. static void valleyview_init_clock_gating(struct drm_device *dev)
  6835. {
  6836.         struct drm_i915_private *dev_priv = dev->dev_private;
  6837.  
  6838.         vlv_init_display_clock_gating(dev_priv);
  6839.  
  6840.         /* WaDisableEarlyCull:vlv */
  6841.         I915_WRITE(_3D_CHICKEN3,
  6842.                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6843.  
  6844.         /* WaDisableBackToBackFlipFix:vlv */
  6845.         I915_WRITE(IVB_CHICKEN3,
  6846.                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6847.                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6848.  
  6849.         /* WaPsdDispatchEnable:vlv */
  6850.         /* WaDisablePSDDualDispatchEnable:vlv */
  6851.         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6852.                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  6853.                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6854.  
  6855.         /* WaDisable_RenderCache_OperationalFlush:vlv */
  6856.         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6857.  
  6858.         /* WaForceL3Serialization:vlv */
  6859.         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6860.                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6861.  
  6862.         /* WaDisableDopClockGating:vlv */
  6863.         I915_WRITE(GEN7_ROW_CHICKEN2,
  6864.                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6865.  
  6866.         /* This is required by WaCatErrorRejectionIssue:vlv */
  6867.         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6868.                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6869.                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6870.  
  6871.         gen7_setup_fixed_func_scheduler(dev_priv);
  6872.  
  6873.         /*
  6874.          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6875.          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  6876.          */
  6877.         I915_WRITE(GEN6_UCGCTL2,
  6878.                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6879.  
  6880.         /* WaDisableL3Bank2xClockGate:vlv
  6881.          * Disabling L3 clock gating- MMIO 940c[25] = 1
  6882.          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  6883.         I915_WRITE(GEN7_UCGCTL4,
  6884.                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  6885.  
  6886.         /*
  6887.          * BSpec says this must be set, even though
  6888.          * WaDisable4x2SubspanOptimization isn't listed for VLV.
  6889.          */
  6890.         I915_WRITE(CACHE_MODE_1,
  6891.                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6892.  
  6893.         /*
  6894.          * BSpec recommends 8x4 when MSAA is used,
  6895.          * however in practice 16x4 seems fastest.
  6896.          *
  6897.          * Note that PS/WM thread counts depend on the WIZ hashing
  6898.          * disable bit, which we don't touch here, but it's good
  6899.          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6900.          */
  6901.         I915_WRITE(GEN7_GT_MODE,
  6902.                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6903.  
  6904.         /*
  6905.          * WaIncreaseL3CreditsForVLVB0:vlv
  6906.          * This is the hardware default actually.
  6907.          */
  6908.         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  6909.  
  6910.         /*
  6911.          * WaDisableVLVClockGating_VBIIssue:vlv
  6912.          * Disable clock gating on th GCFG unit to prevent a delay
  6913.          * in the reporting of vblank events.
  6914.          */
  6915.         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  6916. }
  6917.  
  6918. static void cherryview_init_clock_gating(struct drm_device *dev)
  6919. {
  6920.         struct drm_i915_private *dev_priv = dev->dev_private;
  6921.  
  6922.         vlv_init_display_clock_gating(dev_priv);
  6923.  
  6924.         /* WaVSRefCountFullforceMissDisable:chv */
  6925.         /* WaDSRefCountFullforceMissDisable:chv */
  6926.         I915_WRITE(GEN7_FF_THREAD_MODE,
  6927.                    I915_READ(GEN7_FF_THREAD_MODE) &
  6928.                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  6929.  
  6930.         /* WaDisableSemaphoreAndSyncFlipWait:chv */
  6931.         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  6932.                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  6933.  
  6934.         /* WaDisableCSUnitClockGating:chv */
  6935.         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  6936.                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  6937.  
  6938.         /* WaDisableSDEUnitClockGating:chv */
  6939.         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6940.                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6941.  
  6942.         /*
  6943.          * GTT cache may not work with big pages, so if those
  6944.          * are ever enabled GTT cache may need to be disabled.
  6945.          */
  6946.         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  6947. }
  6948.  
  6949. static void g4x_init_clock_gating(struct drm_device *dev)
  6950. {
  6951.         struct drm_i915_private *dev_priv = dev->dev_private;
  6952.         uint32_t dspclk_gate;
  6953.  
  6954.         I915_WRITE(RENCLK_GATE_D1, 0);
  6955.         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  6956.                    GS_UNIT_CLOCK_GATE_DISABLE |
  6957.                    CL_UNIT_CLOCK_GATE_DISABLE);
  6958.         I915_WRITE(RAMCLK_GATE_D, 0);
  6959.         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  6960.                 OVRUNIT_CLOCK_GATE_DISABLE |
  6961.                 OVCUNIT_CLOCK_GATE_DISABLE;
  6962.         if (IS_GM45(dev))
  6963.                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  6964.         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  6965.  
  6966.         /* WaDisableRenderCachePipelinedFlush */
  6967.         I915_WRITE(CACHE_MODE_0,
  6968.                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  6969.  
  6970.         /* WaDisable_RenderCache_OperationalFlush:g4x */
  6971.         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6972.  
  6973.         g4x_disable_trickle_feed(dev);
  6974. }
  6975.  
  6976. static void crestline_init_clock_gating(struct drm_device *dev)
  6977. {
  6978.         struct drm_i915_private *dev_priv = dev->dev_private;
  6979.  
  6980.         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  6981.         I915_WRITE(RENCLK_GATE_D2, 0);
  6982.         I915_WRITE(DSPCLK_GATE_D, 0);
  6983.         I915_WRITE(RAMCLK_GATE_D, 0);
  6984.         I915_WRITE16(DEUC, 0);
  6985.         I915_WRITE(MI_ARB_STATE,
  6986.                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  6987.  
  6988.         /* WaDisable_RenderCache_OperationalFlush:gen4 */
  6989.         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6990. }
  6991.  
  6992. static void broadwater_init_clock_gating(struct drm_device *dev)
  6993. {
  6994.         struct drm_i915_private *dev_priv = dev->dev_private;
  6995.  
  6996.         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  6997.                    I965_RCC_CLOCK_GATE_DISABLE |
  6998.                    I965_RCPB_CLOCK_GATE_DISABLE |
  6999.                    I965_ISC_CLOCK_GATE_DISABLE |
  7000.                    I965_FBC_CLOCK_GATE_DISABLE);
  7001.         I915_WRITE(RENCLK_GATE_D2, 0);
  7002.         I915_WRITE(MI_ARB_STATE,
  7003.                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7004.  
  7005.         /* WaDisable_RenderCache_OperationalFlush:gen4 */
  7006.         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7007. }
  7008.  
  7009. static void gen3_init_clock_gating(struct drm_device *dev)
  7010. {
  7011.         struct drm_i915_private *dev_priv = dev->dev_private;
  7012.         u32 dstate = I915_READ(D_STATE);
  7013.  
  7014.         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7015.                 DSTATE_DOT_CLOCK_GATING;
  7016.         I915_WRITE(D_STATE, dstate);
  7017.  
  7018.         if (IS_PINEVIEW(dev))
  7019.                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  7020.  
  7021.         /* IIR "flip pending" means done if this bit is set */
  7022.         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  7023.  
  7024.         /* interrupts should cause a wake up from C3 */
  7025.         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  7026.  
  7027.         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  7028.         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  7029.  
  7030.         I915_WRITE(MI_ARB_STATE,
  7031.                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7032. }
  7033.  
  7034. static void i85x_init_clock_gating(struct drm_device *dev)
  7035. {
  7036.         struct drm_i915_private *dev_priv = dev->dev_private;
  7037.  
  7038.         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7039.  
  7040.         /* interrupts should cause a wake up from C3 */
  7041.         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  7042.                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  7043.  
  7044.         I915_WRITE(MEM_MODE,
  7045.                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  7046. }
  7047.  
  7048. static void i830_init_clock_gating(struct drm_device *dev)
  7049. {
  7050.         struct drm_i915_private *dev_priv = dev->dev_private;
  7051.  
  7052.         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7053.  
  7054.         I915_WRITE(MEM_MODE,
  7055.                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  7056.                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  7057. }
  7058.  
  7059. void intel_init_clock_gating(struct drm_device *dev)
  7060. {
  7061.         struct drm_i915_private *dev_priv = dev->dev_private;
  7062.  
  7063.         if (dev_priv->display.init_clock_gating)
  7064.                 dev_priv->display.init_clock_gating(dev);
  7065. }
  7066.  
  7067. void intel_suspend_hw(struct drm_device *dev)
  7068. {
  7069.         if (HAS_PCH_LPT(dev))
  7070.                 lpt_suspend_hw(dev);
  7071. }
  7072.  
  7073. /* Set up chip specific power management-related functions */
  7074. void intel_init_pm(struct drm_device *dev)
  7075. {
  7076.         struct drm_i915_private *dev_priv = dev->dev_private;
  7077.  
  7078.         intel_fbc_init(dev_priv);
  7079.  
  7080.         /* For cxsr */
  7081.         if (IS_PINEVIEW(dev))
  7082.                 i915_pineview_get_mem_freq(dev);
  7083.         else if (IS_GEN5(dev))
  7084.                 i915_ironlake_get_mem_freq(dev);
  7085.  
  7086.         /* For FIFO watermark updates */
  7087.         if (INTEL_INFO(dev)->gen >= 9) {
  7088.                 skl_setup_wm_latency(dev);
  7089.  
  7090.                 if (IS_BROXTON(dev))
  7091.                         dev_priv->display.init_clock_gating =
  7092.                                 bxt_init_clock_gating;
  7093.                 dev_priv->display.update_wm = skl_update_wm;
  7094.         } else if (HAS_PCH_SPLIT(dev)) {
  7095.                 ilk_setup_wm_latency(dev);
  7096.  
  7097.                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  7098.                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  7099.                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  7100.                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  7101.                         dev_priv->display.update_wm = ilk_update_wm;
  7102.                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  7103.                         dev_priv->display.program_watermarks = ilk_program_watermarks;
  7104.                 } else {
  7105.                         DRM_DEBUG_KMS("Failed to read display plane latency. "
  7106.                                       "Disable CxSR\n");
  7107.                 }
  7108.  
  7109.                 if (IS_GEN5(dev))
  7110.                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7111.                 else if (IS_GEN6(dev))
  7112.                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7113.                 else if (IS_IVYBRIDGE(dev))
  7114.                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7115.                 else if (IS_HASWELL(dev))
  7116.                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  7117.                 else if (INTEL_INFO(dev)->gen == 8)
  7118.                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  7119.         } else if (IS_CHERRYVIEW(dev)) {
  7120.                 vlv_setup_wm_latency(dev);
  7121.  
  7122.                 dev_priv->display.update_wm = vlv_update_wm;
  7123.                 dev_priv->display.init_clock_gating =
  7124.                         cherryview_init_clock_gating;
  7125.         } else if (IS_VALLEYVIEW(dev)) {
  7126.                 vlv_setup_wm_latency(dev);
  7127.  
  7128.                 dev_priv->display.update_wm = vlv_update_wm;
  7129.                 dev_priv->display.init_clock_gating =
  7130.                         valleyview_init_clock_gating;
  7131.         } else if (IS_PINEVIEW(dev)) {
  7132.                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7133.                                             dev_priv->is_ddr3,
  7134.                                             dev_priv->fsb_freq,
  7135.                                             dev_priv->mem_freq)) {
  7136.                         DRM_INFO("failed to find known CxSR latency "
  7137.                                  "(found ddr%s fsb freq %d, mem freq %d), "
  7138.                                  "disabling CxSR\n",
  7139.                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7140.                                  dev_priv->fsb_freq, dev_priv->mem_freq);
  7141.                         /* Disable CxSR and never update its watermark again */
  7142.                         intel_set_memory_cxsr(dev_priv, false);
  7143.                         dev_priv->display.update_wm = NULL;
  7144.                 } else
  7145.                         dev_priv->display.update_wm = pineview_update_wm;
  7146.                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7147.         } else if (IS_G4X(dev)) {
  7148.                 dev_priv->display.update_wm = g4x_update_wm;
  7149.                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7150.         } else if (IS_GEN4(dev)) {
  7151.                 dev_priv->display.update_wm = i965_update_wm;
  7152.                 if (IS_CRESTLINE(dev))
  7153.                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7154.                 else if (IS_BROADWATER(dev))
  7155.                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7156.         } else if (IS_GEN3(dev)) {
  7157.                 dev_priv->display.update_wm = i9xx_update_wm;
  7158.                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7159.                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7160.         } else if (IS_GEN2(dev)) {
  7161.                 if (INTEL_INFO(dev)->num_pipes == 1) {
  7162.                         dev_priv->display.update_wm = i845_update_wm;
  7163.                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7164.                 } else {
  7165.                         dev_priv->display.update_wm = i9xx_update_wm;
  7166.                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7167.                 }
  7168.  
  7169.                 if (IS_I85X(dev) || IS_I865G(dev))
  7170.                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7171.                 else
  7172.                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7173.         } else {
  7174.                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  7175.         }
  7176. }
  7177.  
  7178. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  7179. {
  7180.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7181.  
  7182.         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7183.                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  7184.                 return -EAGAIN;
  7185.         }
  7186.  
  7187.         I915_WRITE(GEN6_PCODE_DATA, *val);
  7188.         I915_WRITE(GEN6_PCODE_DATA1, 0);
  7189.         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7190.  
  7191.         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7192.                      500)) {
  7193.                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  7194.                 return -ETIMEDOUT;
  7195.         }
  7196.  
  7197.         *val = I915_READ(GEN6_PCODE_DATA);
  7198.         I915_WRITE(GEN6_PCODE_DATA, 0);
  7199.  
  7200.         return 0;
  7201. }
  7202.  
  7203. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  7204. {
  7205.         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7206.  
  7207.         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7208.                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  7209.                 return -EAGAIN;
  7210.         }
  7211.  
  7212.         I915_WRITE(GEN6_PCODE_DATA, val);
  7213.         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7214.  
  7215.         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7216.                      500)) {
  7217.                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  7218.                 return -ETIMEDOUT;
  7219.         }
  7220.  
  7221.         I915_WRITE(GEN6_PCODE_DATA, 0);
  7222.  
  7223.         return 0;
  7224. }
  7225.  
  7226. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  7227. {
  7228.         switch (czclk_freq) {
  7229.         case 200:
  7230.                 return 10;
  7231.         case 267:
  7232.                 return 12;
  7233.         case 320:
  7234.         case 333:
  7235.                 return 16;
  7236.         case 400:
  7237.                 return 20;
  7238.         default:
  7239.                 return -1;
  7240.         }
  7241. }
  7242.  
  7243. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7244. {
  7245.         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  7246.  
  7247.         div = vlv_gpu_freq_div(czclk_freq);
  7248.         if (div < 0)
  7249.                 return div;
  7250.  
  7251.         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  7252. }
  7253.  
  7254. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7255. {
  7256.         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  7257.  
  7258.         mul = vlv_gpu_freq_div(czclk_freq);
  7259.         if (mul < 0)
  7260.                 return mul;
  7261.  
  7262.         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  7263. }
  7264.  
  7265. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7266. {
  7267.         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  7268.  
  7269.         div = vlv_gpu_freq_div(czclk_freq);
  7270.         if (div < 0)
  7271.                 return div;
  7272.         div /= 2;
  7273.  
  7274.         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  7275. }
  7276.  
  7277. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7278. {
  7279.         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  7280.  
  7281.         mul = vlv_gpu_freq_div(czclk_freq);
  7282.         if (mul < 0)
  7283.                 return mul;
  7284.         mul /= 2;
  7285.  
  7286.         /* CHV needs even values */
  7287.         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  7288. }
  7289.  
  7290. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7291. {
  7292.         if (IS_GEN9(dev_priv->dev))
  7293.                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  7294.                                          GEN9_FREQ_SCALER);
  7295.         else if (IS_CHERRYVIEW(dev_priv->dev))
  7296.                 return chv_gpu_freq(dev_priv, val);
  7297.         else if (IS_VALLEYVIEW(dev_priv->dev))
  7298.                 return byt_gpu_freq(dev_priv, val);
  7299.         else
  7300.                 return val * GT_FREQUENCY_MULTIPLIER;
  7301. }
  7302.  
  7303. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7304. {
  7305.         if (IS_GEN9(dev_priv->dev))
  7306.                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  7307.                                          GT_FREQUENCY_MULTIPLIER);
  7308.         else if (IS_CHERRYVIEW(dev_priv->dev))
  7309.                 return chv_freq_opcode(dev_priv, val);
  7310.         else if (IS_VALLEYVIEW(dev_priv->dev))
  7311.                 return byt_freq_opcode(dev_priv, val);
  7312.         else
  7313.                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  7314. }
  7315.  
  7316. struct request_boost {
  7317.         struct work_struct work;
  7318.         struct drm_i915_gem_request *req;
  7319. };
  7320.  
  7321. static void __intel_rps_boost_work(struct work_struct *work)
  7322. {
  7323.         struct request_boost *boost = container_of(work, struct request_boost, work);
  7324.         struct drm_i915_gem_request *req = boost->req;
  7325.  
  7326.         if (!i915_gem_request_completed(req, true))
  7327.                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
  7328.                                req->emitted_jiffies);
  7329.  
  7330.         i915_gem_request_unreference__unlocked(req);
  7331.         kfree(boost);
  7332. }
  7333.  
  7334. void intel_queue_rps_boost_for_request(struct drm_device *dev,
  7335.                                        struct drm_i915_gem_request *req)
  7336. {
  7337.         struct request_boost *boost;
  7338.  
  7339.         if (req == NULL || INTEL_INFO(dev)->gen < 6)
  7340.                 return;
  7341.  
  7342.         if (i915_gem_request_completed(req, true))
  7343.                 return;
  7344.  
  7345.         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  7346.         if (boost == NULL)
  7347.                 return;
  7348.  
  7349.         i915_gem_request_reference(req);
  7350.         boost->req = req;
  7351.  
  7352.         INIT_WORK(&boost->work, __intel_rps_boost_work);
  7353.         queue_work(to_i915(dev)->wq, &boost->work);
  7354. }
  7355.  
  7356. void intel_pm_setup(struct drm_device *dev)
  7357. {
  7358.         struct drm_i915_private *dev_priv = dev->dev_private;
  7359.  
  7360.         mutex_init(&dev_priv->rps.hw_lock);
  7361.         spin_lock_init(&dev_priv->rps.client_lock);
  7362.  
  7363.         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  7364.                           intel_gen6_powersave_work);
  7365.         INIT_LIST_HEAD(&dev_priv->rps.clients);
  7366.         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
  7367.         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
  7368.  
  7369.         dev_priv->pm.suspended = false;
  7370.         atomic_set(&dev_priv->pm.wakeref_count, 0);
  7371.         atomic_set(&dev_priv->pm.atomic_seq, 0);
  7372. }
  7373.