Subversion Repositories Kolibri OS

Rev

Rev 6088 | Rev 6296 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2006-2007 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *      Eric Anholt <eric@anholt.net>
  25.  */
  26.  
  27. #include <linux/dmi.h>
  28. #include <linux/module.h>
  29. #include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include <drm/drmP.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include <drm/drm_atomic.h>
  41. #include <drm/drm_atomic_helper.h>
  42. #include <drm/drm_dp_helper.h>
  43. #include <drm/drm_crtc_helper.h>
  44. #include <drm/drm_plane_helper.h>
  45. #include <drm/drm_rect.h>
  46. #include <linux/dma_remapping.h>
  47.  
  48. /* Primary plane formats for gen <= 3 */
  49. static const uint32_t i8xx_primary_formats[] = {
  50.         DRM_FORMAT_C8,
  51.         DRM_FORMAT_RGB565,
  52.         DRM_FORMAT_XRGB1555,
  53.         DRM_FORMAT_XRGB8888,
  54. };
  55.  
  56. /* Primary plane formats for gen >= 4 */
  57. static const uint32_t i965_primary_formats[] = {
  58.         DRM_FORMAT_C8,
  59.         DRM_FORMAT_RGB565,
  60.         DRM_FORMAT_XRGB8888,
  61.         DRM_FORMAT_XBGR8888,
  62.         DRM_FORMAT_XRGB2101010,
  63.         DRM_FORMAT_XBGR2101010,
  64. };
  65.  
  66. static const uint32_t skl_primary_formats[] = {
  67.         DRM_FORMAT_C8,
  68.         DRM_FORMAT_RGB565,
  69.         DRM_FORMAT_XRGB8888,
  70.         DRM_FORMAT_XBGR8888,
  71.         DRM_FORMAT_ARGB8888,
  72.         DRM_FORMAT_ABGR8888,
  73.         DRM_FORMAT_XRGB2101010,
  74.         DRM_FORMAT_XBGR2101010,
  75.         DRM_FORMAT_YUYV,
  76.         DRM_FORMAT_YVYU,
  77.         DRM_FORMAT_UYVY,
  78.         DRM_FORMAT_VYUY,
  79. };
  80.  
  81. /* Cursor formats */
  82. static const uint32_t intel_cursor_formats[] = {
  83.         DRM_FORMAT_ARGB8888,
  84. };
  85.  
  86. void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  87.  
  88. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  89.                                 struct intel_crtc_state *pipe_config);
  90. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  91.                                    struct intel_crtc_state *pipe_config);
  92.  
  93. static int intel_framebuffer_init(struct drm_device *dev,
  94.                                   struct intel_framebuffer *ifb,
  95.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  96.                                   struct drm_i915_gem_object *obj);
  97. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  98. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  99. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  100.                                          struct intel_link_m_n *m_n,
  101.                                          struct intel_link_m_n *m2_n2);
  102. static void ironlake_set_pipeconf(struct drm_crtc *crtc);
  103. static void haswell_set_pipeconf(struct drm_crtc *crtc);
  104. static void intel_set_pipe_csc(struct drm_crtc *crtc);
  105. static void vlv_prepare_pll(struct intel_crtc *crtc,
  106.                             const struct intel_crtc_state *pipe_config);
  107. static void chv_prepare_pll(struct intel_crtc *crtc,
  108.                             const struct intel_crtc_state *pipe_config);
  109. static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  110. static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  111. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  112.         struct intel_crtc_state *crtc_state);
  113. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  114.                            int num_connectors);
  115. static void skylake_pfit_enable(struct intel_crtc *crtc);
  116. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
  117. static void ironlake_pfit_enable(struct intel_crtc *crtc);
  118. static void intel_modeset_setup_hw_state(struct drm_device *dev);
  119. static void intel_pre_disable_primary(struct drm_crtc *crtc);
  120.  
  121. typedef struct {
  122.         int     min, max;
  123. } intel_range_t;
  124.  
  125. typedef struct {
  126.         int     dot_limit;
  127.         int     p2_slow, p2_fast;
  128. } intel_p2_t;
  129.  
  130. typedef struct intel_limit intel_limit_t;
  131. struct intel_limit {
  132.         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  133.         intel_p2_t          p2;
  134. };
  135.  
  136. /* returns HPLL frequency in kHz */
  137. static int valleyview_get_vco(struct drm_i915_private *dev_priv)
  138. {
  139.         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
  140.  
  141.         /* Obtain SKU information */
  142.         mutex_lock(&dev_priv->sb_lock);
  143.         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
  144.                 CCK_FUSE_HPLL_FREQ_MASK;
  145.         mutex_unlock(&dev_priv->sb_lock);
  146.  
  147.         return vco_freq[hpll_freq] * 1000;
  148. }
  149.  
  150. static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
  151.                                   const char *name, u32 reg)
  152. {
  153.         u32 val;
  154.         int divider;
  155.  
  156.         if (dev_priv->hpll_freq == 0)
  157.                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
  158.  
  159.         mutex_lock(&dev_priv->sb_lock);
  160.         val = vlv_cck_read(dev_priv, reg);
  161.         mutex_unlock(&dev_priv->sb_lock);
  162.  
  163.         divider = val & CCK_FREQUENCY_VALUES;
  164.  
  165.         WARN((val & CCK_FREQUENCY_STATUS) !=
  166.              (divider << CCK_FREQUENCY_STATUS_SHIFT),
  167.              "%s change in progress\n", name);
  168.  
  169.         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
  170. }
  171.  
  172. int
  173. intel_pch_rawclk(struct drm_device *dev)
  174. {
  175.         struct drm_i915_private *dev_priv = dev->dev_private;
  176.  
  177.         WARN_ON(!HAS_PCH_SPLIT(dev));
  178.  
  179.         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  180. }
  181.  
  182. /* hrawclock is 1/4 the FSB frequency */
  183. int intel_hrawclk(struct drm_device *dev)
  184. {
  185.         struct drm_i915_private *dev_priv = dev->dev_private;
  186.         uint32_t clkcfg;
  187.  
  188.         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  189.         if (IS_VALLEYVIEW(dev))
  190.                 return 200;
  191.  
  192.         clkcfg = I915_READ(CLKCFG);
  193.         switch (clkcfg & CLKCFG_FSB_MASK) {
  194.         case CLKCFG_FSB_400:
  195.                 return 100;
  196.         case CLKCFG_FSB_533:
  197.                 return 133;
  198.         case CLKCFG_FSB_667:
  199.                 return 166;
  200.         case CLKCFG_FSB_800:
  201.                 return 200;
  202.         case CLKCFG_FSB_1067:
  203.                 return 266;
  204.         case CLKCFG_FSB_1333:
  205.                 return 333;
  206.         /* these two are just a guess; one of them might be right */
  207.         case CLKCFG_FSB_1600:
  208.         case CLKCFG_FSB_1600_ALT:
  209.                 return 400;
  210.         default:
  211.                 return 133;
  212.         }
  213. }
  214.  
  215. static void intel_update_czclk(struct drm_i915_private *dev_priv)
  216. {
  217.         if (!IS_VALLEYVIEW(dev_priv))
  218.                 return;
  219.  
  220.         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
  221.                                                       CCK_CZ_CLOCK_CONTROL);
  222.  
  223.         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
  224. }
  225.  
  226. static inline u32 /* units of 100MHz */
  227. intel_fdi_link_freq(struct drm_device *dev)
  228. {
  229.         if (IS_GEN5(dev)) {
  230.                 struct drm_i915_private *dev_priv = dev->dev_private;
  231.                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  232.         } else
  233.                 return 27;
  234. }
  235.  
  236. static const intel_limit_t intel_limits_i8xx_dac = {
  237.         .dot = { .min = 25000, .max = 350000 },
  238.         .vco = { .min = 908000, .max = 1512000 },
  239.         .n = { .min = 2, .max = 16 },
  240.         .m = { .min = 96, .max = 140 },
  241.         .m1 = { .min = 18, .max = 26 },
  242.         .m2 = { .min = 6, .max = 16 },
  243.         .p = { .min = 4, .max = 128 },
  244.         .p1 = { .min = 2, .max = 33 },
  245.         .p2 = { .dot_limit = 165000,
  246.                 .p2_slow = 4, .p2_fast = 2 },
  247. };
  248.  
  249. static const intel_limit_t intel_limits_i8xx_dvo = {
  250.         .dot = { .min = 25000, .max = 350000 },
  251.         .vco = { .min = 908000, .max = 1512000 },
  252.         .n = { .min = 2, .max = 16 },
  253.         .m = { .min = 96, .max = 140 },
  254.         .m1 = { .min = 18, .max = 26 },
  255.         .m2 = { .min = 6, .max = 16 },
  256.         .p = { .min = 4, .max = 128 },
  257.         .p1 = { .min = 2, .max = 33 },
  258.         .p2 = { .dot_limit = 165000,
  259.                 .p2_slow = 4, .p2_fast = 4 },
  260. };
  261.  
  262. static const intel_limit_t intel_limits_i8xx_lvds = {
  263.         .dot = { .min = 25000, .max = 350000 },
  264.         .vco = { .min = 908000, .max = 1512000 },
  265.         .n = { .min = 2, .max = 16 },
  266.         .m = { .min = 96, .max = 140 },
  267.         .m1 = { .min = 18, .max = 26 },
  268.         .m2 = { .min = 6, .max = 16 },
  269.         .p = { .min = 4, .max = 128 },
  270.         .p1 = { .min = 1, .max = 6 },
  271.         .p2 = { .dot_limit = 165000,
  272.                 .p2_slow = 14, .p2_fast = 7 },
  273. };
  274.  
  275. static const intel_limit_t intel_limits_i9xx_sdvo = {
  276.         .dot = { .min = 20000, .max = 400000 },
  277.         .vco = { .min = 1400000, .max = 2800000 },
  278.         .n = { .min = 1, .max = 6 },
  279.         .m = { .min = 70, .max = 120 },
  280.         .m1 = { .min = 8, .max = 18 },
  281.         .m2 = { .min = 3, .max = 7 },
  282.         .p = { .min = 5, .max = 80 },
  283.         .p1 = { .min = 1, .max = 8 },
  284.         .p2 = { .dot_limit = 200000,
  285.                 .p2_slow = 10, .p2_fast = 5 },
  286. };
  287.  
  288. static const intel_limit_t intel_limits_i9xx_lvds = {
  289.         .dot = { .min = 20000, .max = 400000 },
  290.         .vco = { .min = 1400000, .max = 2800000 },
  291.         .n = { .min = 1, .max = 6 },
  292.         .m = { .min = 70, .max = 120 },
  293.         .m1 = { .min = 8, .max = 18 },
  294.         .m2 = { .min = 3, .max = 7 },
  295.         .p = { .min = 7, .max = 98 },
  296.         .p1 = { .min = 1, .max = 8 },
  297.         .p2 = { .dot_limit = 112000,
  298.                 .p2_slow = 14, .p2_fast = 7 },
  299. };
  300.  
  301.  
  302. static const intel_limit_t intel_limits_g4x_sdvo = {
  303.         .dot = { .min = 25000, .max = 270000 },
  304.         .vco = { .min = 1750000, .max = 3500000},
  305.         .n = { .min = 1, .max = 4 },
  306.         .m = { .min = 104, .max = 138 },
  307.         .m1 = { .min = 17, .max = 23 },
  308.         .m2 = { .min = 5, .max = 11 },
  309.         .p = { .min = 10, .max = 30 },
  310.         .p1 = { .min = 1, .max = 3},
  311.         .p2 = { .dot_limit = 270000,
  312.                 .p2_slow = 10,
  313.                 .p2_fast = 10
  314.         },
  315. };
  316.  
  317. static const intel_limit_t intel_limits_g4x_hdmi = {
  318.         .dot = { .min = 22000, .max = 400000 },
  319.         .vco = { .min = 1750000, .max = 3500000},
  320.         .n = { .min = 1, .max = 4 },
  321.         .m = { .min = 104, .max = 138 },
  322.         .m1 = { .min = 16, .max = 23 },
  323.         .m2 = { .min = 5, .max = 11 },
  324.         .p = { .min = 5, .max = 80 },
  325.         .p1 = { .min = 1, .max = 8},
  326.         .p2 = { .dot_limit = 165000,
  327.                 .p2_slow = 10, .p2_fast = 5 },
  328. };
  329.  
  330. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  331.         .dot = { .min = 20000, .max = 115000 },
  332.         .vco = { .min = 1750000, .max = 3500000 },
  333.         .n = { .min = 1, .max = 3 },
  334.         .m = { .min = 104, .max = 138 },
  335.         .m1 = { .min = 17, .max = 23 },
  336.         .m2 = { .min = 5, .max = 11 },
  337.         .p = { .min = 28, .max = 112 },
  338.         .p1 = { .min = 2, .max = 8 },
  339.         .p2 = { .dot_limit = 0,
  340.                 .p2_slow = 14, .p2_fast = 14
  341.         },
  342. };
  343.  
  344. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  345.         .dot = { .min = 80000, .max = 224000 },
  346.         .vco = { .min = 1750000, .max = 3500000 },
  347.         .n = { .min = 1, .max = 3 },
  348.         .m = { .min = 104, .max = 138 },
  349.         .m1 = { .min = 17, .max = 23 },
  350.         .m2 = { .min = 5, .max = 11 },
  351.         .p = { .min = 14, .max = 42 },
  352.         .p1 = { .min = 2, .max = 6 },
  353.         .p2 = { .dot_limit = 0,
  354.                 .p2_slow = 7, .p2_fast = 7
  355.         },
  356. };
  357.  
  358. static const intel_limit_t intel_limits_pineview_sdvo = {
  359.         .dot = { .min = 20000, .max = 400000},
  360.         .vco = { .min = 1700000, .max = 3500000 },
  361.         /* Pineview's Ncounter is a ring counter */
  362.         .n = { .min = 3, .max = 6 },
  363.         .m = { .min = 2, .max = 256 },
  364.         /* Pineview only has one combined m divider, which we treat as m2. */
  365.         .m1 = { .min = 0, .max = 0 },
  366.         .m2 = { .min = 0, .max = 254 },
  367.         .p = { .min = 5, .max = 80 },
  368.         .p1 = { .min = 1, .max = 8 },
  369.         .p2 = { .dot_limit = 200000,
  370.                 .p2_slow = 10, .p2_fast = 5 },
  371. };
  372.  
  373. static const intel_limit_t intel_limits_pineview_lvds = {
  374.         .dot = { .min = 20000, .max = 400000 },
  375.         .vco = { .min = 1700000, .max = 3500000 },
  376.         .n = { .min = 3, .max = 6 },
  377.         .m = { .min = 2, .max = 256 },
  378.         .m1 = { .min = 0, .max = 0 },
  379.         .m2 = { .min = 0, .max = 254 },
  380.         .p = { .min = 7, .max = 112 },
  381.         .p1 = { .min = 1, .max = 8 },
  382.         .p2 = { .dot_limit = 112000,
  383.                 .p2_slow = 14, .p2_fast = 14 },
  384. };
  385.  
  386. /* Ironlake / Sandybridge
  387.  *
  388.  * We calculate clock using (register_value + 2) for N/M1/M2, so here
  389.  * the range value for them is (actual_value - 2).
  390.  */
  391. static const intel_limit_t intel_limits_ironlake_dac = {
  392.         .dot = { .min = 25000, .max = 350000 },
  393.         .vco = { .min = 1760000, .max = 3510000 },
  394.         .n = { .min = 1, .max = 5 },
  395.         .m = { .min = 79, .max = 127 },
  396.         .m1 = { .min = 12, .max = 22 },
  397.         .m2 = { .min = 5, .max = 9 },
  398.         .p = { .min = 5, .max = 80 },
  399.         .p1 = { .min = 1, .max = 8 },
  400.         .p2 = { .dot_limit = 225000,
  401.                 .p2_slow = 10, .p2_fast = 5 },
  402. };
  403.  
  404. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  405.         .dot = { .min = 25000, .max = 350000 },
  406.         .vco = { .min = 1760000, .max = 3510000 },
  407.         .n = { .min = 1, .max = 3 },
  408.         .m = { .min = 79, .max = 118 },
  409.         .m1 = { .min = 12, .max = 22 },
  410.         .m2 = { .min = 5, .max = 9 },
  411.         .p = { .min = 28, .max = 112 },
  412.         .p1 = { .min = 2, .max = 8 },
  413.         .p2 = { .dot_limit = 225000,
  414.                 .p2_slow = 14, .p2_fast = 14 },
  415. };
  416.  
  417. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  418.         .dot = { .min = 25000, .max = 350000 },
  419.         .vco = { .min = 1760000, .max = 3510000 },
  420.         .n = { .min = 1, .max = 3 },
  421.         .m = { .min = 79, .max = 127 },
  422.         .m1 = { .min = 12, .max = 22 },
  423.         .m2 = { .min = 5, .max = 9 },
  424.         .p = { .min = 14, .max = 56 },
  425.         .p1 = { .min = 2, .max = 8 },
  426.         .p2 = { .dot_limit = 225000,
  427.                 .p2_slow = 7, .p2_fast = 7 },
  428. };
  429.  
  430. /* LVDS 100mhz refclk limits. */
  431. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  432.         .dot = { .min = 25000, .max = 350000 },
  433.         .vco = { .min = 1760000, .max = 3510000 },
  434.         .n = { .min = 1, .max = 2 },
  435.         .m = { .min = 79, .max = 126 },
  436.         .m1 = { .min = 12, .max = 22 },
  437.         .m2 = { .min = 5, .max = 9 },
  438.         .p = { .min = 28, .max = 112 },
  439.         .p1 = { .min = 2, .max = 8 },
  440.         .p2 = { .dot_limit = 225000,
  441.                 .p2_slow = 14, .p2_fast = 14 },
  442. };
  443.  
  444. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  445.         .dot = { .min = 25000, .max = 350000 },
  446.         .vco = { .min = 1760000, .max = 3510000 },
  447.         .n = { .min = 1, .max = 3 },
  448.         .m = { .min = 79, .max = 126 },
  449.         .m1 = { .min = 12, .max = 22 },
  450.         .m2 = { .min = 5, .max = 9 },
  451.         .p = { .min = 14, .max = 42 },
  452.         .p1 = { .min = 2, .max = 6 },
  453.         .p2 = { .dot_limit = 225000,
  454.                 .p2_slow = 7, .p2_fast = 7 },
  455. };
  456.  
  457. static const intel_limit_t intel_limits_vlv = {
  458.          /*
  459.           * These are the data rate limits (measured in fast clocks)
  460.           * since those are the strictest limits we have. The fast
  461.           * clock and actual rate limits are more relaxed, so checking
  462.           * them would make no difference.
  463.           */
  464.         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  465.         .vco = { .min = 4000000, .max = 6000000 },
  466.         .n = { .min = 1, .max = 7 },
  467.         .m1 = { .min = 2, .max = 3 },
  468.         .m2 = { .min = 11, .max = 156 },
  469.         .p1 = { .min = 2, .max = 3 },
  470.         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  471. };
  472.  
  473. static const intel_limit_t intel_limits_chv = {
  474.         /*
  475.          * These are the data rate limits (measured in fast clocks)
  476.          * since those are the strictest limits we have.  The fast
  477.          * clock and actual rate limits are more relaxed, so checking
  478.          * them would make no difference.
  479.          */
  480.         .dot = { .min = 25000 * 5, .max = 540000 * 5},
  481.         .vco = { .min = 4800000, .max = 6480000 },
  482.         .n = { .min = 1, .max = 1 },
  483.         .m1 = { .min = 2, .max = 2 },
  484.         .m2 = { .min = 24 << 22, .max = 175 << 22 },
  485.         .p1 = { .min = 2, .max = 4 },
  486.         .p2 = { .p2_slow = 1, .p2_fast = 14 },
  487. };
  488.  
  489. static const intel_limit_t intel_limits_bxt = {
  490.         /* FIXME: find real dot limits */
  491.         .dot = { .min = 0, .max = INT_MAX },
  492.         .vco = { .min = 4800000, .max = 6700000 },
  493.         .n = { .min = 1, .max = 1 },
  494.         .m1 = { .min = 2, .max = 2 },
  495.         /* FIXME: find real m2 limits */
  496.         .m2 = { .min = 2 << 22, .max = 255 << 22 },
  497.         .p1 = { .min = 2, .max = 4 },
  498.         .p2 = { .p2_slow = 1, .p2_fast = 20 },
  499. };
  500.  
  501. static bool
  502. needs_modeset(struct drm_crtc_state *state)
  503. {
  504.         return drm_atomic_crtc_needs_modeset(state);
  505. }
  506.  
  507. /**
  508.  * Returns whether any output on the specified pipe is of the specified type
  509.  */
  510. bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
  511. {
  512.         struct drm_device *dev = crtc->base.dev;
  513.         struct intel_encoder *encoder;
  514.  
  515.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  516.                 if (encoder->type == type)
  517.                         return true;
  518.  
  519.         return false;
  520. }
  521.  
  522. /**
  523.  * Returns whether any output on the specified pipe will have the specified
  524.  * type after a staged modeset is complete, i.e., the same as
  525.  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
  526.  * encoder->crtc.
  527.  */
  528. static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
  529.                                       int type)
  530. {
  531.         struct drm_atomic_state *state = crtc_state->base.state;
  532.         struct drm_connector *connector;
  533.         struct drm_connector_state *connector_state;
  534.         struct intel_encoder *encoder;
  535.         int i, num_connectors = 0;
  536.  
  537.         for_each_connector_in_state(state, connector, connector_state, i) {
  538.                 if (connector_state->crtc != crtc_state->base.crtc)
  539.                         continue;
  540.  
  541.                 num_connectors++;
  542.  
  543.                 encoder = to_intel_encoder(connector_state->best_encoder);
  544.                 if (encoder->type == type)
  545.                         return true;
  546.         }
  547.  
  548.         WARN_ON(num_connectors == 0);
  549.  
  550.         return false;
  551. }
  552.  
  553. static const intel_limit_t *
  554. intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
  555. {
  556.         struct drm_device *dev = crtc_state->base.crtc->dev;
  557.         const intel_limit_t *limit;
  558.  
  559.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  560.                 if (intel_is_dual_link_lvds(dev)) {
  561.                         if (refclk == 100000)
  562.                                 limit = &intel_limits_ironlake_dual_lvds_100m;
  563.                         else
  564.                                 limit = &intel_limits_ironlake_dual_lvds;
  565.                 } else {
  566.                         if (refclk == 100000)
  567.                                 limit = &intel_limits_ironlake_single_lvds_100m;
  568.                         else
  569.                                 limit = &intel_limits_ironlake_single_lvds;
  570.                 }
  571.         } else
  572.                 limit = &intel_limits_ironlake_dac;
  573.  
  574.         return limit;
  575. }
  576.  
  577. static const intel_limit_t *
  578. intel_g4x_limit(struct intel_crtc_state *crtc_state)
  579. {
  580.         struct drm_device *dev = crtc_state->base.crtc->dev;
  581.         const intel_limit_t *limit;
  582.  
  583.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  584.                 if (intel_is_dual_link_lvds(dev))
  585.                         limit = &intel_limits_g4x_dual_channel_lvds;
  586.                 else
  587.                         limit = &intel_limits_g4x_single_channel_lvds;
  588.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
  589.                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  590.                 limit = &intel_limits_g4x_hdmi;
  591.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
  592.                 limit = &intel_limits_g4x_sdvo;
  593.         } else /* The option is for other outputs */
  594.                 limit = &intel_limits_i9xx_sdvo;
  595.  
  596.         return limit;
  597. }
  598.  
  599. static const intel_limit_t *
  600. intel_limit(struct intel_crtc_state *crtc_state, int refclk)
  601. {
  602.         struct drm_device *dev = crtc_state->base.crtc->dev;
  603.         const intel_limit_t *limit;
  604.  
  605.         if (IS_BROXTON(dev))
  606.                 limit = &intel_limits_bxt;
  607.         else if (HAS_PCH_SPLIT(dev))
  608.                 limit = intel_ironlake_limit(crtc_state, refclk);
  609.         else if (IS_G4X(dev)) {
  610.                 limit = intel_g4x_limit(crtc_state);
  611.         } else if (IS_PINEVIEW(dev)) {
  612.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  613.                         limit = &intel_limits_pineview_lvds;
  614.                 else
  615.                         limit = &intel_limits_pineview_sdvo;
  616.         } else if (IS_CHERRYVIEW(dev)) {
  617.                 limit = &intel_limits_chv;
  618.         } else if (IS_VALLEYVIEW(dev)) {
  619.                 limit = &intel_limits_vlv;
  620.         } else if (!IS_GEN2(dev)) {
  621.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  622.                         limit = &intel_limits_i9xx_lvds;
  623.                 else
  624.                         limit = &intel_limits_i9xx_sdvo;
  625.         } else {
  626.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  627.                         limit = &intel_limits_i8xx_lvds;
  628.                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  629.                         limit = &intel_limits_i8xx_dvo;
  630.                 else
  631.                         limit = &intel_limits_i8xx_dac;
  632.         }
  633.         return limit;
  634. }
  635.  
  636. /*
  637.  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
  638.  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
  639.  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
  640.  * The helpers' return value is the rate of the clock that is fed to the
  641.  * display engine's pipe which can be the above fast dot clock rate or a
  642.  * divided-down version of it.
  643.  */
  644. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  645. static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
  646. {
  647.         clock->m = clock->m2 + 2;
  648.         clock->p = clock->p1 * clock->p2;
  649.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  650.                 return 0;
  651.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  652.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  653.  
  654.         return clock->dot;
  655. }
  656.  
  657. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  658. {
  659.         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  660. }
  661.  
  662. static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
  663. {
  664.         clock->m = i9xx_dpll_compute_m(clock);
  665.         clock->p = clock->p1 * clock->p2;
  666.         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
  667.                 return 0;
  668.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
  669.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  670.  
  671.         return clock->dot;
  672. }
  673.  
  674. static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
  675. {
  676.         clock->m = clock->m1 * clock->m2;
  677.         clock->p = clock->p1 * clock->p2;
  678.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  679.                 return 0;
  680.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  681.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  682.  
  683.         return clock->dot / 5;
  684. }
  685.  
  686. int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
  687. {
  688.         clock->m = clock->m1 * clock->m2;
  689.         clock->p = clock->p1 * clock->p2;
  690.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  691.                 return 0;
  692.         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
  693.                         clock->n << 22);
  694.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  695.  
  696.         return clock->dot / 5;
  697. }
  698.  
  699. #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
  700. /**
  701.  * Returns whether the given set of divisors are valid for a given refclk with
  702.  * the given connectors.
  703.  */
  704.  
  705. static bool intel_PLL_is_valid(struct drm_device *dev,
  706.                                const intel_limit_t *limit,
  707.                                const intel_clock_t *clock)
  708. {
  709.         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
  710.                 INTELPllInvalid("n out of range\n");
  711.         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
  712.                 INTELPllInvalid("p1 out of range\n");
  713.         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
  714.                 INTELPllInvalid("m2 out of range\n");
  715.         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
  716.                 INTELPllInvalid("m1 out of range\n");
  717.  
  718.         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
  719.                 if (clock->m1 <= clock->m2)
  720.                         INTELPllInvalid("m1 <= m2\n");
  721.  
  722.         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
  723.                 if (clock->p < limit->p.min || limit->p.max < clock->p)
  724.                         INTELPllInvalid("p out of range\n");
  725.                 if (clock->m < limit->m.min || limit->m.max < clock->m)
  726.                         INTELPllInvalid("m out of range\n");
  727.         }
  728.  
  729.         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  730.                 INTELPllInvalid("vco out of range\n");
  731.         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  732.          * connector, etc., rather than just a single range.
  733.          */
  734.         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  735.                 INTELPllInvalid("dot out of range\n");
  736.  
  737.         return true;
  738. }
  739.  
  740. static int
  741. i9xx_select_p2_div(const intel_limit_t *limit,
  742.                    const struct intel_crtc_state *crtc_state,
  743.                    int target)
  744. {
  745.         struct drm_device *dev = crtc_state->base.crtc->dev;
  746.  
  747.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  748.                 /*
  749.                  * For LVDS just rely on its current settings for dual-channel.
  750.                  * We haven't figured out how to reliably set up different
  751.                  * single/dual channel state, if we even can.
  752.                  */
  753.                 if (intel_is_dual_link_lvds(dev))
  754.                         return limit->p2.p2_fast;
  755.                 else
  756.                         return limit->p2.p2_slow;
  757.         } else {
  758.                 if (target < limit->p2.dot_limit)
  759.                         return limit->p2.p2_slow;
  760.                 else
  761.                         return limit->p2.p2_fast;
  762.         }
  763. }
  764.  
  765. static bool
  766. i9xx_find_best_dpll(const intel_limit_t *limit,
  767.                     struct intel_crtc_state *crtc_state,
  768.                     int target, int refclk, intel_clock_t *match_clock,
  769.                     intel_clock_t *best_clock)
  770. {
  771.         struct drm_device *dev = crtc_state->base.crtc->dev;
  772.         intel_clock_t clock;
  773.         int err = target;
  774.  
  775.         memset(best_clock, 0, sizeof(*best_clock));
  776.  
  777.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  778.  
  779.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  780.              clock.m1++) {
  781.                 for (clock.m2 = limit->m2.min;
  782.                      clock.m2 <= limit->m2.max; clock.m2++) {
  783.                         if (clock.m2 >= clock.m1)
  784.                                 break;
  785.                         for (clock.n = limit->n.min;
  786.                              clock.n <= limit->n.max; clock.n++) {
  787.                                 for (clock.p1 = limit->p1.min;
  788.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  789.                                         int this_err;
  790.  
  791.                                         i9xx_calc_dpll_params(refclk, &clock);
  792.                                         if (!intel_PLL_is_valid(dev, limit,
  793.                                                                 &clock))
  794.                                                 continue;
  795.                                         if (match_clock &&
  796.                                             clock.p != match_clock->p)
  797.                                                 continue;
  798.  
  799.                                         this_err = abs(clock.dot - target);
  800.                                         if (this_err < err) {
  801.                                                 *best_clock = clock;
  802.                                                 err = this_err;
  803.                                         }
  804.                                 }
  805.                         }
  806.                 }
  807.         }
  808.  
  809.         return (err != target);
  810. }
  811.  
  812. static bool
  813. pnv_find_best_dpll(const intel_limit_t *limit,
  814.                    struct intel_crtc_state *crtc_state,
  815.                    int target, int refclk, intel_clock_t *match_clock,
  816.                    intel_clock_t *best_clock)
  817. {
  818.         struct drm_device *dev = crtc_state->base.crtc->dev;
  819.         intel_clock_t clock;
  820.         int err = target;
  821.  
  822.         memset(best_clock, 0, sizeof(*best_clock));
  823.  
  824.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  825.  
  826.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  827.              clock.m1++) {
  828.                 for (clock.m2 = limit->m2.min;
  829.                      clock.m2 <= limit->m2.max; clock.m2++) {
  830.                         for (clock.n = limit->n.min;
  831.                              clock.n <= limit->n.max; clock.n++) {
  832.                                 for (clock.p1 = limit->p1.min;
  833.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  834.                                         int this_err;
  835.  
  836.                                         pnv_calc_dpll_params(refclk, &clock);
  837.                                         if (!intel_PLL_is_valid(dev, limit,
  838.                                                                 &clock))
  839.                                                 continue;
  840.                                         if (match_clock &&
  841.                                             clock.p != match_clock->p)
  842.                                                 continue;
  843.  
  844.                                         this_err = abs(clock.dot - target);
  845.                                         if (this_err < err) {
  846.                                                 *best_clock = clock;
  847.                                                 err = this_err;
  848.                                         }
  849.                                 }
  850.                         }
  851.                 }
  852.         }
  853.  
  854.         return (err != target);
  855. }
  856.  
  857. static bool
  858. g4x_find_best_dpll(const intel_limit_t *limit,
  859.                    struct intel_crtc_state *crtc_state,
  860.                    int target, int refclk, intel_clock_t *match_clock,
  861.                    intel_clock_t *best_clock)
  862. {
  863.         struct drm_device *dev = crtc_state->base.crtc->dev;
  864.         intel_clock_t clock;
  865.         int max_n;
  866.         bool found = false;
  867.         /* approximately equals target * 0.00585 */
  868.         int err_most = (target >> 8) + (target >> 9);
  869.  
  870.         memset(best_clock, 0, sizeof(*best_clock));
  871.  
  872.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  873.  
  874.         max_n = limit->n.max;
  875.         /* based on hardware requirement, prefer smaller n to precision */
  876.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  877.                 /* based on hardware requirement, prefere larger m1,m2 */
  878.                 for (clock.m1 = limit->m1.max;
  879.                      clock.m1 >= limit->m1.min; clock.m1--) {
  880.                         for (clock.m2 = limit->m2.max;
  881.                              clock.m2 >= limit->m2.min; clock.m2--) {
  882.                                 for (clock.p1 = limit->p1.max;
  883.                                      clock.p1 >= limit->p1.min; clock.p1--) {
  884.                                         int this_err;
  885.  
  886.                                         i9xx_calc_dpll_params(refclk, &clock);
  887.                                         if (!intel_PLL_is_valid(dev, limit,
  888.                                                                 &clock))
  889.                                                 continue;
  890.  
  891.                                         this_err = abs(clock.dot - target);
  892.                                         if (this_err < err_most) {
  893.                                                 *best_clock = clock;
  894.                                                 err_most = this_err;
  895.                                                 max_n = clock.n;
  896.                                                 found = true;
  897.                                         }
  898.                                 }
  899.                         }
  900.                 }
  901.         }
  902.         return found;
  903. }
  904.  
  905. /*
  906.  * Check if the calculated PLL configuration is more optimal compared to the
  907.  * best configuration and error found so far. Return the calculated error.
  908.  */
  909. static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
  910.                                const intel_clock_t *calculated_clock,
  911.                                const intel_clock_t *best_clock,
  912.                                unsigned int best_error_ppm,
  913.                                unsigned int *error_ppm)
  914. {
  915.         /*
  916.          * For CHV ignore the error and consider only the P value.
  917.          * Prefer a bigger P value based on HW requirements.
  918.          */
  919.         if (IS_CHERRYVIEW(dev)) {
  920.                 *error_ppm = 0;
  921.  
  922.                 return calculated_clock->p > best_clock->p;
  923.         }
  924.  
  925.         if (WARN_ON_ONCE(!target_freq))
  926.                 return false;
  927.  
  928.         *error_ppm = div_u64(1000000ULL *
  929.                                 abs(target_freq - calculated_clock->dot),
  930.                              target_freq);
  931.         /*
  932.          * Prefer a better P value over a better (smaller) error if the error
  933.          * is small. Ensure this preference for future configurations too by
  934.          * setting the error to 0.
  935.          */
  936.         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
  937.                 *error_ppm = 0;
  938.  
  939.                 return true;
  940.         }
  941.  
  942.         return *error_ppm + 10 < best_error_ppm;
  943. }
  944.  
  945. static bool
  946. vlv_find_best_dpll(const intel_limit_t *limit,
  947.                    struct intel_crtc_state *crtc_state,
  948.                    int target, int refclk, intel_clock_t *match_clock,
  949.                    intel_clock_t *best_clock)
  950. {
  951.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  952.         struct drm_device *dev = crtc->base.dev;
  953.         intel_clock_t clock;
  954.         unsigned int bestppm = 1000000;
  955.         /* min update 19.2 MHz */
  956.         int max_n = min(limit->n.max, refclk / 19200);
  957.         bool found = false;
  958.  
  959.         target *= 5; /* fast clock */
  960.  
  961.         memset(best_clock, 0, sizeof(*best_clock));
  962.  
  963.         /* based on hardware requirement, prefer smaller n to precision */
  964.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  965.                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  966.                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  967.                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  968.                                 clock.p = clock.p1 * clock.p2;
  969.                                 /* based on hardware requirement, prefer bigger m1,m2 values */
  970.                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  971.                                         unsigned int ppm;
  972.  
  973.                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  974.                                                                      refclk * clock.m1);
  975.  
  976.                                         vlv_calc_dpll_params(refclk, &clock);
  977.  
  978.                                         if (!intel_PLL_is_valid(dev, limit,
  979.                                                                 &clock))
  980.                                                 continue;
  981.  
  982.                                         if (!vlv_PLL_is_optimal(dev, target,
  983.                                                                 &clock,
  984.                                                                 best_clock,
  985.                                                                 bestppm, &ppm))
  986.                                                 continue;
  987.  
  988.                                         *best_clock = clock;
  989.                                         bestppm = ppm;
  990.                                         found = true;
  991.                                 }
  992.                         }
  993.                 }
  994.         }
  995.  
  996.         return found;
  997. }
  998.  
  999. static bool
  1000. chv_find_best_dpll(const intel_limit_t *limit,
  1001.                    struct intel_crtc_state *crtc_state,
  1002.                    int target, int refclk, intel_clock_t *match_clock,
  1003.                    intel_clock_t *best_clock)
  1004. {
  1005.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1006.         struct drm_device *dev = crtc->base.dev;
  1007.         unsigned int best_error_ppm;
  1008.         intel_clock_t clock;
  1009.         uint64_t m2;
  1010.         int found = false;
  1011.  
  1012.         memset(best_clock, 0, sizeof(*best_clock));
  1013.         best_error_ppm = 1000000;
  1014.  
  1015.         /*
  1016.          * Based on hardware doc, the n always set to 1, and m1 always
  1017.          * set to 2.  If requires to support 200Mhz refclk, we need to
  1018.          * revisit this because n may not 1 anymore.
  1019.          */
  1020.         clock.n = 1, clock.m1 = 2;
  1021.         target *= 5;    /* fast clock */
  1022.  
  1023.         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  1024.                 for (clock.p2 = limit->p2.p2_fast;
  1025.                                 clock.p2 >= limit->p2.p2_slow;
  1026.                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  1027.                         unsigned int error_ppm;
  1028.  
  1029.                         clock.p = clock.p1 * clock.p2;
  1030.  
  1031.                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
  1032.                                         clock.n) << 22, refclk * clock.m1);
  1033.  
  1034.                         if (m2 > INT_MAX/clock.m1)
  1035.                                 continue;
  1036.  
  1037.                         clock.m2 = m2;
  1038.  
  1039.                         chv_calc_dpll_params(refclk, &clock);
  1040.  
  1041.                         if (!intel_PLL_is_valid(dev, limit, &clock))
  1042.                                 continue;
  1043.  
  1044.                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
  1045.                                                 best_error_ppm, &error_ppm))
  1046.                                 continue;
  1047.  
  1048.                         *best_clock = clock;
  1049.                         best_error_ppm = error_ppm;
  1050.                         found = true;
  1051.                 }
  1052.         }
  1053.  
  1054.         return found;
  1055. }
  1056.  
  1057. bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
  1058.                         intel_clock_t *best_clock)
  1059. {
  1060.         int refclk = i9xx_get_refclk(crtc_state, 0);
  1061.  
  1062.         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
  1063.                                   target_clock, refclk, NULL, best_clock);
  1064. }
  1065.  
  1066. bool intel_crtc_active(struct drm_crtc *crtc)
  1067. {
  1068.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1069.  
  1070.         /* Be paranoid as we can arrive here with only partial
  1071.          * state retrieved from the hardware during setup.
  1072.          *
  1073.          * We can ditch the adjusted_mode.crtc_clock check as soon
  1074.          * as Haswell has gained clock readout/fastboot support.
  1075.          *
  1076.          * We can ditch the crtc->primary->fb check as soon as we can
  1077.          * properly reconstruct framebuffers.
  1078.          *
  1079.          * FIXME: The intel_crtc->active here should be switched to
  1080.          * crtc->state->active once we have proper CRTC states wired up
  1081.          * for atomic.
  1082.          */
  1083.         return intel_crtc->active && crtc->primary->state->fb &&
  1084.                 intel_crtc->config->base.adjusted_mode.crtc_clock;
  1085. }
  1086.  
  1087. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  1088.                                              enum pipe pipe)
  1089. {
  1090.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1091.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1092.  
  1093.         return intel_crtc->config->cpu_transcoder;
  1094. }
  1095.  
  1096. static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
  1097. {
  1098.         struct drm_i915_private *dev_priv = dev->dev_private;
  1099.         u32 reg = PIPEDSL(pipe);
  1100.         u32 line1, line2;
  1101.         u32 line_mask;
  1102.  
  1103.         if (IS_GEN2(dev))
  1104.                 line_mask = DSL_LINEMASK_GEN2;
  1105.         else
  1106.                 line_mask = DSL_LINEMASK_GEN3;
  1107.  
  1108.         line1 = I915_READ(reg) & line_mask;
  1109.         msleep(5);
  1110.         line2 = I915_READ(reg) & line_mask;
  1111.  
  1112.         return line1 == line2;
  1113. }
  1114.  
  1115. /*
  1116.  * intel_wait_for_pipe_off - wait for pipe to turn off
  1117.  * @crtc: crtc whose pipe to wait for
  1118.  *
  1119.  * After disabling a pipe, we can't wait for vblank in the usual way,
  1120.  * spinning on the vblank interrupt status bit, since we won't actually
  1121.  * see an interrupt when the pipe is disabled.
  1122.  *
  1123.  * On Gen4 and above:
  1124.  *   wait for the pipe register state bit to turn off
  1125.  *
  1126.  * Otherwise:
  1127.  *   wait for the display line value to settle (it usually
  1128.  *   ends up stopping at the start of the next frame).
  1129.  *
  1130.  */
  1131. static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
  1132. {
  1133.         struct drm_device *dev = crtc->base.dev;
  1134.         struct drm_i915_private *dev_priv = dev->dev_private;
  1135.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  1136.         enum pipe pipe = crtc->pipe;
  1137.  
  1138.         if (INTEL_INFO(dev)->gen >= 4) {
  1139.                 int reg = PIPECONF(cpu_transcoder);
  1140.  
  1141.                 /* Wait for the Pipe State to go off */
  1142.                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  1143.                              100))
  1144.                         WARN(1, "pipe_off wait timed out\n");
  1145.         } else {
  1146.                 /* Wait for the display line to settle */
  1147.                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
  1148.                         WARN(1, "pipe_off wait timed out\n");
  1149.         }
  1150. }
  1151.  
  1152. static const char *state_string(bool enabled)
  1153. {
  1154.         return enabled ? "on" : "off";
  1155. }
  1156.  
  1157. /* Only for pre-ILK configs */
  1158. void assert_pll(struct drm_i915_private *dev_priv,
  1159.                 enum pipe pipe, bool state)
  1160. {
  1161.         u32 val;
  1162.         bool cur_state;
  1163.  
  1164.         val = I915_READ(DPLL(pipe));
  1165.         cur_state = !!(val & DPLL_VCO_ENABLE);
  1166.         I915_STATE_WARN(cur_state != state,
  1167.              "PLL state assertion failure (expected %s, current %s)\n",
  1168.              state_string(state), state_string(cur_state));
  1169. }
  1170.  
  1171. /* XXX: the dsi pll is shared between MIPI DSI ports */
  1172. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  1173. {
  1174.         u32 val;
  1175.         bool cur_state;
  1176.  
  1177.         mutex_lock(&dev_priv->sb_lock);
  1178.         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  1179.         mutex_unlock(&dev_priv->sb_lock);
  1180.  
  1181.         cur_state = val & DSI_PLL_VCO_EN;
  1182.         I915_STATE_WARN(cur_state != state,
  1183.              "DSI PLL state assertion failure (expected %s, current %s)\n",
  1184.              state_string(state), state_string(cur_state));
  1185. }
  1186. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  1187. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  1188.  
  1189. struct intel_shared_dpll *
  1190. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  1191. {
  1192.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1193.  
  1194.         if (crtc->config->shared_dpll < 0)
  1195.                 return NULL;
  1196.  
  1197.         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
  1198. }
  1199.  
  1200. /* For ILK+ */
  1201. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  1202.                         struct intel_shared_dpll *pll,
  1203.                         bool state)
  1204. {
  1205.         bool cur_state;
  1206.         struct intel_dpll_hw_state hw_state;
  1207.  
  1208.         if (WARN (!pll,
  1209.                   "asserting DPLL %s with no DPLL\n", state_string(state)))
  1210.                 return;
  1211.  
  1212.         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  1213.         I915_STATE_WARN(cur_state != state,
  1214.              "%s assertion failure (expected %s, current %s)\n",
  1215.              pll->name, state_string(state), state_string(cur_state));
  1216. }
  1217.  
  1218. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1219.                           enum pipe pipe, bool state)
  1220. {
  1221.         bool cur_state;
  1222.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1223.                                                                       pipe);
  1224.  
  1225.         if (HAS_DDI(dev_priv->dev)) {
  1226.                 /* DDI does not have a specific FDI_TX register */
  1227.                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1228.                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1229.         } else {
  1230.                 u32 val = I915_READ(FDI_TX_CTL(pipe));
  1231.                 cur_state = !!(val & FDI_TX_ENABLE);
  1232.         }
  1233.         I915_STATE_WARN(cur_state != state,
  1234.              "FDI TX state assertion failure (expected %s, current %s)\n",
  1235.              state_string(state), state_string(cur_state));
  1236. }
  1237. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1238. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1239.  
  1240. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1241.                           enum pipe pipe, bool state)
  1242. {
  1243.         u32 val;
  1244.         bool cur_state;
  1245.  
  1246.         val = I915_READ(FDI_RX_CTL(pipe));
  1247.         cur_state = !!(val & FDI_RX_ENABLE);
  1248.         I915_STATE_WARN(cur_state != state,
  1249.              "FDI RX state assertion failure (expected %s, current %s)\n",
  1250.              state_string(state), state_string(cur_state));
  1251. }
  1252. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1253. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1254.  
  1255. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1256.                                       enum pipe pipe)
  1257. {
  1258.         u32 val;
  1259.  
  1260.         /* ILK FDI PLL is always enabled */
  1261.         if (INTEL_INFO(dev_priv->dev)->gen == 5)
  1262.                 return;
  1263.  
  1264.         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1265.         if (HAS_DDI(dev_priv->dev))
  1266.                 return;
  1267.  
  1268.         val = I915_READ(FDI_TX_CTL(pipe));
  1269.         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1270. }
  1271.  
  1272. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  1273.                        enum pipe pipe, bool state)
  1274. {
  1275.         u32 val;
  1276.         bool cur_state;
  1277.  
  1278.         val = I915_READ(FDI_RX_CTL(pipe));
  1279.         cur_state = !!(val & FDI_RX_PLL_ENABLE);
  1280.         I915_STATE_WARN(cur_state != state,
  1281.              "FDI RX PLL assertion failure (expected %s, current %s)\n",
  1282.              state_string(state), state_string(cur_state));
  1283. }
  1284.  
  1285. void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1286.                            enum pipe pipe)
  1287. {
  1288.         struct drm_device *dev = dev_priv->dev;
  1289.         int pp_reg;
  1290.         u32 val;
  1291.         enum pipe panel_pipe = PIPE_A;
  1292.         bool locked = true;
  1293.  
  1294.         if (WARN_ON(HAS_DDI(dev)))
  1295.                 return;
  1296.  
  1297.         if (HAS_PCH_SPLIT(dev)) {
  1298.                 u32 port_sel;
  1299.  
  1300.                 pp_reg = PCH_PP_CONTROL;
  1301.                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
  1302.  
  1303.                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
  1304.                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
  1305.                         panel_pipe = PIPE_B;
  1306.                 /* XXX: else fix for eDP */
  1307.         } else if (IS_VALLEYVIEW(dev)) {
  1308.                 /* presumably write lock depends on pipe, not port select */
  1309.                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
  1310.                 panel_pipe = pipe;
  1311.         } else {
  1312.                 pp_reg = PP_CONTROL;
  1313.                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
  1314.                         panel_pipe = PIPE_B;
  1315.         }
  1316.  
  1317.         val = I915_READ(pp_reg);
  1318.         if (!(val & PANEL_POWER_ON) ||
  1319.             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
  1320.                 locked = false;
  1321.  
  1322.         I915_STATE_WARN(panel_pipe == pipe && locked,
  1323.              "panel assertion failure, pipe %c regs locked\n",
  1324.              pipe_name(pipe));
  1325. }
  1326.  
  1327. static void assert_cursor(struct drm_i915_private *dev_priv,
  1328.                           enum pipe pipe, bool state)
  1329. {
  1330.         struct drm_device *dev = dev_priv->dev;
  1331.         bool cur_state;
  1332.  
  1333.         if (IS_845G(dev) || IS_I865G(dev))
  1334.                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  1335.         else
  1336.                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  1337.  
  1338.         I915_STATE_WARN(cur_state != state,
  1339.              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  1340.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1341. }
  1342. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  1343. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  1344.  
  1345. void assert_pipe(struct drm_i915_private *dev_priv,
  1346.                  enum pipe pipe, bool state)
  1347. {
  1348.         bool cur_state;
  1349.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1350.                                                                       pipe);
  1351.  
  1352.         /* if we need the pipe quirk it must be always on */
  1353.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1354.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1355.                 state = true;
  1356.  
  1357.         if (!intel_display_power_is_enabled(dev_priv,
  1358.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  1359.                 cur_state = false;
  1360.         } else {
  1361.                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
  1362.                 cur_state = !!(val & PIPECONF_ENABLE);
  1363.         }
  1364.  
  1365.         I915_STATE_WARN(cur_state != state,
  1366.              "pipe %c assertion failure (expected %s, current %s)\n",
  1367.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1368. }
  1369.  
  1370. static void assert_plane(struct drm_i915_private *dev_priv,
  1371.                          enum plane plane, bool state)
  1372. {
  1373.         u32 val;
  1374.         bool cur_state;
  1375.  
  1376.         val = I915_READ(DSPCNTR(plane));
  1377.         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1378.         I915_STATE_WARN(cur_state != state,
  1379.              "plane %c assertion failure (expected %s, current %s)\n",
  1380.              plane_name(plane), state_string(state), state_string(cur_state));
  1381. }
  1382.  
  1383. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1384. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1385.  
  1386. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1387.                                    enum pipe pipe)
  1388. {
  1389.         struct drm_device *dev = dev_priv->dev;
  1390.         int i;
  1391.  
  1392.         /* Primary planes are fixed to pipes on gen4+ */
  1393.         if (INTEL_INFO(dev)->gen >= 4) {
  1394.                 u32 val = I915_READ(DSPCNTR(pipe));
  1395.                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
  1396.                      "plane %c assertion failure, should be disabled but not\n",
  1397.                      plane_name(pipe));
  1398.                 return;
  1399.         }
  1400.  
  1401.         /* Need to check both planes against the pipe */
  1402.         for_each_pipe(dev_priv, i) {
  1403.                 u32 val = I915_READ(DSPCNTR(i));
  1404.                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1405.                         DISPPLANE_SEL_PIPE_SHIFT;
  1406.                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1407.                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1408.                      plane_name(i), pipe_name(pipe));
  1409.         }
  1410. }
  1411.  
  1412. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1413.                                     enum pipe pipe)
  1414. {
  1415.         struct drm_device *dev = dev_priv->dev;
  1416.         int sprite;
  1417.  
  1418.         if (INTEL_INFO(dev)->gen >= 9) {
  1419.                 for_each_sprite(dev_priv, pipe, sprite) {
  1420.                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
  1421.                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
  1422.                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
  1423.                              sprite, pipe_name(pipe));
  1424.                 }
  1425.         } else if (IS_VALLEYVIEW(dev)) {
  1426.                 for_each_sprite(dev_priv, pipe, sprite) {
  1427.                         u32 val = I915_READ(SPCNTR(pipe, sprite));
  1428.                         I915_STATE_WARN(val & SP_ENABLE,
  1429.                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1430.                              sprite_name(pipe, sprite), pipe_name(pipe));
  1431.                 }
  1432.         } else if (INTEL_INFO(dev)->gen >= 7) {
  1433.                 u32 val = I915_READ(SPRCTL(pipe));
  1434.                 I915_STATE_WARN(val & SPRITE_ENABLE,
  1435.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1436.                      plane_name(pipe), pipe_name(pipe));
  1437.         } else if (INTEL_INFO(dev)->gen >= 5) {
  1438.                 u32 val = I915_READ(DVSCNTR(pipe));
  1439.                 I915_STATE_WARN(val & DVS_ENABLE,
  1440.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1441.                      plane_name(pipe), pipe_name(pipe));
  1442.         }
  1443. }
  1444.  
  1445. static void assert_vblank_disabled(struct drm_crtc *crtc)
  1446. {
  1447.         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
  1448.                 drm_crtc_vblank_put(crtc);
  1449. }
  1450.  
  1451. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1452. {
  1453.         u32 val;
  1454.         bool enabled;
  1455.  
  1456.         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
  1457.  
  1458.         val = I915_READ(PCH_DREF_CONTROL);
  1459.         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1460.                             DREF_SUPERSPREAD_SOURCE_MASK));
  1461.         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1462. }
  1463.  
  1464. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1465.                                            enum pipe pipe)
  1466. {
  1467.         u32 val;
  1468.         bool enabled;
  1469.  
  1470.         val = I915_READ(PCH_TRANSCONF(pipe));
  1471.         enabled = !!(val & TRANS_ENABLE);
  1472.         I915_STATE_WARN(enabled,
  1473.              "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1474.              pipe_name(pipe));
  1475. }
  1476.  
  1477. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1478.                             enum pipe pipe, u32 port_sel, u32 val)
  1479. {
  1480.         if ((val & DP_PORT_EN) == 0)
  1481.                 return false;
  1482.  
  1483.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1484.                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1485.                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1486.                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1487.                         return false;
  1488.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1489.                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
  1490.                         return false;
  1491.         } else {
  1492.                 if ((val & DP_PIPE_MASK) != (pipe << 30))
  1493.                         return false;
  1494.         }
  1495.         return true;
  1496. }
  1497.  
  1498. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1499.                               enum pipe pipe, u32 val)
  1500. {
  1501.         if ((val & SDVO_ENABLE) == 0)
  1502.                 return false;
  1503.  
  1504.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1505.                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1506.                         return false;
  1507.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1508.                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
  1509.                         return false;
  1510.         } else {
  1511.                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1512.                         return false;
  1513.         }
  1514.         return true;
  1515. }
  1516.  
  1517. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1518.                               enum pipe pipe, u32 val)
  1519. {
  1520.         if ((val & LVDS_PORT_EN) == 0)
  1521.                 return false;
  1522.  
  1523.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1524.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1525.                         return false;
  1526.         } else {
  1527.                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1528.                         return false;
  1529.         }
  1530.         return true;
  1531. }
  1532.  
  1533. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1534.                               enum pipe pipe, u32 val)
  1535. {
  1536.         if ((val & ADPA_DAC_ENABLE) == 0)
  1537.                 return false;
  1538.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1539.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1540.                         return false;
  1541.         } else {
  1542.                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1543.                         return false;
  1544.         }
  1545.         return true;
  1546. }
  1547.  
  1548. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1549.                                    enum pipe pipe, int reg, u32 port_sel)
  1550. {
  1551.         u32 val = I915_READ(reg);
  1552.         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1553.              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1554.              reg, pipe_name(pipe));
  1555.  
  1556.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1557.              && (val & DP_PIPEB_SELECT),
  1558.              "IBX PCH dp port still using transcoder B\n");
  1559. }
  1560.  
  1561. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1562.                                      enum pipe pipe, int reg)
  1563. {
  1564.         u32 val = I915_READ(reg);
  1565.         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1566.              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1567.              reg, pipe_name(pipe));
  1568.  
  1569.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1570.              && (val & SDVO_PIPE_B_SELECT),
  1571.              "IBX PCH hdmi port still using transcoder B\n");
  1572. }
  1573.  
  1574. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1575.                                       enum pipe pipe)
  1576. {
  1577.         u32 val;
  1578.  
  1579.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1580.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1581.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1582.  
  1583.         val = I915_READ(PCH_ADPA);
  1584.         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1585.              "PCH VGA enabled on transcoder %c, should be disabled\n",
  1586.              pipe_name(pipe));
  1587.  
  1588.         val = I915_READ(PCH_LVDS);
  1589.         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1590.              "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1591.              pipe_name(pipe));
  1592.  
  1593.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1594.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1595.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1596. }
  1597.  
  1598. static void vlv_enable_pll(struct intel_crtc *crtc,
  1599.                            const struct intel_crtc_state *pipe_config)
  1600. {
  1601.         struct drm_device *dev = crtc->base.dev;
  1602.         struct drm_i915_private *dev_priv = dev->dev_private;
  1603.         int reg = DPLL(crtc->pipe);
  1604.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  1605.  
  1606.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1607.  
  1608.         /* No really, not for ILK+ */
  1609.         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1610.  
  1611.         /* PLL is protected by panel, make sure we can write it */
  1612.         if (IS_MOBILE(dev_priv->dev))
  1613.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1614.  
  1615.         I915_WRITE(reg, dpll);
  1616.         POSTING_READ(reg);
  1617.         udelay(150);
  1618.  
  1619.         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1620.                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1621.  
  1622.         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
  1623.         POSTING_READ(DPLL_MD(crtc->pipe));
  1624.  
  1625.         /* We do this three times for luck */
  1626.         I915_WRITE(reg, dpll);
  1627.         POSTING_READ(reg);
  1628.         udelay(150); /* wait for warmup */
  1629.         I915_WRITE(reg, dpll);
  1630.         POSTING_READ(reg);
  1631.         udelay(150); /* wait for warmup */
  1632.         I915_WRITE(reg, dpll);
  1633.         POSTING_READ(reg);
  1634.         udelay(150); /* wait for warmup */
  1635. }
  1636.  
  1637. static void chv_enable_pll(struct intel_crtc *crtc,
  1638.                            const struct intel_crtc_state *pipe_config)
  1639. {
  1640.         struct drm_device *dev = crtc->base.dev;
  1641.         struct drm_i915_private *dev_priv = dev->dev_private;
  1642.         int pipe = crtc->pipe;
  1643.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1644.         u32 tmp;
  1645.  
  1646.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1647.  
  1648.         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
  1649.  
  1650.         mutex_lock(&dev_priv->sb_lock);
  1651.  
  1652.         /* Enable back the 10bit clock to display controller */
  1653.         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1654.         tmp |= DPIO_DCLKP_EN;
  1655.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
  1656.  
  1657.         mutex_unlock(&dev_priv->sb_lock);
  1658.  
  1659.         /*
  1660.          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
  1661.          */
  1662.         udelay(1);
  1663.  
  1664.         /* Enable PLL */
  1665.         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
  1666.  
  1667.         /* Check PLL is locked */
  1668.         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1669.                 DRM_ERROR("PLL %d failed to lock\n", pipe);
  1670.  
  1671.         /* not sure when this should be written */
  1672.         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
  1673.         POSTING_READ(DPLL_MD(pipe));
  1674. }
  1675.  
  1676. static int intel_num_dvo_pipes(struct drm_device *dev)
  1677. {
  1678.         struct intel_crtc *crtc;
  1679.         int count = 0;
  1680.  
  1681.         for_each_intel_crtc(dev, crtc)
  1682.                 count += crtc->base.state->active &&
  1683.                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
  1684.  
  1685.         return count;
  1686. }
  1687.  
  1688. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1689. {
  1690.         struct drm_device *dev = crtc->base.dev;
  1691.         struct drm_i915_private *dev_priv = dev->dev_private;
  1692.         int reg = DPLL(crtc->pipe);
  1693.         u32 dpll = crtc->config->dpll_hw_state.dpll;
  1694.  
  1695.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1696.  
  1697.         /* No really, not for ILK+ */
  1698.         BUG_ON(INTEL_INFO(dev)->gen >= 5);
  1699.  
  1700.         /* PLL is protected by panel, make sure we can write it */
  1701.         if (IS_MOBILE(dev) && !IS_I830(dev))
  1702.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1703.  
  1704.         /* Enable DVO 2x clock on both PLLs if necessary */
  1705.         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
  1706.                 /*
  1707.                  * It appears to be important that we don't enable this
  1708.                  * for the current pipe before otherwise configuring the
  1709.                  * PLL. No idea how this should be handled if multiple
  1710.                  * DVO outputs are enabled simultaneosly.
  1711.                  */
  1712.                 dpll |= DPLL_DVO_2X_MODE;
  1713.                 I915_WRITE(DPLL(!crtc->pipe),
  1714.                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
  1715.         }
  1716.  
  1717.         /*
  1718.          * Apparently we need to have VGA mode enabled prior to changing
  1719.          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
  1720.          * dividers, even though the register value does change.
  1721.          */
  1722.         I915_WRITE(reg, 0);
  1723.  
  1724.         I915_WRITE(reg, dpll);
  1725.  
  1726.         /* Wait for the clocks to stabilize. */
  1727.         POSTING_READ(reg);
  1728.         udelay(150);
  1729.  
  1730.         if (INTEL_INFO(dev)->gen >= 4) {
  1731.                 I915_WRITE(DPLL_MD(crtc->pipe),
  1732.                            crtc->config->dpll_hw_state.dpll_md);
  1733.         } else {
  1734.                 /* The pixel multiplier can only be updated once the
  1735.                  * DPLL is enabled and the clocks are stable.
  1736.                  *
  1737.                  * So write it again.
  1738.                  */
  1739.                 I915_WRITE(reg, dpll);
  1740.         }
  1741.  
  1742.         /* We do this three times for luck */
  1743.         I915_WRITE(reg, dpll);
  1744.         POSTING_READ(reg);
  1745.         udelay(150); /* wait for warmup */
  1746.         I915_WRITE(reg, dpll);
  1747.         POSTING_READ(reg);
  1748.         udelay(150); /* wait for warmup */
  1749.         I915_WRITE(reg, dpll);
  1750.         POSTING_READ(reg);
  1751.         udelay(150); /* wait for warmup */
  1752. }
  1753.  
  1754. /**
  1755.  * i9xx_disable_pll - disable a PLL
  1756.  * @dev_priv: i915 private structure
  1757.  * @pipe: pipe PLL to disable
  1758.  *
  1759.  * Disable the PLL for @pipe, making sure the pipe is off first.
  1760.  *
  1761.  * Note!  This is for pre-ILK only.
  1762.  */
  1763. static void i9xx_disable_pll(struct intel_crtc *crtc)
  1764. {
  1765.         struct drm_device *dev = crtc->base.dev;
  1766.         struct drm_i915_private *dev_priv = dev->dev_private;
  1767.         enum pipe pipe = crtc->pipe;
  1768.  
  1769.         /* Disable DVO 2x clock on both PLLs if necessary */
  1770.         if (IS_I830(dev) &&
  1771.             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
  1772.             !intel_num_dvo_pipes(dev)) {
  1773.                 I915_WRITE(DPLL(PIPE_B),
  1774.                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
  1775.                 I915_WRITE(DPLL(PIPE_A),
  1776.                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
  1777.         }
  1778.  
  1779.         /* Don't disable pipe or pipe PLLs if needed */
  1780.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1781.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1782.                 return;
  1783.  
  1784.         /* Make sure the pipe isn't still relying on us */
  1785.         assert_pipe_disabled(dev_priv, pipe);
  1786.  
  1787.         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
  1788.         POSTING_READ(DPLL(pipe));
  1789. }
  1790.  
  1791. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1792. {
  1793.         u32 val;
  1794.  
  1795.         /* Make sure the pipe isn't still relying on us */
  1796.         assert_pipe_disabled(dev_priv, pipe);
  1797.  
  1798.         /*
  1799.          * Leave integrated clock source and reference clock enabled for pipe B.
  1800.          * The latter is needed for VGA hotplug / manual detection.
  1801.          */
  1802.         val = DPLL_VGA_MODE_DIS;
  1803.         if (pipe == PIPE_B)
  1804.                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
  1805.         I915_WRITE(DPLL(pipe), val);
  1806.         POSTING_READ(DPLL(pipe));
  1807.  
  1808. }
  1809.  
  1810. static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1811. {
  1812.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1813.         u32 val;
  1814.  
  1815.         /* Make sure the pipe isn't still relying on us */
  1816.         assert_pipe_disabled(dev_priv, pipe);
  1817.  
  1818.         /* Set PLL en = 0 */
  1819.         val = DPLL_SSC_REF_CLK_CHV |
  1820.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
  1821.         if (pipe != PIPE_A)
  1822.                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
  1823.         I915_WRITE(DPLL(pipe), val);
  1824.         POSTING_READ(DPLL(pipe));
  1825.  
  1826.         mutex_lock(&dev_priv->sb_lock);
  1827.  
  1828.         /* Disable 10bit clock to display controller */
  1829.         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1830.         val &= ~DPIO_DCLKP_EN;
  1831.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
  1832.  
  1833.         mutex_unlock(&dev_priv->sb_lock);
  1834. }
  1835.  
  1836. void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
  1837.                          struct intel_digital_port *dport,
  1838.                          unsigned int expected_mask)
  1839. {
  1840.         u32 port_mask;
  1841.         int dpll_reg;
  1842.  
  1843.         switch (dport->port) {
  1844.         case PORT_B:
  1845.                 port_mask = DPLL_PORTB_READY_MASK;
  1846.                 dpll_reg = DPLL(0);
  1847.                 break;
  1848.         case PORT_C:
  1849.                 port_mask = DPLL_PORTC_READY_MASK;
  1850.                 dpll_reg = DPLL(0);
  1851.                 expected_mask <<= 4;
  1852.                 break;
  1853.         case PORT_D:
  1854.                 port_mask = DPLL_PORTD_READY_MASK;
  1855.                 dpll_reg = DPIO_PHY_STATUS;
  1856.                 break;
  1857.         default:
  1858.                 BUG();
  1859.         }
  1860.  
  1861.         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
  1862.                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
  1863.                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
  1864. }
  1865.  
  1866. static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  1867. {
  1868.         struct drm_device *dev = crtc->base.dev;
  1869.         struct drm_i915_private *dev_priv = dev->dev_private;
  1870.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1871.  
  1872.         if (WARN_ON(pll == NULL))
  1873.                 return;
  1874.  
  1875.         WARN_ON(!pll->config.crtc_mask);
  1876.         if (pll->active == 0) {
  1877.                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  1878.                 WARN_ON(pll->on);
  1879.                 assert_shared_dpll_disabled(dev_priv, pll);
  1880.  
  1881.                 pll->mode_set(dev_priv, pll);
  1882.         }
  1883. }
  1884.  
  1885. /**
  1886.  * intel_enable_shared_dpll - enable PCH PLL
  1887.  * @dev_priv: i915 private structure
  1888.  * @pipe: pipe PLL to enable
  1889.  *
  1890.  * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1891.  * drives the transcoder clock.
  1892.  */
  1893. static void intel_enable_shared_dpll(struct intel_crtc *crtc)
  1894. {
  1895.         struct drm_device *dev = crtc->base.dev;
  1896.         struct drm_i915_private *dev_priv = dev->dev_private;
  1897.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1898.  
  1899.         if (WARN_ON(pll == NULL))
  1900.                 return;
  1901.  
  1902.         if (WARN_ON(pll->config.crtc_mask == 0))
  1903.                 return;
  1904.  
  1905.         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
  1906.                       pll->name, pll->active, pll->on,
  1907.                       crtc->base.base.id);
  1908.  
  1909.         if (pll->active++) {
  1910.                 WARN_ON(!pll->on);
  1911.                 assert_shared_dpll_enabled(dev_priv, pll);
  1912.                 return;
  1913.         }
  1914.         WARN_ON(pll->on);
  1915.  
  1916.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  1917.  
  1918.         DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1919.         pll->enable(dev_priv, pll);
  1920.         pll->on = true;
  1921. }
  1922.  
  1923. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1924. {
  1925.         struct drm_device *dev = crtc->base.dev;
  1926.         struct drm_i915_private *dev_priv = dev->dev_private;
  1927.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1928.  
  1929.         /* PCH only available on ILK+ */
  1930.         if (INTEL_INFO(dev)->gen < 5)
  1931.                 return;
  1932.  
  1933.         if (pll == NULL)
  1934.                 return;
  1935.  
  1936.         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
  1937.                 return;
  1938.  
  1939.         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1940.                       pll->name, pll->active, pll->on,
  1941.                       crtc->base.base.id);
  1942.  
  1943.         if (WARN_ON(pll->active == 0)) {
  1944.                 assert_shared_dpll_disabled(dev_priv, pll);
  1945.                 return;
  1946.         }
  1947.  
  1948.         assert_shared_dpll_enabled(dev_priv, pll);
  1949.         WARN_ON(!pll->on);
  1950.         if (--pll->active)
  1951.                 return;
  1952.  
  1953.         DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1954.         pll->disable(dev_priv, pll);
  1955.         pll->on = false;
  1956.  
  1957.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1958. }
  1959.  
  1960. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1961.                                            enum pipe pipe)
  1962. {
  1963.         struct drm_device *dev = dev_priv->dev;
  1964.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1965.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1966.         uint32_t reg, val, pipeconf_val;
  1967.  
  1968.         /* PCH only available on ILK+ */
  1969.         BUG_ON(!HAS_PCH_SPLIT(dev));
  1970.  
  1971.         /* Make sure PCH DPLL is enabled */
  1972.         assert_shared_dpll_enabled(dev_priv,
  1973.                                    intel_crtc_to_shared_dpll(intel_crtc));
  1974.  
  1975.         /* FDI must be feeding us bits for PCH ports */
  1976.         assert_fdi_tx_enabled(dev_priv, pipe);
  1977.         assert_fdi_rx_enabled(dev_priv, pipe);
  1978.  
  1979.         if (HAS_PCH_CPT(dev)) {
  1980.                 /* Workaround: Set the timing override bit before enabling the
  1981.                  * pch transcoder. */
  1982.                 reg = TRANS_CHICKEN2(pipe);
  1983.                 val = I915_READ(reg);
  1984.                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1985.                 I915_WRITE(reg, val);
  1986.         }
  1987.  
  1988.         reg = PCH_TRANSCONF(pipe);
  1989.         val = I915_READ(reg);
  1990.         pipeconf_val = I915_READ(PIPECONF(pipe));
  1991.  
  1992.         if (HAS_PCH_IBX(dev_priv->dev)) {
  1993.                 /*
  1994.                  * Make the BPC in transcoder be consistent with
  1995.                  * that in pipeconf reg. For HDMI we must use 8bpc
  1996.                  * here for both 8bpc and 12bpc.
  1997.                  */
  1998.                 val &= ~PIPECONF_BPC_MASK;
  1999.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
  2000.                         val |= PIPECONF_8BPC;
  2001.                 else
  2002.                         val |= pipeconf_val & PIPECONF_BPC_MASK;
  2003.         }
  2004.  
  2005.         val &= ~TRANS_INTERLACE_MASK;
  2006.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  2007.                 if (HAS_PCH_IBX(dev_priv->dev) &&
  2008.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  2009.                         val |= TRANS_LEGACY_INTERLACED_ILK;
  2010.                 else
  2011.                         val |= TRANS_INTERLACED;
  2012.         else
  2013.                 val |= TRANS_PROGRESSIVE;
  2014.  
  2015.         I915_WRITE(reg, val | TRANS_ENABLE);
  2016.         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  2017.                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  2018. }
  2019.  
  2020. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  2021.                                       enum transcoder cpu_transcoder)
  2022. {
  2023.         u32 val, pipeconf_val;
  2024.  
  2025.         /* PCH only available on ILK+ */
  2026.         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
  2027.  
  2028.         /* FDI must be feeding us bits for PCH ports */
  2029.         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  2030.         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  2031.  
  2032.         /* Workaround: set timing override bit. */
  2033.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2034.         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  2035.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2036.  
  2037.         val = TRANS_ENABLE;
  2038.         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  2039.  
  2040.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  2041.             PIPECONF_INTERLACED_ILK)
  2042.                 val |= TRANS_INTERLACED;
  2043.         else
  2044.                 val |= TRANS_PROGRESSIVE;
  2045.  
  2046.         I915_WRITE(LPT_TRANSCONF, val);
  2047.         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  2048.                 DRM_ERROR("Failed to enable PCH transcoder\n");
  2049. }
  2050.  
  2051. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  2052.                                             enum pipe pipe)
  2053. {
  2054.         struct drm_device *dev = dev_priv->dev;
  2055.         uint32_t reg, val;
  2056.  
  2057.         /* FDI relies on the transcoder */
  2058.         assert_fdi_tx_disabled(dev_priv, pipe);
  2059.         assert_fdi_rx_disabled(dev_priv, pipe);
  2060.  
  2061.         /* Ports must be off as well */
  2062.         assert_pch_ports_disabled(dev_priv, pipe);
  2063.  
  2064.         reg = PCH_TRANSCONF(pipe);
  2065.         val = I915_READ(reg);
  2066.         val &= ~TRANS_ENABLE;
  2067.         I915_WRITE(reg, val);
  2068.         /* wait for PCH transcoder off, transcoder state */
  2069.         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  2070.                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  2071.  
  2072.         if (!HAS_PCH_IBX(dev)) {
  2073.                 /* Workaround: Clear the timing override chicken bit again. */
  2074.                 reg = TRANS_CHICKEN2(pipe);
  2075.                 val = I915_READ(reg);
  2076.                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2077.                 I915_WRITE(reg, val);
  2078.         }
  2079. }
  2080.  
  2081. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  2082. {
  2083.         u32 val;
  2084.  
  2085.         val = I915_READ(LPT_TRANSCONF);
  2086.         val &= ~TRANS_ENABLE;
  2087.         I915_WRITE(LPT_TRANSCONF, val);
  2088.         /* wait for PCH transcoder off, transcoder state */
  2089.         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  2090.                 DRM_ERROR("Failed to disable PCH transcoder\n");
  2091.  
  2092.         /* Workaround: clear timing override bit. */
  2093.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2094.         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2095.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2096. }
  2097.  
  2098. /**
  2099.  * intel_enable_pipe - enable a pipe, asserting requirements
  2100.  * @crtc: crtc responsible for the pipe
  2101.  *
  2102.  * Enable @crtc's pipe, making sure that various hardware specific requirements
  2103.  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  2104.  */
  2105. static void intel_enable_pipe(struct intel_crtc *crtc)
  2106. {
  2107.         struct drm_device *dev = crtc->base.dev;
  2108.         struct drm_i915_private *dev_priv = dev->dev_private;
  2109.         enum pipe pipe = crtc->pipe;
  2110.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  2111.                                                                       pipe);
  2112.         enum pipe pch_transcoder;
  2113.         int reg;
  2114.         u32 val;
  2115.  
  2116.         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
  2117.  
  2118.         assert_planes_disabled(dev_priv, pipe);
  2119.         assert_cursor_disabled(dev_priv, pipe);
  2120.         assert_sprites_disabled(dev_priv, pipe);
  2121.  
  2122.         if (HAS_PCH_LPT(dev_priv->dev))
  2123.                 pch_transcoder = TRANSCODER_A;
  2124.         else
  2125.                 pch_transcoder = pipe;
  2126.  
  2127.         /*
  2128.          * A pipe without a PLL won't actually be able to drive bits from
  2129.          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
  2130.          * need the check.
  2131.          */
  2132.         if (HAS_GMCH_DISPLAY(dev_priv->dev))
  2133.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2134.                         assert_dsi_pll_enabled(dev_priv);
  2135.                 else
  2136.                         assert_pll_enabled(dev_priv, pipe);
  2137.         else {
  2138.                 if (crtc->config->has_pch_encoder) {
  2139.                         /* if driving the PCH, we need FDI enabled */
  2140.                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  2141.                         assert_fdi_tx_pll_enabled(dev_priv,
  2142.                                                   (enum pipe) cpu_transcoder);
  2143.                 }
  2144.                 /* FIXME: assert CPU port conditions for SNB+ */
  2145.         }
  2146.  
  2147.         reg = PIPECONF(cpu_transcoder);
  2148.         val = I915_READ(reg);
  2149.         if (val & PIPECONF_ENABLE) {
  2150.                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  2151.                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
  2152.                 return;
  2153.         }
  2154.  
  2155.         I915_WRITE(reg, val | PIPECONF_ENABLE);
  2156.         POSTING_READ(reg);
  2157. }
  2158.  
  2159. /**
  2160.  * intel_disable_pipe - disable a pipe, asserting requirements
  2161.  * @crtc: crtc whose pipes is to be disabled
  2162.  *
  2163.  * Disable the pipe of @crtc, making sure that various hardware
  2164.  * specific requirements are met, if applicable, e.g. plane
  2165.  * disabled, panel fitter off, etc.
  2166.  *
  2167.  * Will wait until the pipe has shut down before returning.
  2168.  */
  2169. static void intel_disable_pipe(struct intel_crtc *crtc)
  2170. {
  2171.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2172.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  2173.         enum pipe pipe = crtc->pipe;
  2174.         int reg;
  2175.         u32 val;
  2176.  
  2177.         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
  2178.  
  2179.         /*
  2180.          * Make sure planes won't keep trying to pump pixels to us,
  2181.          * or we might hang the display.
  2182.          */
  2183.         assert_planes_disabled(dev_priv, pipe);
  2184.         assert_cursor_disabled(dev_priv, pipe);
  2185.         assert_sprites_disabled(dev_priv, pipe);
  2186.  
  2187.         reg = PIPECONF(cpu_transcoder);
  2188.         val = I915_READ(reg);
  2189.         if ((val & PIPECONF_ENABLE) == 0)
  2190.                 return;
  2191.  
  2192.         /*
  2193.          * Double wide has implications for planes
  2194.          * so best keep it disabled when not needed.
  2195.          */
  2196.         if (crtc->config->double_wide)
  2197.                 val &= ~PIPECONF_DOUBLE_WIDE;
  2198.  
  2199.         /* Don't disable pipe or pipe PLLs if needed */
  2200.         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
  2201.             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  2202.                 val &= ~PIPECONF_ENABLE;
  2203.  
  2204.         I915_WRITE(reg, val);
  2205.         if ((val & PIPECONF_ENABLE) == 0)
  2206.                 intel_wait_for_pipe_off(crtc);
  2207. }
  2208.  
  2209. static bool need_vtd_wa(struct drm_device *dev)
  2210. {
  2211. #ifdef CONFIG_INTEL_IOMMU
  2212.         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  2213.                 return true;
  2214. #endif
  2215.         return false;
  2216. }
  2217.  
  2218. unsigned int
  2219. intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
  2220.                   uint64_t fb_format_modifier, unsigned int plane)
  2221. {
  2222.         unsigned int tile_height;
  2223.         uint32_t pixel_bytes;
  2224.  
  2225.         switch (fb_format_modifier) {
  2226.         case DRM_FORMAT_MOD_NONE:
  2227.                 tile_height = 1;
  2228.                 break;
  2229.         case I915_FORMAT_MOD_X_TILED:
  2230.                 tile_height = IS_GEN2(dev) ? 16 : 8;
  2231.                 break;
  2232.         case I915_FORMAT_MOD_Y_TILED:
  2233.                 tile_height = 32;
  2234.                 break;
  2235.         case I915_FORMAT_MOD_Yf_TILED:
  2236.                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
  2237.                 switch (pixel_bytes) {
  2238.                 default:
  2239.                 case 1:
  2240.                         tile_height = 64;
  2241.                         break;
  2242.                 case 2:
  2243.                 case 4:
  2244.                         tile_height = 32;
  2245.                         break;
  2246.                 case 8:
  2247.                         tile_height = 16;
  2248.                         break;
  2249.                 case 16:
  2250.                         WARN_ONCE(1,
  2251.                                   "128-bit pixels are not supported for display!");
  2252.                         tile_height = 16;
  2253.                         break;
  2254.                 }
  2255.                 break;
  2256.         default:
  2257.                 MISSING_CASE(fb_format_modifier);
  2258.                 tile_height = 1;
  2259.                 break;
  2260.         }
  2261.  
  2262.         return tile_height;
  2263. }
  2264.  
  2265. unsigned int
  2266. intel_fb_align_height(struct drm_device *dev, unsigned int height,
  2267.                       uint32_t pixel_format, uint64_t fb_format_modifier)
  2268. {
  2269.         return ALIGN(height, intel_tile_height(dev, pixel_format,
  2270.                                                fb_format_modifier, 0));
  2271. }
  2272.  
  2273. static int
  2274. intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
  2275.                         const struct drm_plane_state *plane_state)
  2276. {
  2277.         struct intel_rotation_info *info = &view->rotation_info;
  2278.         unsigned int tile_height, tile_pitch;
  2279.  
  2280.         *view = i915_ggtt_view_normal;
  2281.  
  2282.         if (!plane_state)
  2283.                 return 0;
  2284.  
  2285.         if (!intel_rotation_90_or_270(plane_state->rotation))
  2286.                 return 0;
  2287.  
  2288.         *view = i915_ggtt_view_rotated;
  2289.  
  2290.         info->height = fb->height;
  2291.         info->pixel_format = fb->pixel_format;
  2292.         info->pitch = fb->pitches[0];
  2293.         info->uv_offset = fb->offsets[1];
  2294.         info->fb_modifier = fb->modifier[0];
  2295.  
  2296.         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
  2297.                                         fb->modifier[0], 0);
  2298.         tile_pitch = PAGE_SIZE / tile_height;
  2299.         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
  2300.         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
  2301.         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
  2302.  
  2303.         if (info->pixel_format == DRM_FORMAT_NV12) {
  2304.                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
  2305.                                                 fb->modifier[0], 1);
  2306.                 tile_pitch = PAGE_SIZE / tile_height;
  2307.                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
  2308.                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
  2309.                                                      tile_height);
  2310.                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
  2311.                                 PAGE_SIZE;
  2312.         }
  2313.  
  2314.         return 0;
  2315. }
  2316.  
  2317. static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
  2318. {
  2319.         if (INTEL_INFO(dev_priv)->gen >= 9)
  2320.                 return 256 * 1024;
  2321.         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
  2322.                  IS_VALLEYVIEW(dev_priv))
  2323.                 return 128 * 1024;
  2324.         else if (INTEL_INFO(dev_priv)->gen >= 4)
  2325.                 return 4 * 1024;
  2326.         else
  2327.                 return 0;
  2328. }
  2329.  
  2330. int
  2331. intel_pin_and_fence_fb_obj(struct drm_plane *plane,
  2332.                            struct drm_framebuffer *fb,
  2333.                            const struct drm_plane_state *plane_state,
  2334.                            struct intel_engine_cs *pipelined,
  2335.                            struct drm_i915_gem_request **pipelined_request)
  2336. {
  2337.         struct drm_device *dev = fb->dev;
  2338.         struct drm_i915_private *dev_priv = dev->dev_private;
  2339.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2340.         struct i915_ggtt_view view;
  2341.         u32 alignment;
  2342.         int ret;
  2343.  
  2344.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2345.  
  2346.         switch (fb->modifier[0]) {
  2347.         case DRM_FORMAT_MOD_NONE:
  2348.                 alignment = intel_linear_alignment(dev_priv);
  2349.                 break;
  2350.         case I915_FORMAT_MOD_X_TILED:
  2351.                 if (INTEL_INFO(dev)->gen >= 9)
  2352.                         alignment = 256 * 1024;
  2353.                 else {
  2354.                         /* pin() will align the object as required by fence */
  2355.                         alignment = 0;
  2356.                 }
  2357.                 break;
  2358.         case I915_FORMAT_MOD_Y_TILED:
  2359.         case I915_FORMAT_MOD_Yf_TILED:
  2360.                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
  2361.                           "Y tiling bo slipped through, driver bug!\n"))
  2362.                         return -EINVAL;
  2363.                 alignment = 1 * 1024 * 1024;
  2364.                 break;
  2365.         default:
  2366.                 MISSING_CASE(fb->modifier[0]);
  2367.                 return -EINVAL;
  2368.         }
  2369.  
  2370.         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2371.         if (ret)
  2372.                 return ret;
  2373.  
  2374.         /* Note that the w/a also requires 64 PTE of padding following the
  2375.          * bo. We currently fill all unused PTE with the shadow page and so
  2376.          * we should always have valid PTE following the scanout preventing
  2377.          * the VT-d warning.
  2378.          */
  2379.         if (need_vtd_wa(dev) && alignment < 256 * 1024)
  2380.                 alignment = 256 * 1024;
  2381.  
  2382.         /*
  2383.          * Global gtt pte registers are special registers which actually forward
  2384.          * writes to a chunk of system memory. Which means that there is no risk
  2385.          * that the register values disappear as soon as we call
  2386.          * intel_runtime_pm_put(), so it is correct to wrap only the
  2387.          * pin/unpin/fence and not more.
  2388.          */
  2389.         intel_runtime_pm_get(dev_priv);
  2390.  
  2391.         dev_priv->mm.interruptible = false;
  2392.         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
  2393.                                                    pipelined_request, &view);
  2394.         if (ret)
  2395.                 goto err_interruptible;
  2396.  
  2397.         /* Install a fence for tiled scan-out. Pre-i965 always needs a
  2398.          * fence, whereas 965+ only requires a fence if using
  2399.          * framebuffer compression.  For simplicity, we always install
  2400.          * a fence as the cost is not that onerous.
  2401.          */
  2402.         if (view.type == I915_GGTT_VIEW_NORMAL) {
  2403.                 ret = i915_gem_object_get_fence(obj);
  2404.                 if (ret == -EDEADLK) {
  2405.                         /*
  2406.                          * -EDEADLK means there are no free fences
  2407.                          * no pending flips.
  2408.                          *
  2409.                          * This is propagated to atomic, but it uses
  2410.                          * -EDEADLK to force a locking recovery, so
  2411.                          * change the returned error to -EBUSY.
  2412.                          */
  2413.                         ret = -EBUSY;
  2414.                         goto err_unpin;
  2415.                 } else if (ret)
  2416.                         goto err_unpin;
  2417.  
  2418.                 i915_gem_object_pin_fence(obj);
  2419.         }
  2420.  
  2421.         dev_priv->mm.interruptible = true;
  2422.         intel_runtime_pm_put(dev_priv);
  2423.         return 0;
  2424.  
  2425. err_unpin:
  2426.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2427. err_interruptible:
  2428.         dev_priv->mm.interruptible = true;
  2429.         intel_runtime_pm_put(dev_priv);
  2430.         return ret;
  2431. }
  2432.  
  2433. static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
  2434.                                const struct drm_plane_state *plane_state)
  2435. {
  2436.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2437.         struct i915_ggtt_view view;
  2438.         int ret;
  2439.  
  2440.         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
  2441.  
  2442.         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2443.         WARN_ONCE(ret, "Couldn't get view from plane state!");
  2444.  
  2445.         if (view.type == I915_GGTT_VIEW_NORMAL)
  2446.                 i915_gem_object_unpin_fence(obj);
  2447.  
  2448.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2449. }
  2450.  
  2451. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  2452.  * is assumed to be a power-of-two. */
  2453. unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
  2454.                                              int *x, int *y,
  2455.                                              unsigned int tiling_mode,
  2456.                                              unsigned int cpp,
  2457.                                              unsigned int pitch)
  2458. {
  2459.         if (tiling_mode != I915_TILING_NONE) {
  2460.                 unsigned int tile_rows, tiles;
  2461.  
  2462.                 tile_rows = *y / 8;
  2463.                 *y %= 8;
  2464.  
  2465.                 tiles = *x / (512/cpp);
  2466.                 *x %= 512/cpp;
  2467.  
  2468.                 return tile_rows * pitch * 8 + tiles * 4096;
  2469.         } else {
  2470.                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
  2471.                 unsigned int offset;
  2472.  
  2473.                 offset = *y * pitch + *x * cpp;
  2474.                 *y = (offset & alignment) / pitch;
  2475.                 *x = ((offset & alignment) - *y * pitch) / cpp;
  2476.                 return offset & ~alignment;
  2477.         }
  2478. }
  2479.  
  2480. static int i9xx_format_to_fourcc(int format)
  2481. {
  2482.         switch (format) {
  2483.         case DISPPLANE_8BPP:
  2484.                 return DRM_FORMAT_C8;
  2485.         case DISPPLANE_BGRX555:
  2486.                 return DRM_FORMAT_XRGB1555;
  2487.         case DISPPLANE_BGRX565:
  2488.                 return DRM_FORMAT_RGB565;
  2489.         default:
  2490.         case DISPPLANE_BGRX888:
  2491.                 return DRM_FORMAT_XRGB8888;
  2492.         case DISPPLANE_RGBX888:
  2493.                 return DRM_FORMAT_XBGR8888;
  2494.         case DISPPLANE_BGRX101010:
  2495.                 return DRM_FORMAT_XRGB2101010;
  2496.         case DISPPLANE_RGBX101010:
  2497.                 return DRM_FORMAT_XBGR2101010;
  2498.         }
  2499. }
  2500.  
  2501. static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
  2502. {
  2503.         switch (format) {
  2504.         case PLANE_CTL_FORMAT_RGB_565:
  2505.                 return DRM_FORMAT_RGB565;
  2506.         default:
  2507.         case PLANE_CTL_FORMAT_XRGB_8888:
  2508.                 if (rgb_order) {
  2509.                         if (alpha)
  2510.                                 return DRM_FORMAT_ABGR8888;
  2511.                         else
  2512.                                 return DRM_FORMAT_XBGR8888;
  2513.                 } else {
  2514.                         if (alpha)
  2515.                                 return DRM_FORMAT_ARGB8888;
  2516.                         else
  2517.                                 return DRM_FORMAT_XRGB8888;
  2518.                 }
  2519.         case PLANE_CTL_FORMAT_XRGB_2101010:
  2520.                 if (rgb_order)
  2521.                         return DRM_FORMAT_XBGR2101010;
  2522.                 else
  2523.                         return DRM_FORMAT_XRGB2101010;
  2524.         }
  2525. }
  2526.  
  2527. static bool
  2528. intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
  2529.                               struct intel_initial_plane_config *plane_config)
  2530. {
  2531.         struct drm_device *dev = crtc->base.dev;
  2532.         struct drm_i915_private *dev_priv = to_i915(dev);
  2533.         struct drm_i915_gem_object *obj = NULL;
  2534.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  2535.         struct drm_framebuffer *fb = &plane_config->fb->base;
  2536.         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
  2537.         u32 size_aligned = round_up(plane_config->base + plane_config->size,
  2538.                                     PAGE_SIZE);
  2539.  
  2540.         size_aligned -= base_aligned;
  2541.  
  2542.         if (plane_config->size == 0)
  2543.                 return false;
  2544.  
  2545.         /* If the FB is too big, just don't use it since fbdev is not very
  2546.          * important and we should probably use that space with FBC or other
  2547.          * features. */
  2548.         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
  2549.                 return false;
  2550.  
  2551.         obj = i915_gem_object_create_stolen_for_preallocated(dev,
  2552.                                                              base_aligned,
  2553.                                                              base_aligned,
  2554.                                                              size_aligned);
  2555.         if (!obj)
  2556.                 return false;
  2557.  
  2558.         obj->tiling_mode = plane_config->tiling;
  2559.         if (obj->tiling_mode == I915_TILING_X)
  2560.                 obj->stride = fb->pitches[0];
  2561.  
  2562.         mode_cmd.pixel_format = fb->pixel_format;
  2563.         mode_cmd.width = fb->width;
  2564.         mode_cmd.height = fb->height;
  2565.         mode_cmd.pitches[0] = fb->pitches[0];
  2566.         mode_cmd.modifier[0] = fb->modifier[0];
  2567.         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
  2568.  
  2569.         mutex_lock(&dev->struct_mutex);
  2570.         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
  2571.                                    &mode_cmd, obj)) {
  2572.                 DRM_DEBUG_KMS("intel fb init failed\n");
  2573.                 goto out_unref_obj;
  2574.         }
  2575.         mutex_unlock(&dev->struct_mutex);
  2576.  
  2577.         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
  2578.         return true;
  2579.  
  2580. out_unref_obj:
  2581.         drm_gem_object_unreference(&obj->base);
  2582.         mutex_unlock(&dev->struct_mutex);
  2583.         return false;
  2584. }
  2585.  
  2586. /* Update plane->state->fb to match plane->fb after driver-internal updates */
  2587. static void
  2588. update_state_fb(struct drm_plane *plane)
  2589. {
  2590.         if (plane->fb == plane->state->fb)
  2591.                 return;
  2592.  
  2593.         if (plane->state->fb)
  2594.                 drm_framebuffer_unreference(plane->state->fb);
  2595.         plane->state->fb = plane->fb;
  2596.         if (plane->state->fb)
  2597.                 drm_framebuffer_reference(plane->state->fb);
  2598. }
  2599.  
  2600. static void
  2601. intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
  2602.                              struct intel_initial_plane_config *plane_config)
  2603. {
  2604.         struct drm_device *dev = intel_crtc->base.dev;
  2605.         struct drm_i915_private *dev_priv = dev->dev_private;
  2606.         struct drm_crtc *c;
  2607.         struct intel_crtc *i;
  2608.         struct drm_i915_gem_object *obj;
  2609.         struct drm_plane *primary = intel_crtc->base.primary;
  2610.         struct drm_plane_state *plane_state = primary->state;
  2611.         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
  2612.         struct intel_plane *intel_plane = to_intel_plane(primary);
  2613.         struct drm_framebuffer *fb;
  2614.  
  2615.         if (!plane_config->fb)
  2616.                 return;
  2617.  
  2618.         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
  2619.                 fb = &plane_config->fb->base;
  2620.                 goto valid_fb;
  2621.         }
  2622.  
  2623.         kfree(plane_config->fb);
  2624.  
  2625.         /*
  2626.          * Failed to alloc the obj, check to see if we should share
  2627.          * an fb with another CRTC instead
  2628.          */
  2629.         for_each_crtc(dev, c) {
  2630.                 i = to_intel_crtc(c);
  2631.  
  2632.                 if (c == &intel_crtc->base)
  2633.                         continue;
  2634.  
  2635.                 if (!i->active)
  2636.                         continue;
  2637.  
  2638.                 fb = c->primary->fb;
  2639.                 if (!fb)
  2640.                         continue;
  2641.  
  2642.                 obj = intel_fb_obj(fb);
  2643.                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
  2644.                         drm_framebuffer_reference(fb);
  2645.                         goto valid_fb;
  2646.                 }
  2647.         }
  2648.  
  2649.         /*
  2650.          * We've failed to reconstruct the BIOS FB.  Current display state
  2651.          * indicates that the primary plane is visible, but has a NULL FB,
  2652.          * which will lead to problems later if we don't fix it up.  The
  2653.          * simplest solution is to just disable the primary plane now and
  2654.          * pretend the BIOS never had it enabled.
  2655.          */
  2656.         to_intel_plane_state(plane_state)->visible = false;
  2657.         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
  2658.         intel_pre_disable_primary(&intel_crtc->base);
  2659.         intel_plane->disable_plane(primary, &intel_crtc->base);
  2660.  
  2661.         return;
  2662.  
  2663. valid_fb:
  2664.         plane_state->src_x = 0;
  2665.         plane_state->src_y = 0;
  2666.         plane_state->src_w = fb->width << 16;
  2667.         plane_state->src_h = fb->height << 16;
  2668.  
  2669.         plane_state->crtc_x = 0;
  2670.         plane_state->crtc_y = 0;
  2671.         plane_state->crtc_w = fb->width;
  2672.         plane_state->crtc_h = fb->height;
  2673.  
  2674.         obj = intel_fb_obj(fb);
  2675.         if (obj->tiling_mode != I915_TILING_NONE)
  2676.                 dev_priv->preserve_bios_swizzle = true;
  2677.  
  2678.         drm_framebuffer_reference(fb);
  2679.         primary->fb = primary->state->fb = fb;
  2680.         primary->crtc = primary->state->crtc = &intel_crtc->base;
  2681.         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
  2682.         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
  2683. }
  2684.  
  2685. static void i9xx_update_primary_plane(struct drm_crtc *crtc,
  2686.                                       struct drm_framebuffer *fb,
  2687.                                       int x, int y)
  2688. {
  2689.         struct drm_device *dev = crtc->dev;
  2690.         struct drm_i915_private *dev_priv = dev->dev_private;
  2691.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2692.         struct drm_plane *primary = crtc->primary;
  2693.         bool visible = to_intel_plane_state(primary->state)->visible;
  2694.         struct drm_i915_gem_object *obj;
  2695.         int plane = intel_crtc->plane;
  2696.         unsigned long linear_offset;
  2697.         u32 dspcntr;
  2698.         u32 reg = DSPCNTR(plane);
  2699.         int pixel_size;
  2700.  
  2701.         if (!visible || !fb) {
  2702.                 I915_WRITE(reg, 0);
  2703.                 if (INTEL_INFO(dev)->gen >= 4)
  2704.                         I915_WRITE(DSPSURF(plane), 0);
  2705.                 else
  2706.                         I915_WRITE(DSPADDR(plane), 0);
  2707.                 POSTING_READ(reg);
  2708.                 return;
  2709.         }
  2710.  
  2711.         obj = intel_fb_obj(fb);
  2712.         if (WARN_ON(obj == NULL))
  2713.                 return;
  2714.  
  2715.         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
  2716.  
  2717.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2718.  
  2719.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2720.  
  2721.         if (INTEL_INFO(dev)->gen < 4) {
  2722.                 if (intel_crtc->pipe == PIPE_B)
  2723.                         dspcntr |= DISPPLANE_SEL_PIPE_B;
  2724.  
  2725.                 /* pipesrc and dspsize control the size that is scaled from,
  2726.                  * which should always be the user's requested size.
  2727.                  */
  2728.                 I915_WRITE(DSPSIZE(plane),
  2729.                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
  2730.                            (intel_crtc->config->pipe_src_w - 1));
  2731.                 I915_WRITE(DSPPOS(plane), 0);
  2732.         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
  2733.                 I915_WRITE(PRIMSIZE(plane),
  2734.                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
  2735.                            (intel_crtc->config->pipe_src_w - 1));
  2736.                 I915_WRITE(PRIMPOS(plane), 0);
  2737.                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
  2738.         }
  2739.  
  2740.         switch (fb->pixel_format) {
  2741.         case DRM_FORMAT_C8:
  2742.                 dspcntr |= DISPPLANE_8BPP;
  2743.                 break;
  2744.         case DRM_FORMAT_XRGB1555:
  2745.                 dspcntr |= DISPPLANE_BGRX555;
  2746.                 break;
  2747.         case DRM_FORMAT_RGB565:
  2748.                 dspcntr |= DISPPLANE_BGRX565;
  2749.                 break;
  2750.         case DRM_FORMAT_XRGB8888:
  2751.                 dspcntr |= DISPPLANE_BGRX888;
  2752.                 break;
  2753.         case DRM_FORMAT_XBGR8888:
  2754.                 dspcntr |= DISPPLANE_RGBX888;
  2755.                 break;
  2756.         case DRM_FORMAT_XRGB2101010:
  2757.                 dspcntr |= DISPPLANE_BGRX101010;
  2758.                 break;
  2759.         case DRM_FORMAT_XBGR2101010:
  2760.                 dspcntr |= DISPPLANE_RGBX101010;
  2761.                 break;
  2762.         default:
  2763.                 BUG();
  2764.         }
  2765.  
  2766.         if (INTEL_INFO(dev)->gen >= 4 &&
  2767.             obj->tiling_mode != I915_TILING_NONE)
  2768.                 dspcntr |= DISPPLANE_TILED;
  2769.  
  2770.         if (IS_G4X(dev))
  2771.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2772.  
  2773.         linear_offset = y * fb->pitches[0] + x * pixel_size;
  2774.  
  2775.         if (INTEL_INFO(dev)->gen >= 4) {
  2776.                 intel_crtc->dspaddr_offset =
  2777.                         intel_gen4_compute_page_offset(dev_priv,
  2778.                                                        &x, &y, obj->tiling_mode,
  2779.                                                        pixel_size,
  2780.                                                        fb->pitches[0]);
  2781.                 linear_offset -= intel_crtc->dspaddr_offset;
  2782.         } else {
  2783.                 intel_crtc->dspaddr_offset = linear_offset;
  2784.         }
  2785.  
  2786.         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
  2787.                 dspcntr |= DISPPLANE_ROTATE_180;
  2788.  
  2789.                 x += (intel_crtc->config->pipe_src_w - 1);
  2790.                 y += (intel_crtc->config->pipe_src_h - 1);
  2791.  
  2792.                 /* Finding the last pixel of the last line of the display
  2793.                 data and adding to linear_offset*/
  2794.                 linear_offset +=
  2795.                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
  2796.                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
  2797.         }
  2798.  
  2799.         intel_crtc->adjusted_x = x;
  2800.         intel_crtc->adjusted_y = y;
  2801.  
  2802.         I915_WRITE(reg, dspcntr);
  2803.  
  2804.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2805.         if (INTEL_INFO(dev)->gen >= 4) {
  2806.                 I915_WRITE(DSPSURF(plane),
  2807.                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2808.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2809.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2810.         } else
  2811.                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  2812.         POSTING_READ(reg);
  2813. }
  2814.  
  2815. static void ironlake_update_primary_plane(struct drm_crtc *crtc,
  2816.                                           struct drm_framebuffer *fb,
  2817.                                           int x, int y)
  2818. {
  2819.         struct drm_device *dev = crtc->dev;
  2820.         struct drm_i915_private *dev_priv = dev->dev_private;
  2821.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2822.         struct drm_plane *primary = crtc->primary;
  2823.         bool visible = to_intel_plane_state(primary->state)->visible;
  2824.         struct drm_i915_gem_object *obj;
  2825.         int plane = intel_crtc->plane;
  2826.         unsigned long linear_offset;
  2827.         u32 dspcntr;
  2828.         u32 reg = DSPCNTR(plane);
  2829.         int pixel_size;
  2830.  
  2831.         if (!visible || !fb) {
  2832.                 I915_WRITE(reg, 0);
  2833.                 I915_WRITE(DSPSURF(plane), 0);
  2834.                 POSTING_READ(reg);
  2835.                 return;
  2836.         }
  2837.  
  2838.         obj = intel_fb_obj(fb);
  2839.         if (WARN_ON(obj == NULL))
  2840.                 return;
  2841.  
  2842.         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
  2843.  
  2844.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2845.  
  2846.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2847.  
  2848.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2849.                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
  2850.  
  2851.         switch (fb->pixel_format) {
  2852.         case DRM_FORMAT_C8:
  2853.                 dspcntr |= DISPPLANE_8BPP;
  2854.                 break;
  2855.         case DRM_FORMAT_RGB565:
  2856.                 dspcntr |= DISPPLANE_BGRX565;
  2857.                 break;
  2858.         case DRM_FORMAT_XRGB8888:
  2859.                 dspcntr |= DISPPLANE_BGRX888;
  2860.                 break;
  2861.         case DRM_FORMAT_XBGR8888:
  2862.                 dspcntr |= DISPPLANE_RGBX888;
  2863.                 break;
  2864.         case DRM_FORMAT_XRGB2101010:
  2865.                 dspcntr |= DISPPLANE_BGRX101010;
  2866.                 break;
  2867.         case DRM_FORMAT_XBGR2101010:
  2868.                 dspcntr |= DISPPLANE_RGBX101010;
  2869.                 break;
  2870.         default:
  2871.                 BUG();
  2872.         }
  2873.  
  2874.         if (obj->tiling_mode != I915_TILING_NONE)
  2875.                 dspcntr |= DISPPLANE_TILED;
  2876.  
  2877.         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
  2878.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2879.  
  2880.         linear_offset = y * fb->pitches[0] + x * pixel_size;
  2881.         intel_crtc->dspaddr_offset =
  2882.                 intel_gen4_compute_page_offset(dev_priv,
  2883.                                                &x, &y, obj->tiling_mode,
  2884.                                                pixel_size,
  2885.                                                fb->pitches[0]);
  2886.         linear_offset -= intel_crtc->dspaddr_offset;
  2887.         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
  2888.                 dspcntr |= DISPPLANE_ROTATE_180;
  2889.  
  2890.                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  2891.                         x += (intel_crtc->config->pipe_src_w - 1);
  2892.                         y += (intel_crtc->config->pipe_src_h - 1);
  2893.  
  2894.                         /* Finding the last pixel of the last line of the display
  2895.                         data and adding to linear_offset*/
  2896.                         linear_offset +=
  2897.                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
  2898.                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
  2899.                 }
  2900.         }
  2901.  
  2902.         intel_crtc->adjusted_x = x;
  2903.         intel_crtc->adjusted_y = y;
  2904.  
  2905.         I915_WRITE(reg, dspcntr);
  2906.  
  2907.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2908.         I915_WRITE(DSPSURF(plane),
  2909.                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2910.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2911.                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  2912.         } else {
  2913.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2914.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2915.         }
  2916.         POSTING_READ(reg);
  2917. }
  2918.  
  2919. u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
  2920.                               uint32_t pixel_format)
  2921. {
  2922.         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
  2923.  
  2924.         /*
  2925.          * The stride is either expressed as a multiple of 64 bytes
  2926.          * chunks for linear buffers or in number of tiles for tiled
  2927.          * buffers.
  2928.          */
  2929.         switch (fb_modifier) {
  2930.         case DRM_FORMAT_MOD_NONE:
  2931.                 return 64;
  2932.         case I915_FORMAT_MOD_X_TILED:
  2933.                 if (INTEL_INFO(dev)->gen == 2)
  2934.                         return 128;
  2935.                 return 512;
  2936.         case I915_FORMAT_MOD_Y_TILED:
  2937.                 /* No need to check for old gens and Y tiling since this is
  2938.                  * about the display engine and those will be blocked before
  2939.                  * we get here.
  2940.                  */
  2941.                 return 128;
  2942.         case I915_FORMAT_MOD_Yf_TILED:
  2943.                 if (bits_per_pixel == 8)
  2944.                         return 64;
  2945.                 else
  2946.                         return 128;
  2947.         default:
  2948.                 MISSING_CASE(fb_modifier);
  2949.                 return 64;
  2950.         }
  2951. }
  2952.  
  2953. unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
  2954.                                      struct drm_i915_gem_object *obj,
  2955.                                      unsigned int plane)
  2956. {
  2957.         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
  2958.         struct i915_vma *vma;
  2959.         unsigned char *offset;
  2960.  
  2961.         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
  2962.                 view = &i915_ggtt_view_rotated;
  2963.  
  2964.         vma = i915_gem_obj_to_ggtt_view(obj, view);
  2965.         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
  2966.                 view->type))
  2967.                 return -1;
  2968.  
  2969.         offset = (unsigned char *)vma->node.start;
  2970.  
  2971.         if (plane == 1) {
  2972.                 offset += vma->ggtt_view.rotation_info.uv_start_page *
  2973.                           PAGE_SIZE;
  2974.         }
  2975.  
  2976.         return (unsigned long)offset;
  2977. }
  2978.  
  2979. static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
  2980. {
  2981.         struct drm_device *dev = intel_crtc->base.dev;
  2982.         struct drm_i915_private *dev_priv = dev->dev_private;
  2983.  
  2984.         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
  2985.         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
  2986.         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
  2987. }
  2988.  
  2989. /*
  2990.  * This function detaches (aka. unbinds) unused scalers in hardware
  2991.  */
  2992. static void skl_detach_scalers(struct intel_crtc *intel_crtc)
  2993. {
  2994.         struct intel_crtc_scaler_state *scaler_state;
  2995.         int i;
  2996.  
  2997.         scaler_state = &intel_crtc->config->scaler_state;
  2998.  
  2999.         /* loop through and disable scalers that aren't in use */
  3000.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  3001.                 if (!scaler_state->scalers[i].in_use)
  3002.                         skl_detach_scaler(intel_crtc, i);
  3003.         }
  3004. }
  3005.  
  3006. u32 skl_plane_ctl_format(uint32_t pixel_format)
  3007. {
  3008.         switch (pixel_format) {
  3009.         case DRM_FORMAT_C8:
  3010.                 return PLANE_CTL_FORMAT_INDEXED;
  3011.         case DRM_FORMAT_RGB565:
  3012.                 return PLANE_CTL_FORMAT_RGB_565;
  3013.         case DRM_FORMAT_XBGR8888:
  3014.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
  3015.         case DRM_FORMAT_XRGB8888:
  3016.                 return PLANE_CTL_FORMAT_XRGB_8888;
  3017.         /*
  3018.          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
  3019.          * to be already pre-multiplied. We need to add a knob (or a different
  3020.          * DRM_FORMAT) for user-space to configure that.
  3021.          */
  3022.         case DRM_FORMAT_ABGR8888:
  3023.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
  3024.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3025.         case DRM_FORMAT_ARGB8888:
  3026.                 return PLANE_CTL_FORMAT_XRGB_8888 |
  3027.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3028.         case DRM_FORMAT_XRGB2101010:
  3029.                 return PLANE_CTL_FORMAT_XRGB_2101010;
  3030.         case DRM_FORMAT_XBGR2101010:
  3031.                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
  3032.         case DRM_FORMAT_YUYV:
  3033.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
  3034.         case DRM_FORMAT_YVYU:
  3035.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
  3036.         case DRM_FORMAT_UYVY:
  3037.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
  3038.         case DRM_FORMAT_VYUY:
  3039.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
  3040.         default:
  3041.                 MISSING_CASE(pixel_format);
  3042.         }
  3043.  
  3044.         return 0;
  3045. }
  3046.  
  3047. u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
  3048. {
  3049.         switch (fb_modifier) {
  3050.         case DRM_FORMAT_MOD_NONE:
  3051.                 break;
  3052.         case I915_FORMAT_MOD_X_TILED:
  3053.                 return PLANE_CTL_TILED_X;
  3054.         case I915_FORMAT_MOD_Y_TILED:
  3055.                 return PLANE_CTL_TILED_Y;
  3056.         case I915_FORMAT_MOD_Yf_TILED:
  3057.                 return PLANE_CTL_TILED_YF;
  3058.         default:
  3059.                 MISSING_CASE(fb_modifier);
  3060.         }
  3061.  
  3062.         return 0;
  3063. }
  3064.  
  3065. u32 skl_plane_ctl_rotation(unsigned int rotation)
  3066. {
  3067.         switch (rotation) {
  3068.         case BIT(DRM_ROTATE_0):
  3069.                 break;
  3070.         /*
  3071.          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
  3072.          * while i915 HW rotation is clockwise, thats why this swapping.
  3073.          */
  3074.         case BIT(DRM_ROTATE_90):
  3075.                 return PLANE_CTL_ROTATE_270;
  3076.         case BIT(DRM_ROTATE_180):
  3077.                 return PLANE_CTL_ROTATE_180;
  3078.         case BIT(DRM_ROTATE_270):
  3079.                 return PLANE_CTL_ROTATE_90;
  3080.         default:
  3081.                 MISSING_CASE(rotation);
  3082.         }
  3083.  
  3084.         return 0;
  3085. }
  3086.  
  3087. static void skylake_update_primary_plane(struct drm_crtc *crtc,
  3088.                                          struct drm_framebuffer *fb,
  3089.                                          int x, int y)
  3090. {
  3091.         struct drm_device *dev = crtc->dev;
  3092.         struct drm_i915_private *dev_priv = dev->dev_private;
  3093.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3094.         struct drm_plane *plane = crtc->primary;
  3095.         bool visible = to_intel_plane_state(plane->state)->visible;
  3096.         struct drm_i915_gem_object *obj;
  3097.         int pipe = intel_crtc->pipe;
  3098.         u32 plane_ctl, stride_div, stride;
  3099.         u32 tile_height, plane_offset, plane_size;
  3100.         unsigned int rotation;
  3101.         int x_offset, y_offset;
  3102.         unsigned long surf_addr;
  3103.         struct intel_crtc_state *crtc_state = intel_crtc->config;
  3104.         struct intel_plane_state *plane_state;
  3105.         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
  3106.         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
  3107.         int scaler_id = -1;
  3108.  
  3109.         plane_state = to_intel_plane_state(plane->state);
  3110.  
  3111.         if (!visible || !fb) {
  3112.                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
  3113.                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
  3114.                 POSTING_READ(PLANE_CTL(pipe, 0));
  3115.                 return;
  3116.         }
  3117.  
  3118.         plane_ctl = PLANE_CTL_ENABLE |
  3119.                     PLANE_CTL_PIPE_GAMMA_ENABLE |
  3120.                     PLANE_CTL_PIPE_CSC_ENABLE;
  3121.  
  3122.         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
  3123.         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
  3124.         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
  3125.  
  3126.         rotation = plane->state->rotation;
  3127.         plane_ctl |= skl_plane_ctl_rotation(rotation);
  3128.  
  3129.         obj = intel_fb_obj(fb);
  3130.         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
  3131.                                                fb->pixel_format);
  3132.         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
  3133.  
  3134.         WARN_ON(drm_rect_width(&plane_state->src) == 0);
  3135.  
  3136.         scaler_id = plane_state->scaler_id;
  3137.         src_x = plane_state->src.x1 >> 16;
  3138.         src_y = plane_state->src.y1 >> 16;
  3139.         src_w = drm_rect_width(&plane_state->src) >> 16;
  3140.         src_h = drm_rect_height(&plane_state->src) >> 16;
  3141.         dst_x = plane_state->dst.x1;
  3142.         dst_y = plane_state->dst.y1;
  3143.         dst_w = drm_rect_width(&plane_state->dst);
  3144.         dst_h = drm_rect_height(&plane_state->dst);
  3145.  
  3146.         WARN_ON(x != src_x || y != src_y);
  3147.  
  3148.         if (intel_rotation_90_or_270(rotation)) {
  3149.                 /* stride = Surface height in tiles */
  3150.                 tile_height = intel_tile_height(dev, fb->pixel_format,
  3151.                                                 fb->modifier[0], 0);
  3152.                 stride = DIV_ROUND_UP(fb->height, tile_height);
  3153.                 x_offset = stride * tile_height - y - src_h;
  3154.                 y_offset = x;
  3155.                 plane_size = (src_w - 1) << 16 | (src_h - 1);
  3156.         } else {
  3157.                 stride = fb->pitches[0] / stride_div;
  3158.                 x_offset = x;
  3159.                 y_offset = y;
  3160.                 plane_size = (src_h - 1) << 16 | (src_w - 1);
  3161.         }
  3162.         plane_offset = y_offset << 16 | x_offset;
  3163.  
  3164.         intel_crtc->adjusted_x = x_offset;
  3165.         intel_crtc->adjusted_y = y_offset;
  3166.  
  3167.         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
  3168.         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
  3169.         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
  3170.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  3171.  
  3172.         if (scaler_id >= 0) {
  3173.                 uint32_t ps_ctrl = 0;
  3174.  
  3175.                 WARN_ON(!dst_w || !dst_h);
  3176.                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
  3177.                         crtc_state->scaler_state.scalers[scaler_id].mode;
  3178.                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
  3179.                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
  3180.                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
  3181.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
  3182.                 I915_WRITE(PLANE_POS(pipe, 0), 0);
  3183.         } else {
  3184.                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
  3185.         }
  3186.  
  3187.         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
  3188.  
  3189.         POSTING_READ(PLANE_SURF(pipe, 0));
  3190. }
  3191.  
  3192. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  3193. static int
  3194. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  3195.                            int x, int y, enum mode_set_atomic state)
  3196. {
  3197.         struct drm_device *dev = crtc->dev;
  3198.         struct drm_i915_private *dev_priv = dev->dev_private;
  3199.  
  3200.         if (dev_priv->fbc.disable_fbc)
  3201.                 dev_priv->fbc.disable_fbc(dev_priv);
  3202.  
  3203.         dev_priv->display.update_primary_plane(crtc, fb, x, y);
  3204.  
  3205.         return 0;
  3206. }
  3207.  
  3208. static void intel_complete_page_flips(struct drm_device *dev)
  3209. {
  3210.         struct drm_crtc *crtc;
  3211.  
  3212.         for_each_crtc(dev, crtc) {
  3213.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3214.                 enum plane plane = intel_crtc->plane;
  3215.  
  3216.                 intel_prepare_page_flip(dev, plane);
  3217.                 intel_finish_page_flip_plane(dev, plane);
  3218.         }
  3219. }
  3220.  
  3221. static void intel_update_primary_planes(struct drm_device *dev)
  3222. {
  3223.         struct drm_crtc *crtc;
  3224.  
  3225.         for_each_crtc(dev, crtc) {
  3226.                 struct intel_plane *plane = to_intel_plane(crtc->primary);
  3227.                 struct intel_plane_state *plane_state;
  3228.  
  3229.                 drm_modeset_lock_crtc(crtc, &plane->base);
  3230.  
  3231.                 plane_state = to_intel_plane_state(plane->base.state);
  3232.  
  3233.                 if (plane_state->base.fb)
  3234.                         plane->commit_plane(&plane->base, plane_state);
  3235.  
  3236.                 drm_modeset_unlock_crtc(crtc);
  3237.         }
  3238. }
  3239.  
  3240. void intel_prepare_reset(struct drm_device *dev)
  3241. {
  3242.         /* no reset support for gen2 */
  3243.         if (IS_GEN2(dev))
  3244.                 return;
  3245.  
  3246.         /* reset doesn't touch the display */
  3247.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  3248.                 return;
  3249.  
  3250.         drm_modeset_lock_all(dev);
  3251.         /*
  3252.          * Disabling the crtcs gracefully seems nicer. Also the
  3253.          * g33 docs say we should at least disable all the planes.
  3254.          */
  3255.         intel_display_suspend(dev);
  3256. }
  3257.  
  3258. void intel_finish_reset(struct drm_device *dev)
  3259. {
  3260.         struct drm_i915_private *dev_priv = to_i915(dev);
  3261.  
  3262.         /*
  3263.          * Flips in the rings will be nuked by the reset,
  3264.          * so complete all pending flips so that user space
  3265.          * will get its events and not get stuck.
  3266.          */
  3267.         intel_complete_page_flips(dev);
  3268.  
  3269.         /* no reset support for gen2 */
  3270.         if (IS_GEN2(dev))
  3271.                 return;
  3272.  
  3273.         /* reset doesn't touch the display */
  3274.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
  3275.                 /*
  3276.                  * Flips in the rings have been nuked by the reset,
  3277.                  * so update the base address of all primary
  3278.                  * planes to the the last fb to make sure we're
  3279.                  * showing the correct fb after a reset.
  3280.                  *
  3281.                  * FIXME: Atomic will make this obsolete since we won't schedule
  3282.                  * CS-based flips (which might get lost in gpu resets) any more.
  3283.                  */
  3284.                 intel_update_primary_planes(dev);
  3285.                 return;
  3286.         }
  3287.  
  3288.         /*
  3289.          * The display has been reset as well,
  3290.          * so need a full re-initialization.
  3291.          */
  3292.         intel_runtime_pm_disable_interrupts(dev_priv);
  3293.         intel_runtime_pm_enable_interrupts(dev_priv);
  3294.  
  3295.         intel_modeset_init_hw(dev);
  3296.  
  3297.         spin_lock_irq(&dev_priv->irq_lock);
  3298.         if (dev_priv->display.hpd_irq_setup)
  3299.                 dev_priv->display.hpd_irq_setup(dev);
  3300.         spin_unlock_irq(&dev_priv->irq_lock);
  3301.  
  3302.         intel_display_resume(dev);
  3303.  
  3304. //      intel_hpd_init(dev_priv);
  3305.  
  3306.         drm_modeset_unlock_all(dev);
  3307. }
  3308.  
  3309. static void
  3310. intel_finish_fb(struct drm_framebuffer *old_fb)
  3311. {
  3312.         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
  3313.         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  3314.         bool was_interruptible = dev_priv->mm.interruptible;
  3315.         int ret;
  3316.  
  3317.         /* Big Hammer, we also need to ensure that any pending
  3318.          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  3319.          * current scanout is retired before unpinning the old
  3320.          * framebuffer. Note that we rely on userspace rendering
  3321.          * into the buffer attached to the pipe they are waiting
  3322.          * on. If not, userspace generates a GPU hang with IPEHR
  3323.          * point to the MI_WAIT_FOR_EVENT.
  3324.          *
  3325.          * This should only fail upon a hung GPU, in which case we
  3326.          * can safely continue.
  3327.          */
  3328.         dev_priv->mm.interruptible = false;
  3329.         ret = i915_gem_object_wait_rendering(obj, true);
  3330.         dev_priv->mm.interruptible = was_interruptible;
  3331.  
  3332.         WARN_ON(ret);
  3333. }
  3334.  
  3335. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  3336. {
  3337.         struct drm_device *dev = crtc->dev;
  3338.         struct drm_i915_private *dev_priv = dev->dev_private;
  3339.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3340.         bool pending;
  3341.  
  3342.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  3343.             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  3344.                 return false;
  3345.  
  3346.         spin_lock_irq(&dev->event_lock);
  3347.         pending = to_intel_crtc(crtc)->unpin_work != NULL;
  3348.         spin_unlock_irq(&dev->event_lock);
  3349.  
  3350.         return pending;
  3351. }
  3352.  
  3353. static void intel_update_pipe_config(struct intel_crtc *crtc,
  3354.                                      struct intel_crtc_state *old_crtc_state)
  3355. {
  3356.         struct drm_device *dev = crtc->base.dev;
  3357.         struct drm_i915_private *dev_priv = dev->dev_private;
  3358.         struct intel_crtc_state *pipe_config =
  3359.                 to_intel_crtc_state(crtc->base.state);
  3360.  
  3361.         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
  3362.         crtc->base.mode = crtc->base.state->mode;
  3363.  
  3364.         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
  3365.                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
  3366.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  3367.  
  3368.         if (HAS_DDI(dev))
  3369.                 intel_set_pipe_csc(&crtc->base);
  3370.  
  3371.         /*
  3372.          * Update pipe size and adjust fitter if needed: the reason for this is
  3373.          * that in compute_mode_changes we check the native mode (not the pfit
  3374.          * mode) to see if we can flip rather than do a full mode set. In the
  3375.          * fastboot case, we'll flip, but if we don't update the pipesrc and
  3376.          * pfit state, we'll end up with a big fb scanned out into the wrong
  3377.          * sized surface.
  3378.          */
  3379.  
  3380.         I915_WRITE(PIPESRC(crtc->pipe),
  3381.                    ((pipe_config->pipe_src_w - 1) << 16) |
  3382.                    (pipe_config->pipe_src_h - 1));
  3383.  
  3384.         /* on skylake this is done by detaching scalers */
  3385.         if (INTEL_INFO(dev)->gen >= 9) {
  3386.                 skl_detach_scalers(crtc);
  3387.  
  3388.                 if (pipe_config->pch_pfit.enabled)
  3389.                         skylake_pfit_enable(crtc);
  3390.         } else if (HAS_PCH_SPLIT(dev)) {
  3391.                 if (pipe_config->pch_pfit.enabled)
  3392.                         ironlake_pfit_enable(crtc);
  3393.                 else if (old_crtc_state->pch_pfit.enabled)
  3394.                         ironlake_pfit_disable(crtc, true);
  3395.         }
  3396. }
  3397.  
  3398. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  3399. {
  3400.         struct drm_device *dev = crtc->dev;
  3401.         struct drm_i915_private *dev_priv = dev->dev_private;
  3402.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3403.         int pipe = intel_crtc->pipe;
  3404.         u32 reg, temp;
  3405.  
  3406.         /* enable normal train */
  3407.         reg = FDI_TX_CTL(pipe);
  3408.         temp = I915_READ(reg);
  3409.         if (IS_IVYBRIDGE(dev)) {
  3410.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3411.                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  3412.         } else {
  3413.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3414.                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  3415.         }
  3416.         I915_WRITE(reg, temp);
  3417.  
  3418.         reg = FDI_RX_CTL(pipe);
  3419.         temp = I915_READ(reg);
  3420.         if (HAS_PCH_CPT(dev)) {
  3421.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3422.                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  3423.         } else {
  3424.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3425.                 temp |= FDI_LINK_TRAIN_NONE;
  3426.         }
  3427.         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  3428.  
  3429.         /* wait one idle pattern time */
  3430.         POSTING_READ(reg);
  3431.         udelay(1000);
  3432.  
  3433.         /* IVB wants error correction enabled */
  3434.         if (IS_IVYBRIDGE(dev))
  3435.                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  3436.                            FDI_FE_ERRC_ENABLE);
  3437. }
  3438.  
  3439. /* The FDI link training functions for ILK/Ibexpeak. */
  3440. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  3441. {
  3442.         struct drm_device *dev = crtc->dev;
  3443.         struct drm_i915_private *dev_priv = dev->dev_private;
  3444.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3445.         int pipe = intel_crtc->pipe;
  3446.         u32 reg, temp, tries;
  3447.  
  3448.         /* FDI needs bits from pipe first */
  3449.         assert_pipe_enabled(dev_priv, pipe);
  3450.  
  3451.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3452.            for train result */
  3453.         reg = FDI_RX_IMR(pipe);
  3454.         temp = I915_READ(reg);
  3455.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3456.         temp &= ~FDI_RX_BIT_LOCK;
  3457.         I915_WRITE(reg, temp);
  3458.         I915_READ(reg);
  3459.         udelay(150);
  3460.  
  3461.         /* enable CPU FDI TX and PCH FDI RX */
  3462.         reg = FDI_TX_CTL(pipe);
  3463.         temp = I915_READ(reg);
  3464.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3465.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3466.         temp &= ~FDI_LINK_TRAIN_NONE;
  3467.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3468.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3469.  
  3470.         reg = FDI_RX_CTL(pipe);
  3471.         temp = I915_READ(reg);
  3472.         temp &= ~FDI_LINK_TRAIN_NONE;
  3473.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3474.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3475.  
  3476.         POSTING_READ(reg);
  3477.         udelay(150);
  3478.  
  3479.         /* Ironlake workaround, enable clock pointer after FDI enable*/
  3480.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3481.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  3482.                    FDI_RX_PHASE_SYNC_POINTER_EN);
  3483.  
  3484.         reg = FDI_RX_IIR(pipe);
  3485.         for (tries = 0; tries < 5; tries++) {
  3486.                 temp = I915_READ(reg);
  3487.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3488.  
  3489.                 if ((temp & FDI_RX_BIT_LOCK)) {
  3490.                         DRM_DEBUG_KMS("FDI train 1 done.\n");
  3491.                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3492.                         break;
  3493.                 }
  3494.         }
  3495.         if (tries == 5)
  3496.                 DRM_ERROR("FDI train 1 fail!\n");
  3497.  
  3498.         /* Train 2 */
  3499.         reg = FDI_TX_CTL(pipe);
  3500.         temp = I915_READ(reg);
  3501.         temp &= ~FDI_LINK_TRAIN_NONE;
  3502.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3503.         I915_WRITE(reg, temp);
  3504.  
  3505.         reg = FDI_RX_CTL(pipe);
  3506.         temp = I915_READ(reg);
  3507.         temp &= ~FDI_LINK_TRAIN_NONE;
  3508.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3509.         I915_WRITE(reg, temp);
  3510.  
  3511.         POSTING_READ(reg);
  3512.         udelay(150);
  3513.  
  3514.         reg = FDI_RX_IIR(pipe);
  3515.         for (tries = 0; tries < 5; tries++) {
  3516.                 temp = I915_READ(reg);
  3517.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3518.  
  3519.                 if (temp & FDI_RX_SYMBOL_LOCK) {
  3520.                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3521.                         DRM_DEBUG_KMS("FDI train 2 done.\n");
  3522.                         break;
  3523.                 }
  3524.         }
  3525.         if (tries == 5)
  3526.                 DRM_ERROR("FDI train 2 fail!\n");
  3527.  
  3528.         DRM_DEBUG_KMS("FDI train done\n");
  3529.  
  3530. }
  3531.  
  3532. static const int snb_b_fdi_train_param[] = {
  3533.         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  3534.         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  3535.         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  3536.         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  3537. };
  3538.  
  3539. /* The FDI link training functions for SNB/Cougarpoint. */
  3540. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  3541. {
  3542.         struct drm_device *dev = crtc->dev;
  3543.         struct drm_i915_private *dev_priv = dev->dev_private;
  3544.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3545.         int pipe = intel_crtc->pipe;
  3546.         u32 reg, temp, i, retry;
  3547.  
  3548.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3549.            for train result */
  3550.         reg = FDI_RX_IMR(pipe);
  3551.         temp = I915_READ(reg);
  3552.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3553.         temp &= ~FDI_RX_BIT_LOCK;
  3554.         I915_WRITE(reg, temp);
  3555.  
  3556.         POSTING_READ(reg);
  3557.         udelay(150);
  3558.  
  3559.         /* enable CPU FDI TX and PCH FDI RX */
  3560.         reg = FDI_TX_CTL(pipe);
  3561.         temp = I915_READ(reg);
  3562.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3563.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3564.         temp &= ~FDI_LINK_TRAIN_NONE;
  3565.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3566.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3567.         /* SNB-B */
  3568.         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3569.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3570.  
  3571.         I915_WRITE(FDI_RX_MISC(pipe),
  3572.                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3573.  
  3574.         reg = FDI_RX_CTL(pipe);
  3575.         temp = I915_READ(reg);
  3576.         if (HAS_PCH_CPT(dev)) {
  3577.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3578.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3579.         } else {
  3580.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3581.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3582.         }
  3583.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3584.  
  3585.         POSTING_READ(reg);
  3586.         udelay(150);
  3587.  
  3588.         for (i = 0; i < 4; i++) {
  3589.                 reg = FDI_TX_CTL(pipe);
  3590.                 temp = I915_READ(reg);
  3591.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3592.                 temp |= snb_b_fdi_train_param[i];
  3593.                 I915_WRITE(reg, temp);
  3594.  
  3595.                 POSTING_READ(reg);
  3596.                 udelay(500);
  3597.  
  3598.                 for (retry = 0; retry < 5; retry++) {
  3599.                         reg = FDI_RX_IIR(pipe);
  3600.                         temp = I915_READ(reg);
  3601.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3602.                         if (temp & FDI_RX_BIT_LOCK) {
  3603.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3604.                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
  3605.                                 break;
  3606.                         }
  3607.                         udelay(50);
  3608.                 }
  3609.                 if (retry < 5)
  3610.                         break;
  3611.         }
  3612.         if (i == 4)
  3613.                 DRM_ERROR("FDI train 1 fail!\n");
  3614.  
  3615.         /* Train 2 */
  3616.         reg = FDI_TX_CTL(pipe);
  3617.         temp = I915_READ(reg);
  3618.         temp &= ~FDI_LINK_TRAIN_NONE;
  3619.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3620.         if (IS_GEN6(dev)) {
  3621.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3622.                 /* SNB-B */
  3623.                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3624.         }
  3625.         I915_WRITE(reg, temp);
  3626.  
  3627.         reg = FDI_RX_CTL(pipe);
  3628.         temp = I915_READ(reg);
  3629.         if (HAS_PCH_CPT(dev)) {
  3630.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3631.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3632.         } else {
  3633.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3634.                 temp |= FDI_LINK_TRAIN_PATTERN_2;
  3635.         }
  3636.         I915_WRITE(reg, temp);
  3637.  
  3638.         POSTING_READ(reg);
  3639.         udelay(150);
  3640.  
  3641.         for (i = 0; i < 4; i++) {
  3642.                 reg = FDI_TX_CTL(pipe);
  3643.                 temp = I915_READ(reg);
  3644.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3645.                 temp |= snb_b_fdi_train_param[i];
  3646.                 I915_WRITE(reg, temp);
  3647.  
  3648.                 POSTING_READ(reg);
  3649.                 udelay(500);
  3650.  
  3651.                 for (retry = 0; retry < 5; retry++) {
  3652.                         reg = FDI_RX_IIR(pipe);
  3653.                         temp = I915_READ(reg);
  3654.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3655.                         if (temp & FDI_RX_SYMBOL_LOCK) {
  3656.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3657.                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
  3658.                                 break;
  3659.                         }
  3660.                         udelay(50);
  3661.                 }
  3662.                 if (retry < 5)
  3663.                         break;
  3664.         }
  3665.         if (i == 4)
  3666.                 DRM_ERROR("FDI train 2 fail!\n");
  3667.  
  3668.         DRM_DEBUG_KMS("FDI train done.\n");
  3669. }
  3670.  
  3671. /* Manual link training for Ivy Bridge A0 parts */
  3672. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  3673. {
  3674.         struct drm_device *dev = crtc->dev;
  3675.         struct drm_i915_private *dev_priv = dev->dev_private;
  3676.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3677.         int pipe = intel_crtc->pipe;
  3678.         u32 reg, temp, i, j;
  3679.  
  3680.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3681.            for train result */
  3682.         reg = FDI_RX_IMR(pipe);
  3683.         temp = I915_READ(reg);
  3684.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3685.         temp &= ~FDI_RX_BIT_LOCK;
  3686.         I915_WRITE(reg, temp);
  3687.  
  3688.         POSTING_READ(reg);
  3689.         udelay(150);
  3690.  
  3691.         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  3692.                       I915_READ(FDI_RX_IIR(pipe)));
  3693.  
  3694.         /* Try each vswing and preemphasis setting twice before moving on */
  3695.         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  3696.                 /* disable first in case we need to retry */
  3697.                 reg = FDI_TX_CTL(pipe);
  3698.                 temp = I915_READ(reg);
  3699.                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  3700.                 temp &= ~FDI_TX_ENABLE;
  3701.                 I915_WRITE(reg, temp);
  3702.  
  3703.                 reg = FDI_RX_CTL(pipe);
  3704.                 temp = I915_READ(reg);
  3705.                 temp &= ~FDI_LINK_TRAIN_AUTO;
  3706.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3707.                 temp &= ~FDI_RX_ENABLE;
  3708.                 I915_WRITE(reg, temp);
  3709.  
  3710.                 /* enable CPU FDI TX and PCH FDI RX */
  3711.                 reg = FDI_TX_CTL(pipe);
  3712.                 temp = I915_READ(reg);
  3713.                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3714.                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3715.                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  3716.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3717.                 temp |= snb_b_fdi_train_param[j/2];
  3718.                 temp |= FDI_COMPOSITE_SYNC;
  3719.                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3720.  
  3721.                 I915_WRITE(FDI_RX_MISC(pipe),
  3722.                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3723.  
  3724.                 reg = FDI_RX_CTL(pipe);
  3725.                 temp = I915_READ(reg);
  3726.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3727.                 temp |= FDI_COMPOSITE_SYNC;
  3728.                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3729.  
  3730.                 POSTING_READ(reg);
  3731.                 udelay(1); /* should be 0.5us */
  3732.  
  3733.                 for (i = 0; i < 4; i++) {
  3734.                         reg = FDI_RX_IIR(pipe);
  3735.                         temp = I915_READ(reg);
  3736.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3737.  
  3738.                         if (temp & FDI_RX_BIT_LOCK ||
  3739.                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  3740.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3741.                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  3742.                                               i);
  3743.                                 break;
  3744.                         }
  3745.                         udelay(1); /* should be 0.5us */
  3746.                 }
  3747.                 if (i == 4) {
  3748.                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  3749.                         continue;
  3750.                 }
  3751.  
  3752.                 /* Train 2 */
  3753.                 reg = FDI_TX_CTL(pipe);
  3754.                 temp = I915_READ(reg);
  3755.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3756.                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  3757.                 I915_WRITE(reg, temp);
  3758.  
  3759.                 reg = FDI_RX_CTL(pipe);
  3760.                 temp = I915_READ(reg);
  3761.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3762.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3763.                 I915_WRITE(reg, temp);
  3764.  
  3765.                 POSTING_READ(reg);
  3766.                 udelay(2); /* should be 1.5us */
  3767.  
  3768.                 for (i = 0; i < 4; i++) {
  3769.                         reg = FDI_RX_IIR(pipe);
  3770.                         temp = I915_READ(reg);
  3771.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3772.  
  3773.                         if (temp & FDI_RX_SYMBOL_LOCK ||
  3774.                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  3775.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3776.                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  3777.                                               i);
  3778.                                 goto train_done;
  3779.                         }
  3780.                         udelay(2); /* should be 1.5us */
  3781.                 }
  3782.                 if (i == 4)
  3783.                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  3784.         }
  3785.  
  3786. train_done:
  3787.         DRM_DEBUG_KMS("FDI train done.\n");
  3788. }
  3789.  
  3790. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  3791. {
  3792.         struct drm_device *dev = intel_crtc->base.dev;
  3793.         struct drm_i915_private *dev_priv = dev->dev_private;
  3794.         int pipe = intel_crtc->pipe;
  3795.         u32 reg, temp;
  3796.  
  3797.  
  3798.         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  3799.         reg = FDI_RX_CTL(pipe);
  3800.         temp = I915_READ(reg);
  3801.         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  3802.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3803.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3804.         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  3805.  
  3806.         POSTING_READ(reg);
  3807.         udelay(200);
  3808.  
  3809.         /* Switch from Rawclk to PCDclk */
  3810.         temp = I915_READ(reg);
  3811.         I915_WRITE(reg, temp | FDI_PCDCLK);
  3812.  
  3813.         POSTING_READ(reg);
  3814.         udelay(200);
  3815.  
  3816.         /* Enable CPU FDI TX PLL, always on for Ironlake */
  3817.         reg = FDI_TX_CTL(pipe);
  3818.         temp = I915_READ(reg);
  3819.         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  3820.                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  3821.  
  3822.                 POSTING_READ(reg);
  3823.                 udelay(100);
  3824.         }
  3825. }
  3826.  
  3827. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  3828. {
  3829.         struct drm_device *dev = intel_crtc->base.dev;
  3830.         struct drm_i915_private *dev_priv = dev->dev_private;
  3831.         int pipe = intel_crtc->pipe;
  3832.         u32 reg, temp;
  3833.  
  3834.         /* Switch from PCDclk to Rawclk */
  3835.         reg = FDI_RX_CTL(pipe);
  3836.         temp = I915_READ(reg);
  3837.         I915_WRITE(reg, temp & ~FDI_PCDCLK);
  3838.  
  3839.         /* Disable CPU FDI TX PLL */
  3840.         reg = FDI_TX_CTL(pipe);
  3841.         temp = I915_READ(reg);
  3842.         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  3843.  
  3844.         POSTING_READ(reg);
  3845.         udelay(100);
  3846.  
  3847.         reg = FDI_RX_CTL(pipe);
  3848.         temp = I915_READ(reg);
  3849.         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  3850.  
  3851.         /* Wait for the clocks to turn off. */
  3852.         POSTING_READ(reg);
  3853.         udelay(100);
  3854. }
  3855.  
  3856. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  3857. {
  3858.         struct drm_device *dev = crtc->dev;
  3859.         struct drm_i915_private *dev_priv = dev->dev_private;
  3860.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3861.         int pipe = intel_crtc->pipe;
  3862.         u32 reg, temp;
  3863.  
  3864.         /* disable CPU FDI tx and PCH FDI rx */
  3865.         reg = FDI_TX_CTL(pipe);
  3866.         temp = I915_READ(reg);
  3867.         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  3868.         POSTING_READ(reg);
  3869.  
  3870.         reg = FDI_RX_CTL(pipe);
  3871.         temp = I915_READ(reg);
  3872.         temp &= ~(0x7 << 16);
  3873.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3874.         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  3875.  
  3876.         POSTING_READ(reg);
  3877.         udelay(100);
  3878.  
  3879.         /* Ironlake workaround, disable clock pointer after downing FDI */
  3880.         if (HAS_PCH_IBX(dev))
  3881.                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3882.  
  3883.         /* still set train pattern 1 */
  3884.         reg = FDI_TX_CTL(pipe);
  3885.         temp = I915_READ(reg);
  3886.         temp &= ~FDI_LINK_TRAIN_NONE;
  3887.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3888.         I915_WRITE(reg, temp);
  3889.  
  3890.         reg = FDI_RX_CTL(pipe);
  3891.         temp = I915_READ(reg);
  3892.         if (HAS_PCH_CPT(dev)) {
  3893.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3894.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3895.         } else {
  3896.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3897.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3898.         }
  3899.         /* BPC in FDI rx is consistent with that in PIPECONF */
  3900.         temp &= ~(0x07 << 16);
  3901.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3902.         I915_WRITE(reg, temp);
  3903.  
  3904.         POSTING_READ(reg);
  3905.         udelay(100);
  3906. }
  3907.  
  3908. bool intel_has_pending_fb_unpin(struct drm_device *dev)
  3909. {
  3910.         struct intel_crtc *crtc;
  3911.  
  3912.         /* Note that we don't need to be called with mode_config.lock here
  3913.          * as our list of CRTC objects is static for the lifetime of the
  3914.          * device and so cannot disappear as we iterate. Similarly, we can
  3915.          * happily treat the predicates as racy, atomic checks as userspace
  3916.          * cannot claim and pin a new fb without at least acquring the
  3917.          * struct_mutex and so serialising with us.
  3918.          */
  3919.         for_each_intel_crtc(dev, crtc) {
  3920.                 if (atomic_read(&crtc->unpin_work_count) == 0)
  3921.                         continue;
  3922.  
  3923.                 if (crtc->unpin_work)
  3924.                         intel_wait_for_vblank(dev, crtc->pipe);
  3925.  
  3926.                 return true;
  3927.         }
  3928.  
  3929.         return false;
  3930. }
  3931.  
  3932. static void page_flip_completed(struct intel_crtc *intel_crtc)
  3933. {
  3934.         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
  3935.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  3936.  
  3937.         /* ensure that the unpin work is consistent wrt ->pending. */
  3938.         smp_rmb();
  3939.         intel_crtc->unpin_work = NULL;
  3940.  
  3941.         if (work->event)
  3942.                 drm_send_vblank_event(intel_crtc->base.dev,
  3943.                                       intel_crtc->pipe,
  3944.                                       work->event);
  3945.  
  3946.         drm_crtc_vblank_put(&intel_crtc->base);
  3947.  
  3948. //      wake_up_all(&dev_priv->pending_flip_queue);
  3949. //      queue_work(dev_priv->wq, &work->work);
  3950.  
  3951. //      trace_i915_flip_complete(intel_crtc->plane,
  3952. //                               work->pending_flip_obj);
  3953. }
  3954. #if 0
  3955. void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  3956. {
  3957.         struct drm_device *dev = crtc->dev;
  3958.         struct drm_i915_private *dev_priv = dev->dev_private;
  3959.  
  3960.         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  3961.         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
  3962.                                        !intel_crtc_has_pending_flip(crtc),
  3963.                                        60*HZ) == 0)) {
  3964.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3965.  
  3966.                 spin_lock_irq(&dev->event_lock);
  3967.                 if (intel_crtc->unpin_work) {
  3968.                         WARN_ONCE(1, "Removing stuck page flip\n");
  3969.                         page_flip_completed(intel_crtc);
  3970.                 }
  3971.                 spin_unlock_irq(&dev->event_lock);
  3972.         }
  3973.  
  3974.         if (crtc->primary->fb) {
  3975.                 mutex_lock(&dev->struct_mutex);
  3976.                 intel_finish_fb(crtc->primary->fb);
  3977.                 mutex_unlock(&dev->struct_mutex);
  3978.         }
  3979. }
  3980. #endif
  3981.  
  3982. /* Program iCLKIP clock to the desired frequency */
  3983. static void lpt_program_iclkip(struct drm_crtc *crtc)
  3984. {
  3985.         struct drm_device *dev = crtc->dev;
  3986.         struct drm_i915_private *dev_priv = dev->dev_private;
  3987.         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
  3988.         u32 divsel, phaseinc, auxdiv, phasedir = 0;
  3989.         u32 temp;
  3990.  
  3991.         mutex_lock(&dev_priv->sb_lock);
  3992.  
  3993.         /* It is necessary to ungate the pixclk gate prior to programming
  3994.          * the divisors, and gate it back when it is done.
  3995.          */
  3996.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  3997.  
  3998.         /* Disable SSCCTL */
  3999.         intel_sbi_write(dev_priv, SBI_SSCCTL6,
  4000.                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  4001.                                 SBI_SSCCTL_DISABLE,
  4002.                         SBI_ICLK);
  4003.  
  4004.         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  4005.         if (clock == 20000) {
  4006.                 auxdiv = 1;
  4007.                 divsel = 0x41;
  4008.                 phaseinc = 0x20;
  4009.         } else {
  4010.                 /* The iCLK virtual clock root frequency is in MHz,
  4011.                  * but the adjusted_mode->crtc_clock in in KHz. To get the
  4012.                  * divisors, it is necessary to divide one by another, so we
  4013.                  * convert the virtual clock precision to KHz here for higher
  4014.                  * precision.
  4015.                  */
  4016.                 u32 iclk_virtual_root_freq = 172800 * 1000;
  4017.                 u32 iclk_pi_range = 64;
  4018.                 u32 desired_divisor, msb_divisor_value, pi_value;
  4019.  
  4020.                 desired_divisor = (iclk_virtual_root_freq / clock);
  4021.                 msb_divisor_value = desired_divisor / iclk_pi_range;
  4022.                 pi_value = desired_divisor % iclk_pi_range;
  4023.  
  4024.                 auxdiv = 0;
  4025.                 divsel = msb_divisor_value - 2;
  4026.                 phaseinc = pi_value;
  4027.         }
  4028.  
  4029.         /* This should not happen with any sane values */
  4030.         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  4031.                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  4032.         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  4033.                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  4034.  
  4035.         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  4036.                         clock,
  4037.                         auxdiv,
  4038.                         divsel,
  4039.                         phasedir,
  4040.                         phaseinc);
  4041.  
  4042.         /* Program SSCDIVINTPHASE6 */
  4043.         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  4044.         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  4045.         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  4046.         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  4047.         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  4048.         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  4049.         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  4050.         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  4051.  
  4052.         /* Program SSCAUXDIV */
  4053.         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  4054.         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  4055.         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  4056.         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  4057.  
  4058.         /* Enable modulator and associated divider */
  4059.         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  4060.         temp &= ~SBI_SSCCTL_DISABLE;
  4061.         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  4062.  
  4063.         /* Wait for initialization time */
  4064.         udelay(24);
  4065.  
  4066.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  4067.  
  4068.         mutex_unlock(&dev_priv->sb_lock);
  4069. }
  4070.  
  4071. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  4072.                                                 enum pipe pch_transcoder)
  4073. {
  4074.         struct drm_device *dev = crtc->base.dev;
  4075.         struct drm_i915_private *dev_priv = dev->dev_private;
  4076.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  4077.  
  4078.         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  4079.                    I915_READ(HTOTAL(cpu_transcoder)));
  4080.         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  4081.                    I915_READ(HBLANK(cpu_transcoder)));
  4082.         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  4083.                    I915_READ(HSYNC(cpu_transcoder)));
  4084.  
  4085.         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  4086.                    I915_READ(VTOTAL(cpu_transcoder)));
  4087.         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  4088.                    I915_READ(VBLANK(cpu_transcoder)));
  4089.         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  4090.                    I915_READ(VSYNC(cpu_transcoder)));
  4091.         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  4092.                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
  4093. }
  4094.  
  4095. static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
  4096. {
  4097.         struct drm_i915_private *dev_priv = dev->dev_private;
  4098.         uint32_t temp;
  4099.  
  4100.         temp = I915_READ(SOUTH_CHICKEN1);
  4101.         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
  4102.                 return;
  4103.  
  4104.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4105.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4106.  
  4107.         temp &= ~FDI_BC_BIFURCATION_SELECT;
  4108.         if (enable)
  4109.                 temp |= FDI_BC_BIFURCATION_SELECT;
  4110.  
  4111.         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
  4112.         I915_WRITE(SOUTH_CHICKEN1, temp);
  4113.         POSTING_READ(SOUTH_CHICKEN1);
  4114. }
  4115.  
  4116. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4117. {
  4118.         struct drm_device *dev = intel_crtc->base.dev;
  4119.  
  4120.         switch (intel_crtc->pipe) {
  4121.         case PIPE_A:
  4122.                 break;
  4123.         case PIPE_B:
  4124.                 if (intel_crtc->config->fdi_lanes > 2)
  4125.                         cpt_set_fdi_bc_bifurcation(dev, false);
  4126.                 else
  4127.                         cpt_set_fdi_bc_bifurcation(dev, true);
  4128.  
  4129.                 break;
  4130.         case PIPE_C:
  4131.                 cpt_set_fdi_bc_bifurcation(dev, true);
  4132.  
  4133.                 break;
  4134.         default:
  4135.                 BUG();
  4136.         }
  4137. }
  4138.  
  4139. /*
  4140.  * Enable PCH resources required for PCH ports:
  4141.  *   - PCH PLLs
  4142.  *   - FDI training & RX/TX
  4143.  *   - update transcoder timings
  4144.  *   - DP transcoding bits
  4145.  *   - transcoder
  4146.  */
  4147. static void ironlake_pch_enable(struct drm_crtc *crtc)
  4148. {
  4149.         struct drm_device *dev = crtc->dev;
  4150.         struct drm_i915_private *dev_priv = dev->dev_private;
  4151.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4152.         int pipe = intel_crtc->pipe;
  4153.         u32 reg, temp;
  4154.  
  4155.         assert_pch_transcoder_disabled(dev_priv, pipe);
  4156.  
  4157.         if (IS_IVYBRIDGE(dev))
  4158.                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4159.  
  4160.         /* Write the TU size bits before fdi link training, so that error
  4161.          * detection works. */
  4162.         I915_WRITE(FDI_RX_TUSIZE1(pipe),
  4163.                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  4164.  
  4165.         /* For PCH output, training FDI link */
  4166.         dev_priv->display.fdi_link_train(crtc);
  4167.  
  4168.         /* We need to program the right clock selection before writing the pixel
  4169.          * mutliplier into the DPLL. */
  4170.         if (HAS_PCH_CPT(dev)) {
  4171.                 u32 sel;
  4172.  
  4173.                 temp = I915_READ(PCH_DPLL_SEL);
  4174.                 temp |= TRANS_DPLL_ENABLE(pipe);
  4175.                 sel = TRANS_DPLLB_SEL(pipe);
  4176.                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
  4177.                         temp |= sel;
  4178.                 else
  4179.                         temp &= ~sel;
  4180.                 I915_WRITE(PCH_DPLL_SEL, temp);
  4181.         }
  4182.  
  4183.         /* XXX: pch pll's can be enabled any time before we enable the PCH
  4184.          * transcoder, and we actually should do this to not upset any PCH
  4185.          * transcoder that already use the clock when we share it.
  4186.          *
  4187.          * Note that enable_shared_dpll tries to do the right thing, but
  4188.          * get_shared_dpll unconditionally resets the pll - we need that to have
  4189.          * the right LVDS enable sequence. */
  4190.         intel_enable_shared_dpll(intel_crtc);
  4191.  
  4192.         /* set transcoder timing, panel must allow it */
  4193.         assert_panel_unlocked(dev_priv, pipe);
  4194.         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  4195.  
  4196.         intel_fdi_normal_train(crtc);
  4197.  
  4198.         /* For PCH DP, enable TRANS_DP_CTL */
  4199.         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
  4200.                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  4201.                 reg = TRANS_DP_CTL(pipe);
  4202.                 temp = I915_READ(reg);
  4203.                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
  4204.                           TRANS_DP_SYNC_MASK |
  4205.                           TRANS_DP_BPC_MASK);
  4206.                 temp |= TRANS_DP_OUTPUT_ENABLE;
  4207.                 temp |= bpc << 9; /* same format but at 11:9 */
  4208.  
  4209.                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  4210.                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  4211.                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  4212.                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  4213.  
  4214.                 switch (intel_trans_dp_port_sel(crtc)) {
  4215.                 case PCH_DP_B:
  4216.                         temp |= TRANS_DP_PORT_SEL_B;
  4217.                         break;
  4218.                 case PCH_DP_C:
  4219.                         temp |= TRANS_DP_PORT_SEL_C;
  4220.                         break;
  4221.                 case PCH_DP_D:
  4222.                         temp |= TRANS_DP_PORT_SEL_D;
  4223.                         break;
  4224.                 default:
  4225.                         BUG();
  4226.                 }
  4227.  
  4228.                 I915_WRITE(reg, temp);
  4229.         }
  4230.  
  4231.         ironlake_enable_pch_transcoder(dev_priv, pipe);
  4232. }
  4233.  
  4234. static void lpt_pch_enable(struct drm_crtc *crtc)
  4235. {
  4236.         struct drm_device *dev = crtc->dev;
  4237.         struct drm_i915_private *dev_priv = dev->dev_private;
  4238.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4239.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  4240.  
  4241.         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  4242.  
  4243.         lpt_program_iclkip(crtc);
  4244.  
  4245.         /* Set transcoder timing. */
  4246.         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  4247.  
  4248.         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  4249. }
  4250.  
  4251. struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
  4252.                                                 struct intel_crtc_state *crtc_state)
  4253. {
  4254.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  4255.         struct intel_shared_dpll *pll;
  4256.         struct intel_shared_dpll_config *shared_dpll;
  4257.         enum intel_dpll_id i;
  4258.         int max = dev_priv->num_shared_dpll;
  4259.  
  4260.         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  4261.  
  4262.         if (HAS_PCH_IBX(dev_priv->dev)) {
  4263.                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  4264.                 i = (enum intel_dpll_id) crtc->pipe;
  4265.                 pll = &dev_priv->shared_dplls[i];
  4266.  
  4267.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4268.                               crtc->base.base.id, pll->name);
  4269.  
  4270.                 WARN_ON(shared_dpll[i].crtc_mask);
  4271.  
  4272.                 goto found;
  4273.         }
  4274.  
  4275.         if (IS_BROXTON(dev_priv->dev)) {
  4276.                 /* PLL is attached to port in bxt */
  4277.                 struct intel_encoder *encoder;
  4278.                 struct intel_digital_port *intel_dig_port;
  4279.  
  4280.                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
  4281.                 if (WARN_ON(!encoder))
  4282.                         return NULL;
  4283.  
  4284.                 intel_dig_port = enc_to_dig_port(&encoder->base);
  4285.                 /* 1:1 mapping between ports and PLLs */
  4286.                 i = (enum intel_dpll_id)intel_dig_port->port;
  4287.                 pll = &dev_priv->shared_dplls[i];
  4288.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4289.                         crtc->base.base.id, pll->name);
  4290.                 WARN_ON(shared_dpll[i].crtc_mask);
  4291.  
  4292.                 goto found;
  4293.         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
  4294.                 /* Do not consider SPLL */
  4295.                 max = 2;
  4296.  
  4297.         for (i = 0; i < max; i++) {
  4298.                 pll = &dev_priv->shared_dplls[i];
  4299.  
  4300.                 /* Only want to check enabled timings first */
  4301.                 if (shared_dpll[i].crtc_mask == 0)
  4302.                         continue;
  4303.  
  4304.                 if (memcmp(&crtc_state->dpll_hw_state,
  4305.                            &shared_dpll[i].hw_state,
  4306.                            sizeof(crtc_state->dpll_hw_state)) == 0) {
  4307.                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
  4308.                                       crtc->base.base.id, pll->name,
  4309.                                       shared_dpll[i].crtc_mask,
  4310.                                       pll->active);
  4311.                         goto found;
  4312.                 }
  4313.         }
  4314.  
  4315.         /* Ok no matching timings, maybe there's a free one? */
  4316.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4317.                 pll = &dev_priv->shared_dplls[i];
  4318.                 if (shared_dpll[i].crtc_mask == 0) {
  4319.                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  4320.                                       crtc->base.base.id, pll->name);
  4321.                         goto found;
  4322.                 }
  4323.         }
  4324.  
  4325.         return NULL;
  4326.  
  4327. found:
  4328.         if (shared_dpll[i].crtc_mask == 0)
  4329.                 shared_dpll[i].hw_state =
  4330.                         crtc_state->dpll_hw_state;
  4331.  
  4332.         crtc_state->shared_dpll = i;
  4333.         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  4334.                          pipe_name(crtc->pipe));
  4335.  
  4336.         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
  4337.  
  4338.         return pll;
  4339. }
  4340.  
  4341. static void intel_shared_dpll_commit(struct drm_atomic_state *state)
  4342. {
  4343.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  4344.         struct intel_shared_dpll_config *shared_dpll;
  4345.         struct intel_shared_dpll *pll;
  4346.         enum intel_dpll_id i;
  4347.  
  4348.         if (!to_intel_atomic_state(state)->dpll_set)
  4349.                 return;
  4350.  
  4351.         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  4352.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4353.                 pll = &dev_priv->shared_dplls[i];
  4354.                 pll->config = shared_dpll[i];
  4355.         }
  4356. }
  4357.  
  4358. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  4359. {
  4360.         struct drm_i915_private *dev_priv = dev->dev_private;
  4361.         int dslreg = PIPEDSL(pipe);
  4362.         u32 temp;
  4363.  
  4364.         temp = I915_READ(dslreg);
  4365.         udelay(500);
  4366.         if (wait_for(I915_READ(dslreg) != temp, 5)) {
  4367.                 if (wait_for(I915_READ(dslreg) != temp, 5))
  4368.                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  4369.         }
  4370. }
  4371.  
  4372. static int
  4373. skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
  4374.                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
  4375.                   int src_w, int src_h, int dst_w, int dst_h)
  4376. {
  4377.         struct intel_crtc_scaler_state *scaler_state =
  4378.                 &crtc_state->scaler_state;
  4379.         struct intel_crtc *intel_crtc =
  4380.                 to_intel_crtc(crtc_state->base.crtc);
  4381.         int need_scaling;
  4382.  
  4383.         need_scaling = intel_rotation_90_or_270(rotation) ?
  4384.                 (src_h != dst_w || src_w != dst_h):
  4385.                 (src_w != dst_w || src_h != dst_h);
  4386.  
  4387.         /*
  4388.          * if plane is being disabled or scaler is no more required or force detach
  4389.          *  - free scaler binded to this plane/crtc
  4390.          *  - in order to do this, update crtc->scaler_usage
  4391.          *
  4392.          * Here scaler state in crtc_state is set free so that
  4393.          * scaler can be assigned to other user. Actual register
  4394.          * update to free the scaler is done in plane/panel-fit programming.
  4395.          * For this purpose crtc/plane_state->scaler_id isn't reset here.
  4396.          */
  4397.         if (force_detach || !need_scaling) {
  4398.                 if (*scaler_id >= 0) {
  4399.                         scaler_state->scaler_users &= ~(1 << scaler_user);
  4400.                         scaler_state->scalers[*scaler_id].in_use = 0;
  4401.  
  4402.                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4403.                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
  4404.                                 intel_crtc->pipe, scaler_user, *scaler_id,
  4405.                                 scaler_state->scaler_users);
  4406.                         *scaler_id = -1;
  4407.                 }
  4408.                 return 0;
  4409.         }
  4410.  
  4411.         /* range checks */
  4412.         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
  4413.                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
  4414.  
  4415.                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
  4416.                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
  4417.                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
  4418.                         "size is out of scaler range\n",
  4419.                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
  4420.                 return -EINVAL;
  4421.         }
  4422.  
  4423.         /* mark this plane as a scaler user in crtc_state */
  4424.         scaler_state->scaler_users |= (1 << scaler_user);
  4425.         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4426.                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
  4427.                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
  4428.                 scaler_state->scaler_users);
  4429.  
  4430.         return 0;
  4431. }
  4432.  
  4433. /**
  4434.  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
  4435.  *
  4436.  * @state: crtc's scaler state
  4437.  *
  4438.  * Return
  4439.  *     0 - scaler_usage updated successfully
  4440.  *    error - requested scaling cannot be supported or other error condition
  4441.  */
  4442. int skl_update_scaler_crtc(struct intel_crtc_state *state)
  4443. {
  4444.         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
  4445.         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
  4446.  
  4447.         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
  4448.                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
  4449.  
  4450.         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
  4451.                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
  4452.                 state->pipe_src_w, state->pipe_src_h,
  4453.                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
  4454. }
  4455.  
  4456. /**
  4457.  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
  4458.  *
  4459.  * @state: crtc's scaler state
  4460.  * @plane_state: atomic plane state to update
  4461.  *
  4462.  * Return
  4463.  *     0 - scaler_usage updated successfully
  4464.  *    error - requested scaling cannot be supported or other error condition
  4465.  */
  4466. static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
  4467.                                    struct intel_plane_state *plane_state)
  4468. {
  4469.  
  4470.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  4471.         struct intel_plane *intel_plane =
  4472.                 to_intel_plane(plane_state->base.plane);
  4473.         struct drm_framebuffer *fb = plane_state->base.fb;
  4474.         int ret;
  4475.  
  4476.         bool force_detach = !fb || !plane_state->visible;
  4477.  
  4478.         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
  4479.                       intel_plane->base.base.id, intel_crtc->pipe,
  4480.                       drm_plane_index(&intel_plane->base));
  4481.  
  4482.         ret = skl_update_scaler(crtc_state, force_detach,
  4483.                                 drm_plane_index(&intel_plane->base),
  4484.                                 &plane_state->scaler_id,
  4485.                                 plane_state->base.rotation,
  4486.                                 drm_rect_width(&plane_state->src) >> 16,
  4487.                                 drm_rect_height(&plane_state->src) >> 16,
  4488.                                 drm_rect_width(&plane_state->dst),
  4489.                                 drm_rect_height(&plane_state->dst));
  4490.  
  4491.         if (ret || plane_state->scaler_id < 0)
  4492.                 return ret;
  4493.  
  4494.         /* check colorkey */
  4495.         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
  4496.                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
  4497.                               intel_plane->base.base.id);
  4498.                 return -EINVAL;
  4499.         }
  4500.  
  4501.         /* Check src format */
  4502.         switch (fb->pixel_format) {
  4503.         case DRM_FORMAT_RGB565:
  4504.         case DRM_FORMAT_XBGR8888:
  4505.         case DRM_FORMAT_XRGB8888:
  4506.         case DRM_FORMAT_ABGR8888:
  4507.         case DRM_FORMAT_ARGB8888:
  4508.         case DRM_FORMAT_XRGB2101010:
  4509.         case DRM_FORMAT_XBGR2101010:
  4510.         case DRM_FORMAT_YUYV:
  4511.         case DRM_FORMAT_YVYU:
  4512.         case DRM_FORMAT_UYVY:
  4513.         case DRM_FORMAT_VYUY:
  4514.                 break;
  4515.         default:
  4516.                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
  4517.                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
  4518.                 return -EINVAL;
  4519.         }
  4520.  
  4521.         return 0;
  4522. }
  4523.  
  4524. static void skylake_scaler_disable(struct intel_crtc *crtc)
  4525. {
  4526.         int i;
  4527.  
  4528.         for (i = 0; i < crtc->num_scalers; i++)
  4529.                 skl_detach_scaler(crtc, i);
  4530. }
  4531.  
  4532. static void skylake_pfit_enable(struct intel_crtc *crtc)
  4533. {
  4534.         struct drm_device *dev = crtc->base.dev;
  4535.         struct drm_i915_private *dev_priv = dev->dev_private;
  4536.         int pipe = crtc->pipe;
  4537.         struct intel_crtc_scaler_state *scaler_state =
  4538.                 &crtc->config->scaler_state;
  4539.  
  4540.         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
  4541.  
  4542.         if (crtc->config->pch_pfit.enabled) {
  4543.                 int id;
  4544.  
  4545.                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
  4546.                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
  4547.                         return;
  4548.                 }
  4549.  
  4550.                 id = scaler_state->scaler_id;
  4551.                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
  4552.                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
  4553.                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
  4554.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
  4555.  
  4556.                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
  4557.         }
  4558. }
  4559.  
  4560. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  4561. {
  4562.         struct drm_device *dev = crtc->base.dev;
  4563.         struct drm_i915_private *dev_priv = dev->dev_private;
  4564.         int pipe = crtc->pipe;
  4565.  
  4566.         if (crtc->config->pch_pfit.enabled) {
  4567.                 /* Force use of hard-coded filter coefficients
  4568.                  * as some pre-programmed values are broken,
  4569.                  * e.g. x201.
  4570.                  */
  4571.                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4572.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  4573.                                                  PF_PIPE_SEL_IVB(pipe));
  4574.                 else
  4575.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  4576.                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
  4577.                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
  4578.         }
  4579. }
  4580.  
  4581. void hsw_enable_ips(struct intel_crtc *crtc)
  4582. {
  4583.         struct drm_device *dev = crtc->base.dev;
  4584.         struct drm_i915_private *dev_priv = dev->dev_private;
  4585.  
  4586.         if (!crtc->config->ips_enabled)
  4587.                 return;
  4588.  
  4589.         /* We can only enable IPS after we enable a plane and wait for a vblank */
  4590.         intel_wait_for_vblank(dev, crtc->pipe);
  4591.  
  4592.         assert_plane_enabled(dev_priv, crtc->plane);
  4593.         if (IS_BROADWELL(dev)) {
  4594.                 mutex_lock(&dev_priv->rps.hw_lock);
  4595.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
  4596.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4597.                 /* Quoting Art Runyan: "its not safe to expect any particular
  4598.                  * value in IPS_CTL bit 31 after enabling IPS through the
  4599.                  * mailbox." Moreover, the mailbox may return a bogus state,
  4600.                  * so we need to just enable it and continue on.
  4601.                  */
  4602.         } else {
  4603.                 I915_WRITE(IPS_CTL, IPS_ENABLE);
  4604.                 /* The bit only becomes 1 in the next vblank, so this wait here
  4605.                  * is essentially intel_wait_for_vblank. If we don't have this
  4606.                  * and don't wait for vblanks until the end of crtc_enable, then
  4607.                  * the HW state readout code will complain that the expected
  4608.                  * IPS_CTL value is not the one we read. */
  4609.                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
  4610.                         DRM_ERROR("Timed out waiting for IPS enable\n");
  4611.         }
  4612. }
  4613.  
  4614. void hsw_disable_ips(struct intel_crtc *crtc)
  4615. {
  4616.         struct drm_device *dev = crtc->base.dev;
  4617.         struct drm_i915_private *dev_priv = dev->dev_private;
  4618.  
  4619.         if (!crtc->config->ips_enabled)
  4620.                 return;
  4621.  
  4622.         assert_plane_enabled(dev_priv, crtc->plane);
  4623.         if (IS_BROADWELL(dev)) {
  4624.                 mutex_lock(&dev_priv->rps.hw_lock);
  4625.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
  4626.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4627.                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
  4628.                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
  4629.                         DRM_ERROR("Timed out waiting for IPS disable\n");
  4630.         } else {
  4631.                 I915_WRITE(IPS_CTL, 0);
  4632.                 POSTING_READ(IPS_CTL);
  4633.         }
  4634.  
  4635.         /* We need to wait for a vblank before we can disable the plane. */
  4636.         intel_wait_for_vblank(dev, crtc->pipe);
  4637. }
  4638.  
  4639. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4640. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  4641. {
  4642.         struct drm_device *dev = crtc->dev;
  4643.         struct drm_i915_private *dev_priv = dev->dev_private;
  4644.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4645.         enum pipe pipe = intel_crtc->pipe;
  4646.         int i;
  4647.         bool reenable_ips = false;
  4648.  
  4649.         /* The clocks have to be on to load the palette. */
  4650.         if (!crtc->state->active)
  4651.                 return;
  4652.  
  4653.         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
  4654.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
  4655.                         assert_dsi_pll_enabled(dev_priv);
  4656.                 else
  4657.                         assert_pll_enabled(dev_priv, pipe);
  4658.         }
  4659.  
  4660.         /* Workaround : Do not read or write the pipe palette/gamma data while
  4661.          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  4662.          */
  4663.         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
  4664.             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  4665.              GAMMA_MODE_MODE_SPLIT)) {
  4666.                 hsw_disable_ips(intel_crtc);
  4667.                 reenable_ips = true;
  4668.         }
  4669.  
  4670.         for (i = 0; i < 256; i++) {
  4671.                 u32 palreg;
  4672.  
  4673.                 if (HAS_GMCH_DISPLAY(dev))
  4674.                         palreg = PALETTE(pipe, i);
  4675.                 else
  4676.                         palreg = LGC_PALETTE(pipe, i);
  4677.  
  4678.                 I915_WRITE(palreg,
  4679.                            (intel_crtc->lut_r[i] << 16) |
  4680.                            (intel_crtc->lut_g[i] << 8) |
  4681.                            intel_crtc->lut_b[i]);
  4682.         }
  4683.  
  4684.         if (reenable_ips)
  4685.                 hsw_enable_ips(intel_crtc);
  4686. }
  4687.  
  4688. static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
  4689. {
  4690.         if (intel_crtc->overlay) {
  4691.                 struct drm_device *dev = intel_crtc->base.dev;
  4692.                 struct drm_i915_private *dev_priv = dev->dev_private;
  4693.  
  4694.                 mutex_lock(&dev->struct_mutex);
  4695.                 dev_priv->mm.interruptible = false;
  4696. //       (void) intel_overlay_switch_off(intel_crtc->overlay);
  4697.                 dev_priv->mm.interruptible = true;
  4698.                 mutex_unlock(&dev->struct_mutex);
  4699.         }
  4700.  
  4701.         /* Let userspace switch the overlay on again. In most cases userspace
  4702.          * has to recompute where to put it anyway.
  4703.          */
  4704. }
  4705.  
  4706. /**
  4707.  * intel_post_enable_primary - Perform operations after enabling primary plane
  4708.  * @crtc: the CRTC whose primary plane was just enabled
  4709.  *
  4710.  * Performs potentially sleeping operations that must be done after the primary
  4711.  * plane is enabled, such as updating FBC and IPS.  Note that this may be
  4712.  * called due to an explicit primary plane update, or due to an implicit
  4713.  * re-enable that is caused when a sprite plane is updated to no longer
  4714.  * completely hide the primary plane.
  4715.  */
  4716. static void
  4717. intel_post_enable_primary(struct drm_crtc *crtc)
  4718. {
  4719.         struct drm_device *dev = crtc->dev;
  4720.         struct drm_i915_private *dev_priv = dev->dev_private;
  4721.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4722.         int pipe = intel_crtc->pipe;
  4723.  
  4724.         /*
  4725.          * BDW signals flip done immediately if the plane
  4726.          * is disabled, even if the plane enable is already
  4727.          * armed to occur at the next vblank :(
  4728.          */
  4729.         if (IS_BROADWELL(dev))
  4730.                 intel_wait_for_vblank(dev, pipe);
  4731.  
  4732.         /*
  4733.          * FIXME IPS should be fine as long as one plane is
  4734.          * enabled, but in practice it seems to have problems
  4735.          * when going from primary only to sprite only and vice
  4736.          * versa.
  4737.          */
  4738.         hsw_enable_ips(intel_crtc);
  4739.  
  4740.         /*
  4741.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4742.          * So don't enable underrun reporting before at least some planes
  4743.          * are enabled.
  4744.          * FIXME: Need to fix the logic to work when we turn off all planes
  4745.          * but leave the pipe running.
  4746.          */
  4747.         if (IS_GEN2(dev))
  4748.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4749.  
  4750.         /* Underruns don't raise interrupts, so check manually. */
  4751.         if (HAS_GMCH_DISPLAY(dev))
  4752.                 i9xx_check_fifo_underruns(dev_priv);
  4753. }
  4754.  
  4755. /**
  4756.  * intel_pre_disable_primary - Perform operations before disabling primary plane
  4757.  * @crtc: the CRTC whose primary plane is to be disabled
  4758.  *
  4759.  * Performs potentially sleeping operations that must be done before the
  4760.  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
  4761.  * be called due to an explicit primary plane update, or due to an implicit
  4762.  * disable that is caused when a sprite plane completely hides the primary
  4763.  * plane.
  4764.  */
  4765. static void
  4766. intel_pre_disable_primary(struct drm_crtc *crtc)
  4767. {
  4768.         struct drm_device *dev = crtc->dev;
  4769.         struct drm_i915_private *dev_priv = dev->dev_private;
  4770.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4771.         int pipe = intel_crtc->pipe;
  4772.  
  4773.         /*
  4774.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4775.          * So diasble underrun reporting before all the planes get disabled.
  4776.          * FIXME: Need to fix the logic to work when we turn off all planes
  4777.          * but leave the pipe running.
  4778.          */
  4779.         if (IS_GEN2(dev))
  4780.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  4781.  
  4782.         /*
  4783.          * Vblank time updates from the shadow to live plane control register
  4784.          * are blocked if the memory self-refresh mode is active at that
  4785.          * moment. So to make sure the plane gets truly disabled, disable
  4786.          * first the self-refresh mode. The self-refresh enable bit in turn
  4787.          * will be checked/applied by the HW only at the next frame start
  4788.          * event which is after the vblank start event, so we need to have a
  4789.          * wait-for-vblank between disabling the plane and the pipe.
  4790.          */
  4791.         if (HAS_GMCH_DISPLAY(dev)) {
  4792.                 intel_set_memory_cxsr(dev_priv, false);
  4793.                 dev_priv->wm.vlv.cxsr = false;
  4794.                 intel_wait_for_vblank(dev, pipe);
  4795.         }
  4796.  
  4797.         /*
  4798.          * FIXME IPS should be fine as long as one plane is
  4799.          * enabled, but in practice it seems to have problems
  4800.          * when going from primary only to sprite only and vice
  4801.          * versa.
  4802.          */
  4803.         hsw_disable_ips(intel_crtc);
  4804. }
  4805.  
  4806. static void intel_post_plane_update(struct intel_crtc *crtc)
  4807. {
  4808.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4809.         struct drm_device *dev = crtc->base.dev;
  4810.         struct drm_i915_private *dev_priv = dev->dev_private;
  4811.         struct drm_plane *plane;
  4812.  
  4813.         if (atomic->wait_vblank)
  4814.                 intel_wait_for_vblank(dev, crtc->pipe);
  4815.  
  4816.         intel_frontbuffer_flip(dev, atomic->fb_bits);
  4817.  
  4818.         if (atomic->disable_cxsr)
  4819.                 crtc->wm.cxsr_allowed = true;
  4820.  
  4821.         if (crtc->atomic.update_wm_post)
  4822.                 intel_update_watermarks(&crtc->base);
  4823.  
  4824.         if (atomic->update_fbc)
  4825.                 intel_fbc_update(dev_priv);
  4826.  
  4827.         if (atomic->post_enable_primary)
  4828.                 intel_post_enable_primary(&crtc->base);
  4829.  
  4830.         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
  4831.                 intel_update_sprite_watermarks(plane, &crtc->base,
  4832.                                                0, 0, 0, false, false);
  4833.  
  4834.         memset(atomic, 0, sizeof(*atomic));
  4835. }
  4836.  
  4837. static void intel_pre_plane_update(struct intel_crtc *crtc)
  4838. {
  4839.         struct drm_device *dev = crtc->base.dev;
  4840.         struct drm_i915_private *dev_priv = dev->dev_private;
  4841.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4842.         struct drm_plane *p;
  4843.  
  4844.         /* Track fb's for any planes being disabled */
  4845.         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
  4846.                 struct intel_plane *plane = to_intel_plane(p);
  4847.  
  4848.                 mutex_lock(&dev->struct_mutex);
  4849.                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
  4850.                                   plane->frontbuffer_bit);
  4851.                 mutex_unlock(&dev->struct_mutex);
  4852.         }
  4853.  
  4854.         if (atomic->disable_fbc)
  4855.                 intel_fbc_disable_crtc(crtc);
  4856.  
  4857.         if (crtc->atomic.disable_ips)
  4858.                 hsw_disable_ips(crtc);
  4859.  
  4860.         if (atomic->pre_disable_primary)
  4861.                 intel_pre_disable_primary(&crtc->base);
  4862.  
  4863.         if (atomic->disable_cxsr) {
  4864.                 crtc->wm.cxsr_allowed = false;
  4865.                 intel_set_memory_cxsr(dev_priv, false);
  4866.         }
  4867. }
  4868.  
  4869. static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
  4870. {
  4871.         struct drm_device *dev = crtc->dev;
  4872.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4873.         struct drm_plane *p;
  4874.         int pipe = intel_crtc->pipe;
  4875.  
  4876.         intel_crtc_dpms_overlay_disable(intel_crtc);
  4877.  
  4878.         drm_for_each_plane_mask(p, dev, plane_mask)
  4879.                 to_intel_plane(p)->disable_plane(p, crtc);
  4880.  
  4881.         /*
  4882.          * FIXME: Once we grow proper nuclear flip support out of this we need
  4883.          * to compute the mask of flip planes precisely. For the time being
  4884.          * consider this a flip to a NULL plane.
  4885.          */
  4886. //      intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
  4887. }
  4888.  
  4889. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  4890. {
  4891.         struct drm_device *dev = crtc->dev;
  4892.         struct drm_i915_private *dev_priv = dev->dev_private;
  4893.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4894.         struct intel_encoder *encoder;
  4895.         int pipe = intel_crtc->pipe;
  4896.  
  4897.         if (WARN_ON(intel_crtc->active))
  4898.                 return;
  4899.  
  4900.         if (intel_crtc->config->has_pch_encoder)
  4901.                 intel_prepare_shared_dpll(intel_crtc);
  4902.  
  4903.         if (intel_crtc->config->has_dp_encoder)
  4904.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4905.  
  4906.         intel_set_pipe_timings(intel_crtc);
  4907.  
  4908.         if (intel_crtc->config->has_pch_encoder) {
  4909.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4910.                                      &intel_crtc->config->fdi_m_n, NULL);
  4911.         }
  4912.  
  4913.         ironlake_set_pipeconf(crtc);
  4914.  
  4915.         intel_crtc->active = true;
  4916.  
  4917.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4918.         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
  4919.  
  4920.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4921.                 if (encoder->pre_enable)
  4922.                         encoder->pre_enable(encoder);
  4923.  
  4924.         if (intel_crtc->config->has_pch_encoder) {
  4925.                 /* Note: FDI PLL enabling _must_ be done before we enable the
  4926.                  * cpu pipes, hence this is separate from all the other fdi/pch
  4927.                  * enabling. */
  4928.                 ironlake_fdi_pll_enable(intel_crtc);
  4929.         } else {
  4930.                 assert_fdi_tx_disabled(dev_priv, pipe);
  4931.                 assert_fdi_rx_disabled(dev_priv, pipe);
  4932.         }
  4933.  
  4934.         ironlake_pfit_enable(intel_crtc);
  4935.  
  4936.         /*
  4937.          * On ILK+ LUT must be loaded before the pipe is running but with
  4938.          * clocks enabled
  4939.          */
  4940.         intel_crtc_load_lut(crtc);
  4941.  
  4942.         intel_update_watermarks(crtc);
  4943.         intel_enable_pipe(intel_crtc);
  4944.  
  4945.         if (intel_crtc->config->has_pch_encoder)
  4946.                 ironlake_pch_enable(crtc);
  4947.  
  4948.         assert_vblank_disabled(crtc);
  4949.         drm_crtc_vblank_on(crtc);
  4950.  
  4951.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4952.                 encoder->enable(encoder);
  4953.  
  4954.         if (HAS_PCH_CPT(dev))
  4955.                 cpt_verify_modeset(dev, intel_crtc->pipe);
  4956. }
  4957.  
  4958. /* IPS only exists on ULT machines and is tied to pipe A. */
  4959. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  4960. {
  4961.         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  4962. }
  4963.  
  4964. static void haswell_crtc_enable(struct drm_crtc *crtc)
  4965. {
  4966.         struct drm_device *dev = crtc->dev;
  4967.         struct drm_i915_private *dev_priv = dev->dev_private;
  4968.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4969.         struct intel_encoder *encoder;
  4970.         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
  4971.         struct intel_crtc_state *pipe_config =
  4972.                 to_intel_crtc_state(crtc->state);
  4973.         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  4974.  
  4975.         if (WARN_ON(intel_crtc->active))
  4976.                 return;
  4977.  
  4978.         if (intel_crtc_to_shared_dpll(intel_crtc))
  4979.                 intel_enable_shared_dpll(intel_crtc);
  4980.  
  4981.         if (intel_crtc->config->has_dp_encoder)
  4982.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4983.  
  4984.         intel_set_pipe_timings(intel_crtc);
  4985.  
  4986.         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
  4987.                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
  4988.                            intel_crtc->config->pixel_multiplier - 1);
  4989.         }
  4990.  
  4991.         if (intel_crtc->config->has_pch_encoder) {
  4992.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4993.                                      &intel_crtc->config->fdi_m_n, NULL);
  4994.         }
  4995.  
  4996.         haswell_set_pipeconf(crtc);
  4997.  
  4998.         intel_set_pipe_csc(crtc);
  4999.  
  5000.         intel_crtc->active = true;
  5001.  
  5002.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  5003.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5004.                 if (encoder->pre_pll_enable)
  5005.                         encoder->pre_pll_enable(encoder);
  5006.                 if (encoder->pre_enable)
  5007.                         encoder->pre_enable(encoder);
  5008.         }
  5009.  
  5010.         if (intel_crtc->config->has_pch_encoder) {
  5011.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5012.                                                       true);
  5013.                 dev_priv->display.fdi_link_train(crtc);
  5014.         }
  5015.  
  5016.         if (!is_dsi)
  5017.                 intel_ddi_enable_pipe_clock(intel_crtc);
  5018.  
  5019.         if (INTEL_INFO(dev)->gen >= 9)
  5020.                 skylake_pfit_enable(intel_crtc);
  5021.         else
  5022.                 ironlake_pfit_enable(intel_crtc);
  5023.  
  5024.         /*
  5025.          * On ILK+ LUT must be loaded before the pipe is running but with
  5026.          * clocks enabled
  5027.          */
  5028.         intel_crtc_load_lut(crtc);
  5029.  
  5030.         intel_ddi_set_pipe_settings(crtc);
  5031.         if (!is_dsi)
  5032.                 intel_ddi_enable_transcoder_func(crtc);
  5033.  
  5034.         intel_update_watermarks(crtc);
  5035.         intel_enable_pipe(intel_crtc);
  5036.  
  5037.         if (intel_crtc->config->has_pch_encoder)
  5038.                 lpt_pch_enable(crtc);
  5039.  
  5040.         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
  5041.                 intel_ddi_set_vc_payload_alloc(crtc, true);
  5042.  
  5043.         assert_vblank_disabled(crtc);
  5044.         drm_crtc_vblank_on(crtc);
  5045.  
  5046.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5047.                 encoder->enable(encoder);
  5048.                 intel_opregion_notify_encoder(encoder, true);
  5049.         }
  5050.  
  5051.         /* If we change the relative order between pipe/planes enabling, we need
  5052.          * to change the workaround. */
  5053.         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
  5054.         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
  5055.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5056.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5057.         }
  5058. }
  5059.  
  5060. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
  5061. {
  5062.         struct drm_device *dev = crtc->base.dev;
  5063.         struct drm_i915_private *dev_priv = dev->dev_private;
  5064.         int pipe = crtc->pipe;
  5065.  
  5066.         /* To avoid upsetting the power well on haswell only disable the pfit if
  5067.          * it's in use. The hw state code will make sure we get this right. */
  5068.         if (force || crtc->config->pch_pfit.enabled) {
  5069.                 I915_WRITE(PF_CTL(pipe), 0);
  5070.                 I915_WRITE(PF_WIN_POS(pipe), 0);
  5071.                 I915_WRITE(PF_WIN_SZ(pipe), 0);
  5072.         }
  5073. }
  5074.  
  5075. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  5076. {
  5077.         struct drm_device *dev = crtc->dev;
  5078.         struct drm_i915_private *dev_priv = dev->dev_private;
  5079.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5080.         struct intel_encoder *encoder;
  5081.         int pipe = intel_crtc->pipe;
  5082.         u32 reg, temp;
  5083.  
  5084.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5085.                 encoder->disable(encoder);
  5086.  
  5087.         drm_crtc_vblank_off(crtc);
  5088.         assert_vblank_disabled(crtc);
  5089.  
  5090.         if (intel_crtc->config->has_pch_encoder)
  5091.                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
  5092.  
  5093.         intel_disable_pipe(intel_crtc);
  5094.  
  5095.         ironlake_pfit_disable(intel_crtc, false);
  5096.  
  5097.         if (intel_crtc->config->has_pch_encoder)
  5098.                 ironlake_fdi_disable(crtc);
  5099.  
  5100.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5101.                 if (encoder->post_disable)
  5102.                         encoder->post_disable(encoder);
  5103.  
  5104.         if (intel_crtc->config->has_pch_encoder) {
  5105.                 ironlake_disable_pch_transcoder(dev_priv, pipe);
  5106.  
  5107.                 if (HAS_PCH_CPT(dev)) {
  5108.                         /* disable TRANS_DP_CTL */
  5109.                         reg = TRANS_DP_CTL(pipe);
  5110.                         temp = I915_READ(reg);
  5111.                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  5112.                                   TRANS_DP_PORT_SEL_MASK);
  5113.                         temp |= TRANS_DP_PORT_SEL_NONE;
  5114.                         I915_WRITE(reg, temp);
  5115.  
  5116.                         /* disable DPLL_SEL */
  5117.                         temp = I915_READ(PCH_DPLL_SEL);
  5118.                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  5119.                         I915_WRITE(PCH_DPLL_SEL, temp);
  5120.                 }
  5121.  
  5122.                 ironlake_fdi_pll_disable(intel_crtc);
  5123.         }
  5124. }
  5125.  
  5126. static void haswell_crtc_disable(struct drm_crtc *crtc)
  5127. {
  5128.         struct drm_device *dev = crtc->dev;
  5129.         struct drm_i915_private *dev_priv = dev->dev_private;
  5130.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5131.         struct intel_encoder *encoder;
  5132.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  5133.         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  5134.  
  5135.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5136.                 intel_opregion_notify_encoder(encoder, false);
  5137.                 encoder->disable(encoder);
  5138.         }
  5139.  
  5140.         drm_crtc_vblank_off(crtc);
  5141.         assert_vblank_disabled(crtc);
  5142.  
  5143.         if (intel_crtc->config->has_pch_encoder)
  5144.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5145.                                                       false);
  5146.         intel_disable_pipe(intel_crtc);
  5147.  
  5148.         if (intel_crtc->config->dp_encoder_is_mst)
  5149.                 intel_ddi_set_vc_payload_alloc(crtc, false);
  5150.  
  5151.         if (!is_dsi)
  5152.                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  5153.  
  5154.         if (INTEL_INFO(dev)->gen >= 9)
  5155.                 skylake_scaler_disable(intel_crtc);
  5156.         else
  5157.                 ironlake_pfit_disable(intel_crtc, false);
  5158.  
  5159.         if (!is_dsi)
  5160.                 intel_ddi_disable_pipe_clock(intel_crtc);
  5161.  
  5162.         if (intel_crtc->config->has_pch_encoder) {
  5163.                 lpt_disable_pch_transcoder(dev_priv);
  5164.                 intel_ddi_fdi_disable(crtc);
  5165.         }
  5166.  
  5167.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5168.                 if (encoder->post_disable)
  5169.                         encoder->post_disable(encoder);
  5170. }
  5171.  
  5172. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  5173. {
  5174.         struct drm_device *dev = crtc->base.dev;
  5175.         struct drm_i915_private *dev_priv = dev->dev_private;
  5176.         struct intel_crtc_state *pipe_config = crtc->config;
  5177.  
  5178.         if (!pipe_config->gmch_pfit.control)
  5179.                 return;
  5180.  
  5181.         /*
  5182.          * The panel fitter should only be adjusted whilst the pipe is disabled,
  5183.          * according to register description and PRM.
  5184.          */
  5185.         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  5186.         assert_pipe_disabled(dev_priv, crtc->pipe);
  5187.  
  5188.         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  5189.         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  5190.  
  5191.         /* Border color in case we don't scale up to the full screen. Black by
  5192.          * default, change to something else for debugging. */
  5193.         I915_WRITE(BCLRPAT(crtc->pipe), 0);
  5194. }
  5195.  
  5196. static enum intel_display_power_domain port_to_power_domain(enum port port)
  5197. {
  5198.         switch (port) {
  5199.         case PORT_A:
  5200.                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
  5201.         case PORT_B:
  5202.                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
  5203.         case PORT_C:
  5204.                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
  5205.         case PORT_D:
  5206.                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
  5207.         case PORT_E:
  5208.                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
  5209.         default:
  5210.                 MISSING_CASE(port);
  5211.                 return POWER_DOMAIN_PORT_OTHER;
  5212.         }
  5213. }
  5214.  
  5215. static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
  5216. {
  5217.         switch (port) {
  5218.         case PORT_A:
  5219.                 return POWER_DOMAIN_AUX_A;
  5220.         case PORT_B:
  5221.                 return POWER_DOMAIN_AUX_B;
  5222.         case PORT_C:
  5223.                 return POWER_DOMAIN_AUX_C;
  5224.         case PORT_D:
  5225.                 return POWER_DOMAIN_AUX_D;
  5226.         case PORT_E:
  5227.                 /* FIXME: Check VBT for actual wiring of PORT E */
  5228.                 return POWER_DOMAIN_AUX_D;
  5229.         default:
  5230.                 MISSING_CASE(port);
  5231.                 return POWER_DOMAIN_AUX_A;
  5232.         }
  5233. }
  5234.  
  5235. #define for_each_power_domain(domain, mask)                             \
  5236.         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
  5237.                 if ((1 << (domain)) & (mask))
  5238.  
  5239. enum intel_display_power_domain
  5240. intel_display_port_power_domain(struct intel_encoder *intel_encoder)
  5241. {
  5242.         struct drm_device *dev = intel_encoder->base.dev;
  5243.         struct intel_digital_port *intel_dig_port;
  5244.  
  5245.         switch (intel_encoder->type) {
  5246.         case INTEL_OUTPUT_UNKNOWN:
  5247.                 /* Only DDI platforms should ever use this output type */
  5248.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5249.         case INTEL_OUTPUT_DISPLAYPORT:
  5250.         case INTEL_OUTPUT_HDMI:
  5251.         case INTEL_OUTPUT_EDP:
  5252.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5253.                 return port_to_power_domain(intel_dig_port->port);
  5254.         case INTEL_OUTPUT_DP_MST:
  5255.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5256.                 return port_to_power_domain(intel_dig_port->port);
  5257.         case INTEL_OUTPUT_ANALOG:
  5258.                 return POWER_DOMAIN_PORT_CRT;
  5259.         case INTEL_OUTPUT_DSI:
  5260.                 return POWER_DOMAIN_PORT_DSI;
  5261.         default:
  5262.                 return POWER_DOMAIN_PORT_OTHER;
  5263.         }
  5264. }
  5265.  
  5266. enum intel_display_power_domain
  5267. intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
  5268. {
  5269.         struct drm_device *dev = intel_encoder->base.dev;
  5270.         struct intel_digital_port *intel_dig_port;
  5271.  
  5272.         switch (intel_encoder->type) {
  5273.         case INTEL_OUTPUT_UNKNOWN:
  5274.         case INTEL_OUTPUT_HDMI:
  5275.                 /*
  5276.                  * Only DDI platforms should ever use these output types.
  5277.                  * We can get here after the HDMI detect code has already set
  5278.                  * the type of the shared encoder. Since we can't be sure
  5279.                  * what's the status of the given connectors, play safe and
  5280.                  * run the DP detection too.
  5281.                  */
  5282.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5283.         case INTEL_OUTPUT_DISPLAYPORT:
  5284.         case INTEL_OUTPUT_EDP:
  5285.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5286.                 return port_to_aux_power_domain(intel_dig_port->port);
  5287.         case INTEL_OUTPUT_DP_MST:
  5288.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5289.                 return port_to_aux_power_domain(intel_dig_port->port);
  5290.         default:
  5291.                 MISSING_CASE(intel_encoder->type);
  5292.                 return POWER_DOMAIN_AUX_A;
  5293.         }
  5294. }
  5295.  
  5296. static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
  5297. {
  5298.         struct drm_device *dev = crtc->dev;
  5299.         struct intel_encoder *intel_encoder;
  5300.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5301.         enum pipe pipe = intel_crtc->pipe;
  5302.         unsigned long mask;
  5303.         enum transcoder transcoder;
  5304.  
  5305.         if (!crtc->state->active)
  5306.                 return 0;
  5307.  
  5308.         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
  5309.  
  5310.         mask = BIT(POWER_DOMAIN_PIPE(pipe));
  5311.         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
  5312.         if (intel_crtc->config->pch_pfit.enabled ||
  5313.             intel_crtc->config->pch_pfit.force_thru)
  5314.                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
  5315.  
  5316.         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  5317.                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
  5318.  
  5319.         return mask;
  5320. }
  5321.  
  5322. static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
  5323. {
  5324.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  5325.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5326.         enum intel_display_power_domain domain;
  5327.         unsigned long domains, new_domains, old_domains;
  5328.  
  5329.         old_domains = intel_crtc->enabled_power_domains;
  5330.         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
  5331.  
  5332.         domains = new_domains & ~old_domains;
  5333.  
  5334.         for_each_power_domain(domain, domains)
  5335.                 intel_display_power_get(dev_priv, domain);
  5336.  
  5337.         return old_domains & ~new_domains;
  5338. }
  5339.  
  5340. static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
  5341.                                       unsigned long domains)
  5342. {
  5343.         enum intel_display_power_domain domain;
  5344.  
  5345.         for_each_power_domain(domain, domains)
  5346.                 intel_display_power_put(dev_priv, domain);
  5347. }
  5348.  
  5349. static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
  5350. {
  5351.         struct drm_device *dev = state->dev;
  5352.         struct drm_i915_private *dev_priv = dev->dev_private;
  5353.         unsigned long put_domains[I915_MAX_PIPES] = {};
  5354.         struct drm_crtc_state *crtc_state;
  5355.         struct drm_crtc *crtc;
  5356.         int i;
  5357.  
  5358.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  5359.                 if (needs_modeset(crtc->state))
  5360.                         put_domains[to_intel_crtc(crtc)->pipe] =
  5361.                                 modeset_get_crtc_power_domains(crtc);
  5362.         }
  5363.  
  5364.         if (dev_priv->display.modeset_commit_cdclk) {
  5365.                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
  5366.  
  5367.                 if (cdclk != dev_priv->cdclk_freq &&
  5368.                     !WARN_ON(!state->allow_modeset))
  5369.                         dev_priv->display.modeset_commit_cdclk(state);
  5370.         }
  5371.  
  5372.         for (i = 0; i < I915_MAX_PIPES; i++)
  5373.                 if (put_domains[i])
  5374.                         modeset_put_power_domains(dev_priv, put_domains[i]);
  5375. }
  5376.  
  5377. static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
  5378. {
  5379.         int max_cdclk_freq = dev_priv->max_cdclk_freq;
  5380.  
  5381.         if (INTEL_INFO(dev_priv)->gen >= 9 ||
  5382.             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5383.                 return max_cdclk_freq;
  5384.         else if (IS_CHERRYVIEW(dev_priv))
  5385.                 return max_cdclk_freq*95/100;
  5386.         else if (INTEL_INFO(dev_priv)->gen < 4)
  5387.                 return 2*max_cdclk_freq*90/100;
  5388.         else
  5389.                 return max_cdclk_freq*90/100;
  5390. }
  5391.  
  5392. static void intel_update_max_cdclk(struct drm_device *dev)
  5393. {
  5394.         struct drm_i915_private *dev_priv = dev->dev_private;
  5395.  
  5396.         if (IS_SKYLAKE(dev)) {
  5397.                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
  5398.  
  5399.                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
  5400.                         dev_priv->max_cdclk_freq = 675000;
  5401.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
  5402.                         dev_priv->max_cdclk_freq = 540000;
  5403.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
  5404.                         dev_priv->max_cdclk_freq = 450000;
  5405.                 else
  5406.                         dev_priv->max_cdclk_freq = 337500;
  5407.         } else if (IS_BROADWELL(dev))  {
  5408.                 /*
  5409.                  * FIXME with extra cooling we can allow
  5410.                  * 540 MHz for ULX and 675 Mhz for ULT.
  5411.                  * How can we know if extra cooling is
  5412.                  * available? PCI ID, VTB, something else?
  5413.                  */
  5414.                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  5415.                         dev_priv->max_cdclk_freq = 450000;
  5416.                 else if (IS_BDW_ULX(dev))
  5417.                         dev_priv->max_cdclk_freq = 450000;
  5418.                 else if (IS_BDW_ULT(dev))
  5419.                         dev_priv->max_cdclk_freq = 540000;
  5420.                 else
  5421.                         dev_priv->max_cdclk_freq = 675000;
  5422.         } else if (IS_CHERRYVIEW(dev)) {
  5423.                 dev_priv->max_cdclk_freq = 320000;
  5424.         } else if (IS_VALLEYVIEW(dev)) {
  5425.                 dev_priv->max_cdclk_freq = 400000;
  5426.         } else {
  5427.                 /* otherwise assume cdclk is fixed */
  5428.                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
  5429.         }
  5430.  
  5431.         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
  5432.  
  5433.         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
  5434.                          dev_priv->max_cdclk_freq);
  5435.  
  5436.         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
  5437.                          dev_priv->max_dotclk_freq);
  5438. }
  5439.  
  5440. static void intel_update_cdclk(struct drm_device *dev)
  5441. {
  5442.         struct drm_i915_private *dev_priv = dev->dev_private;
  5443.  
  5444.         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  5445.         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
  5446.                          dev_priv->cdclk_freq);
  5447.  
  5448.         /*
  5449.          * Program the gmbus_freq based on the cdclk frequency.
  5450.          * BSpec erroneously claims we should aim for 4MHz, but
  5451.          * in fact 1MHz is the correct frequency.
  5452.          */
  5453.         if (IS_VALLEYVIEW(dev)) {
  5454.                 /*
  5455.                  * Program the gmbus_freq based on the cdclk frequency.
  5456.                  * BSpec erroneously claims we should aim for 4MHz, but
  5457.                  * in fact 1MHz is the correct frequency.
  5458.                  */
  5459.                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
  5460.         }
  5461.  
  5462.         if (dev_priv->max_cdclk_freq == 0)
  5463.                 intel_update_max_cdclk(dev);
  5464. }
  5465.  
  5466. static void broxton_set_cdclk(struct drm_device *dev, int frequency)
  5467. {
  5468.         struct drm_i915_private *dev_priv = dev->dev_private;
  5469.         uint32_t divider;
  5470.         uint32_t ratio;
  5471.         uint32_t current_freq;
  5472.         int ret;
  5473.  
  5474.         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
  5475.         switch (frequency) {
  5476.         case 144000:
  5477.                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
  5478.                 ratio = BXT_DE_PLL_RATIO(60);
  5479.                 break;
  5480.         case 288000:
  5481.                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
  5482.                 ratio = BXT_DE_PLL_RATIO(60);
  5483.                 break;
  5484.         case 384000:
  5485.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
  5486.                 ratio = BXT_DE_PLL_RATIO(60);
  5487.                 break;
  5488.         case 576000:
  5489.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5490.                 ratio = BXT_DE_PLL_RATIO(60);
  5491.                 break;
  5492.         case 624000:
  5493.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5494.                 ratio = BXT_DE_PLL_RATIO(65);
  5495.                 break;
  5496.         case 19200:
  5497.                 /*
  5498.                  * Bypass frequency with DE PLL disabled. Init ratio, divider
  5499.                  * to suppress GCC warning.
  5500.                  */
  5501.                 ratio = 0;
  5502.                 divider = 0;
  5503.                 break;
  5504.         default:
  5505.                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
  5506.  
  5507.                 return;
  5508.         }
  5509.  
  5510.         mutex_lock(&dev_priv->rps.hw_lock);
  5511.         /* Inform power controller of upcoming frequency change */
  5512.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5513.                                       0x80000000);
  5514.         mutex_unlock(&dev_priv->rps.hw_lock);
  5515.  
  5516.         if (ret) {
  5517.                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
  5518.                           ret, frequency);
  5519.                 return;
  5520.         }
  5521.  
  5522.         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
  5523.         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
  5524.         current_freq = current_freq * 500 + 1000;
  5525.  
  5526.         /*
  5527.          * DE PLL has to be disabled when
  5528.          * - setting to 19.2MHz (bypass, PLL isn't used)
  5529.          * - before setting to 624MHz (PLL needs toggling)
  5530.          * - before setting to any frequency from 624MHz (PLL needs toggling)
  5531.          */
  5532.         if (frequency == 19200 || frequency == 624000 ||
  5533.             current_freq == 624000) {
  5534.                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
  5535.                 /* Timeout 200us */
  5536.                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
  5537.                              1))
  5538.                         DRM_ERROR("timout waiting for DE PLL unlock\n");
  5539.         }
  5540.  
  5541.         if (frequency != 19200) {
  5542.                 uint32_t val;
  5543.  
  5544.                 val = I915_READ(BXT_DE_PLL_CTL);
  5545.                 val &= ~BXT_DE_PLL_RATIO_MASK;
  5546.                 val |= ratio;
  5547.                 I915_WRITE(BXT_DE_PLL_CTL, val);
  5548.  
  5549.                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
  5550.                 /* Timeout 200us */
  5551.                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
  5552.                         DRM_ERROR("timeout waiting for DE PLL lock\n");
  5553.  
  5554.                 val = I915_READ(CDCLK_CTL);
  5555.                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
  5556.                 val |= divider;
  5557.                 /*
  5558.                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
  5559.                  * enable otherwise.
  5560.                  */
  5561.                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5562.                 if (frequency >= 500000)
  5563.                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5564.  
  5565.                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
  5566.                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
  5567.                 val |= (frequency - 1000) / 500;
  5568.                 I915_WRITE(CDCLK_CTL, val);
  5569.         }
  5570.  
  5571.         mutex_lock(&dev_priv->rps.hw_lock);
  5572.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5573.                                       DIV_ROUND_UP(frequency, 25000));
  5574.         mutex_unlock(&dev_priv->rps.hw_lock);
  5575.  
  5576.         if (ret) {
  5577.                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
  5578.                           ret, frequency);
  5579.                 return;
  5580.         }
  5581.  
  5582.         intel_update_cdclk(dev);
  5583. }
  5584.  
  5585. void broxton_init_cdclk(struct drm_device *dev)
  5586. {
  5587.         struct drm_i915_private *dev_priv = dev->dev_private;
  5588.         uint32_t val;
  5589.  
  5590.         /*
  5591.          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
  5592.          * or else the reset will hang because there is no PCH to respond.
  5593.          * Move the handshake programming to initialization sequence.
  5594.          * Previously was left up to BIOS.
  5595.          */
  5596.         val = I915_READ(HSW_NDE_RSTWRN_OPT);
  5597.         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
  5598.         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
  5599.  
  5600.         /* Enable PG1 for cdclk */
  5601.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  5602.  
  5603.         /* check if cd clock is enabled */
  5604.         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
  5605.                 DRM_DEBUG_KMS("Display already initialized\n");
  5606.                 return;
  5607.         }
  5608.  
  5609.         /*
  5610.          * FIXME:
  5611.          * - The initial CDCLK needs to be read from VBT.
  5612.          *   Need to make this change after VBT has changes for BXT.
  5613.          * - check if setting the max (or any) cdclk freq is really necessary
  5614.          *   here, it belongs to modeset time
  5615.          */
  5616.         broxton_set_cdclk(dev, 624000);
  5617.  
  5618.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5619.         POSTING_READ(DBUF_CTL);
  5620.  
  5621.         udelay(10);
  5622.  
  5623.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5624.                 DRM_ERROR("DBuf power enable timeout!\n");
  5625. }
  5626.  
  5627. void broxton_uninit_cdclk(struct drm_device *dev)
  5628. {
  5629.         struct drm_i915_private *dev_priv = dev->dev_private;
  5630.  
  5631.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5632.         POSTING_READ(DBUF_CTL);
  5633.  
  5634.         udelay(10);
  5635.  
  5636.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5637.                 DRM_ERROR("DBuf power disable timeout!\n");
  5638.  
  5639.         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
  5640.         broxton_set_cdclk(dev, 19200);
  5641.  
  5642.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  5643. }
  5644.  
  5645. static const struct skl_cdclk_entry {
  5646.         unsigned int freq;
  5647.         unsigned int vco;
  5648. } skl_cdclk_frequencies[] = {
  5649.         { .freq = 308570, .vco = 8640 },
  5650.         { .freq = 337500, .vco = 8100 },
  5651.         { .freq = 432000, .vco = 8640 },
  5652.         { .freq = 450000, .vco = 8100 },
  5653.         { .freq = 540000, .vco = 8100 },
  5654.         { .freq = 617140, .vco = 8640 },
  5655.         { .freq = 675000, .vco = 8100 },
  5656. };
  5657.  
  5658. static unsigned int skl_cdclk_decimal(unsigned int freq)
  5659. {
  5660.         return (freq - 1000) / 500;
  5661. }
  5662.  
  5663. static unsigned int skl_cdclk_get_vco(unsigned int freq)
  5664. {
  5665.         unsigned int i;
  5666.  
  5667.         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
  5668.                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
  5669.  
  5670.                 if (e->freq == freq)
  5671.                         return e->vco;
  5672.         }
  5673.  
  5674.         return 8100;
  5675. }
  5676.  
  5677. static void
  5678. skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
  5679. {
  5680.         unsigned int min_freq;
  5681.         u32 val;
  5682.  
  5683.         /* select the minimum CDCLK before enabling DPLL 0 */
  5684.         val = I915_READ(CDCLK_CTL);
  5685.         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
  5686.         val |= CDCLK_FREQ_337_308;
  5687.  
  5688.         if (required_vco == 8640)
  5689.                 min_freq = 308570;
  5690.         else
  5691.                 min_freq = 337500;
  5692.  
  5693.         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
  5694.  
  5695.         I915_WRITE(CDCLK_CTL, val);
  5696.         POSTING_READ(CDCLK_CTL);
  5697.  
  5698.         /*
  5699.          * We always enable DPLL0 with the lowest link rate possible, but still
  5700.          * taking into account the VCO required to operate the eDP panel at the
  5701.          * desired frequency. The usual DP link rates operate with a VCO of
  5702.          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
  5703.          * The modeset code is responsible for the selection of the exact link
  5704.          * rate later on, with the constraint of choosing a frequency that
  5705.          * works with required_vco.
  5706.          */
  5707.         val = I915_READ(DPLL_CTRL1);
  5708.  
  5709.         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
  5710.                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
  5711.         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
  5712.         if (required_vco == 8640)
  5713.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
  5714.                                             SKL_DPLL0);
  5715.         else
  5716.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
  5717.                                             SKL_DPLL0);
  5718.  
  5719.         I915_WRITE(DPLL_CTRL1, val);
  5720.         POSTING_READ(DPLL_CTRL1);
  5721.  
  5722.         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
  5723.  
  5724.         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
  5725.                 DRM_ERROR("DPLL0 not locked\n");
  5726. }
  5727.  
  5728. static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
  5729. {
  5730.         int ret;
  5731.         u32 val;
  5732.  
  5733.         /* inform PCU we want to change CDCLK */
  5734.         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
  5735.         mutex_lock(&dev_priv->rps.hw_lock);
  5736.         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
  5737.         mutex_unlock(&dev_priv->rps.hw_lock);
  5738.  
  5739.         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
  5740. }
  5741.  
  5742. static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
  5743. {
  5744.         unsigned int i;
  5745.  
  5746.         for (i = 0; i < 15; i++) {
  5747.                 if (skl_cdclk_pcu_ready(dev_priv))
  5748.                         return true;
  5749.                 udelay(10);
  5750.         }
  5751.  
  5752.         return false;
  5753. }
  5754.  
  5755. static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
  5756. {
  5757.         struct drm_device *dev = dev_priv->dev;
  5758.         u32 freq_select, pcu_ack;
  5759.  
  5760.         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
  5761.  
  5762.         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
  5763.                 DRM_ERROR("failed to inform PCU about cdclk change\n");
  5764.                 return;
  5765.         }
  5766.  
  5767.         /* set CDCLK_CTL */
  5768.         switch(freq) {
  5769.         case 450000:
  5770.         case 432000:
  5771.                 freq_select = CDCLK_FREQ_450_432;
  5772.                 pcu_ack = 1;
  5773.                 break;
  5774.         case 540000:
  5775.                 freq_select = CDCLK_FREQ_540;
  5776.                 pcu_ack = 2;
  5777.                 break;
  5778.         case 308570:
  5779.         case 337500:
  5780.         default:
  5781.                 freq_select = CDCLK_FREQ_337_308;
  5782.                 pcu_ack = 0;
  5783.                 break;
  5784.         case 617140:
  5785.         case 675000:
  5786.                 freq_select = CDCLK_FREQ_675_617;
  5787.                 pcu_ack = 3;
  5788.                 break;
  5789.         }
  5790.  
  5791.         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
  5792.         POSTING_READ(CDCLK_CTL);
  5793.  
  5794.         /* inform PCU of the change */
  5795.         mutex_lock(&dev_priv->rps.hw_lock);
  5796.         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
  5797.         mutex_unlock(&dev_priv->rps.hw_lock);
  5798.  
  5799.         intel_update_cdclk(dev);
  5800. }
  5801.  
  5802. void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
  5803. {
  5804.         /* disable DBUF power */
  5805.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5806.         POSTING_READ(DBUF_CTL);
  5807.  
  5808.         udelay(10);
  5809.  
  5810.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5811.                 DRM_ERROR("DBuf power disable timeout\n");
  5812.  
  5813.         /*
  5814.          * DMC assumes ownership of LCPLL and will get confused if we touch it.
  5815.          */
  5816.         if (dev_priv->csr.dmc_payload) {
  5817.                 /* disable DPLL0 */
  5818.                 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
  5819.                                         ~LCPLL_PLL_ENABLE);
  5820.                 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
  5821.                         DRM_ERROR("Couldn't disable DPLL0\n");
  5822.         }
  5823.  
  5824.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  5825. }
  5826.  
  5827. void skl_init_cdclk(struct drm_i915_private *dev_priv)
  5828. {
  5829.         u32 val;
  5830.         unsigned int required_vco;
  5831.  
  5832.         /* enable PCH reset handshake */
  5833.         val = I915_READ(HSW_NDE_RSTWRN_OPT);
  5834.         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
  5835.  
  5836.         /* enable PG1 and Misc I/O */
  5837.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  5838.  
  5839.         /* DPLL0 not enabled (happens on early BIOS versions) */
  5840.         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
  5841.                 /* enable DPLL0 */
  5842.                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
  5843.                 skl_dpll0_enable(dev_priv, required_vco);
  5844.         }
  5845.  
  5846.         /* set CDCLK to the frequency the BIOS chose */
  5847.         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
  5848.  
  5849.         /* enable DBUF power */
  5850.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5851.         POSTING_READ(DBUF_CTL);
  5852.  
  5853.         udelay(10);
  5854.  
  5855.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5856.                 DRM_ERROR("DBuf power enable timeout\n");
  5857. }
  5858.  
  5859. /* Adjust CDclk dividers to allow high res or save power if possible */
  5860. static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
  5861. {
  5862.         struct drm_i915_private *dev_priv = dev->dev_private;
  5863.         u32 val, cmd;
  5864.  
  5865.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5866.                                         != dev_priv->cdclk_freq);
  5867.  
  5868.         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
  5869.                 cmd = 2;
  5870.         else if (cdclk == 266667)
  5871.                 cmd = 1;
  5872.         else
  5873.                 cmd = 0;
  5874.  
  5875.         mutex_lock(&dev_priv->rps.hw_lock);
  5876.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5877.         val &= ~DSPFREQGUAR_MASK;
  5878.         val |= (cmd << DSPFREQGUAR_SHIFT);
  5879.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5880.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5881.                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
  5882.                      50)) {
  5883.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5884.         }
  5885.         mutex_unlock(&dev_priv->rps.hw_lock);
  5886.  
  5887.         mutex_lock(&dev_priv->sb_lock);
  5888.  
  5889.         if (cdclk == 400000) {
  5890.                 u32 divider;
  5891.  
  5892.                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5893.  
  5894.                 /* adjust cdclk divider */
  5895.                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
  5896.                 val &= ~CCK_FREQUENCY_VALUES;
  5897.                 val |= divider;
  5898.                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
  5899.  
  5900.                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
  5901.                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
  5902.                              50))
  5903.                         DRM_ERROR("timed out waiting for CDclk change\n");
  5904.         }
  5905.  
  5906.         /* adjust self-refresh exit latency value */
  5907.         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
  5908.         val &= ~0x7f;
  5909.  
  5910.         /*
  5911.          * For high bandwidth configs, we set a higher latency in the bunit
  5912.          * so that the core display fetch happens in time to avoid underruns.
  5913.          */
  5914.         if (cdclk == 400000)
  5915.                 val |= 4500 / 250; /* 4.5 usec */
  5916.         else
  5917.                 val |= 3000 / 250; /* 3.0 usec */
  5918.         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
  5919.  
  5920.         mutex_unlock(&dev_priv->sb_lock);
  5921.  
  5922.         intel_update_cdclk(dev);
  5923. }
  5924.  
  5925. static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
  5926. {
  5927.         struct drm_i915_private *dev_priv = dev->dev_private;
  5928.         u32 val, cmd;
  5929.  
  5930.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5931.                                                 != dev_priv->cdclk_freq);
  5932.  
  5933.         switch (cdclk) {
  5934.         case 333333:
  5935.         case 320000:
  5936.         case 266667:
  5937.         case 200000:
  5938.                 break;
  5939.         default:
  5940.                 MISSING_CASE(cdclk);
  5941.                 return;
  5942.         }
  5943.  
  5944.         /*
  5945.          * Specs are full of misinformation, but testing on actual
  5946.          * hardware has shown that we just need to write the desired
  5947.          * CCK divider into the Punit register.
  5948.          */
  5949.         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5950.  
  5951.         mutex_lock(&dev_priv->rps.hw_lock);
  5952.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5953.         val &= ~DSPFREQGUAR_MASK_CHV;
  5954.         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
  5955.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5956.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5957.                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
  5958.                      50)) {
  5959.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5960.         }
  5961.         mutex_unlock(&dev_priv->rps.hw_lock);
  5962.  
  5963.         intel_update_cdclk(dev);
  5964. }
  5965.  
  5966. static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
  5967.                                  int max_pixclk)
  5968. {
  5969.         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
  5970.         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
  5971.  
  5972.         /*
  5973.          * Really only a few cases to deal with, as only 4 CDclks are supported:
  5974.          *   200MHz
  5975.          *   267MHz
  5976.          *   320/333MHz (depends on HPLL freq)
  5977.          *   400MHz (VLV only)
  5978.          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
  5979.          * of the lower bin and adjust if needed.
  5980.          *
  5981.          * We seem to get an unstable or solid color picture at 200MHz.
  5982.          * Not sure what's wrong. For now use 200MHz only when all pipes
  5983.          * are off.
  5984.          */
  5985.         if (!IS_CHERRYVIEW(dev_priv) &&
  5986.             max_pixclk > freq_320*limit/100)
  5987.                 return 400000;
  5988.         else if (max_pixclk > 266667*limit/100)
  5989.                 return freq_320;
  5990.         else if (max_pixclk > 0)
  5991.                 return 266667;
  5992.         else
  5993.                 return 200000;
  5994. }
  5995.  
  5996. static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
  5997.                               int max_pixclk)
  5998. {
  5999.         /*
  6000.          * FIXME:
  6001.          * - remove the guardband, it's not needed on BXT
  6002.          * - set 19.2MHz bypass frequency if there are no active pipes
  6003.          */
  6004.         if (max_pixclk > 576000*9/10)
  6005.                 return 624000;
  6006.         else if (max_pixclk > 384000*9/10)
  6007.                 return 576000;
  6008.         else if (max_pixclk > 288000*9/10)
  6009.                 return 384000;
  6010.         else if (max_pixclk > 144000*9/10)
  6011.                 return 288000;
  6012.         else
  6013.                 return 144000;
  6014. }
  6015.  
  6016. /* Compute the max pixel clock for new configuration. Uses atomic state if
  6017.  * that's non-NULL, look at current state otherwise. */
  6018. static int intel_mode_max_pixclk(struct drm_device *dev,
  6019.                                  struct drm_atomic_state *state)
  6020. {
  6021.         struct intel_crtc *intel_crtc;
  6022.         struct intel_crtc_state *crtc_state;
  6023.         int max_pixclk = 0;
  6024.  
  6025.         for_each_intel_crtc(dev, intel_crtc) {
  6026.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  6027.                 if (IS_ERR(crtc_state))
  6028.                         return PTR_ERR(crtc_state);
  6029.  
  6030.                 if (!crtc_state->base.enable)
  6031.                         continue;
  6032.  
  6033.                 max_pixclk = max(max_pixclk,
  6034.                                  crtc_state->base.adjusted_mode.crtc_clock);
  6035.         }
  6036.  
  6037.         return max_pixclk;
  6038. }
  6039.  
  6040. static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
  6041. {
  6042.         struct drm_device *dev = state->dev;
  6043.         struct drm_i915_private *dev_priv = dev->dev_private;
  6044.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6045.  
  6046.         if (max_pixclk < 0)
  6047.                 return max_pixclk;
  6048.  
  6049.         to_intel_atomic_state(state)->cdclk =
  6050.                 valleyview_calc_cdclk(dev_priv, max_pixclk);
  6051.  
  6052.         return 0;
  6053. }
  6054.  
  6055. static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
  6056. {
  6057.         struct drm_device *dev = state->dev;
  6058.         struct drm_i915_private *dev_priv = dev->dev_private;
  6059.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6060.  
  6061.         if (max_pixclk < 0)
  6062.                 return max_pixclk;
  6063.  
  6064.         to_intel_atomic_state(state)->cdclk =
  6065.                 broxton_calc_cdclk(dev_priv, max_pixclk);
  6066.  
  6067.         return 0;
  6068. }
  6069.  
  6070. static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
  6071. {
  6072.         unsigned int credits, default_credits;
  6073.  
  6074.         if (IS_CHERRYVIEW(dev_priv))
  6075.                 default_credits = PFI_CREDIT(12);
  6076.         else
  6077.                 default_credits = PFI_CREDIT(8);
  6078.  
  6079.         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
  6080.                 /* CHV suggested value is 31 or 63 */
  6081.                 if (IS_CHERRYVIEW(dev_priv))
  6082.                         credits = PFI_CREDIT_63;
  6083.                 else
  6084.                         credits = PFI_CREDIT(15);
  6085.         } else {
  6086.                 credits = default_credits;
  6087.         }
  6088.  
  6089.         /*
  6090.          * WA - write default credits before re-programming
  6091.          * FIXME: should we also set the resend bit here?
  6092.          */
  6093.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6094.                    default_credits);
  6095.  
  6096.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6097.                    credits | PFI_CREDIT_RESEND);
  6098.  
  6099.         /*
  6100.          * FIXME is this guaranteed to clear
  6101.          * immediately or should we poll for it?
  6102.          */
  6103.         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
  6104. }
  6105.  
  6106. static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  6107. {
  6108.         struct drm_device *dev = old_state->dev;
  6109.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  6110.         struct drm_i915_private *dev_priv = dev->dev_private;
  6111.  
  6112.         /*
  6113.          * FIXME: We can end up here with all power domains off, yet
  6114.          * with a CDCLK frequency other than the minimum. To account
  6115.          * for this take the PIPE-A power domain, which covers the HW
  6116.          * blocks needed for the following programming. This can be
  6117.          * removed once it's guaranteed that we get here either with
  6118.          * the minimum CDCLK set, or the required power domains
  6119.          * enabled.
  6120.          */
  6121.         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
  6122.  
  6123.         if (IS_CHERRYVIEW(dev))
  6124.                 cherryview_set_cdclk(dev, req_cdclk);
  6125.         else
  6126.                 valleyview_set_cdclk(dev, req_cdclk);
  6127.  
  6128.         vlv_program_pfi_credits(dev_priv);
  6129.  
  6130.         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
  6131. }
  6132.  
  6133. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  6134. {
  6135.         struct drm_device *dev = crtc->dev;
  6136.         struct drm_i915_private *dev_priv = to_i915(dev);
  6137.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6138.         struct intel_encoder *encoder;
  6139.         int pipe = intel_crtc->pipe;
  6140.         bool is_dsi;
  6141.  
  6142.         if (WARN_ON(intel_crtc->active))
  6143.                 return;
  6144.  
  6145.         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  6146.  
  6147.         if (intel_crtc->config->has_dp_encoder)
  6148.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6149.  
  6150.         intel_set_pipe_timings(intel_crtc);
  6151.  
  6152.         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
  6153.                 struct drm_i915_private *dev_priv = dev->dev_private;
  6154.  
  6155.                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
  6156.                 I915_WRITE(CHV_CANVAS(pipe), 0);
  6157.         }
  6158.  
  6159.         i9xx_set_pipeconf(intel_crtc);
  6160.  
  6161.         intel_crtc->active = true;
  6162.  
  6163.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6164.  
  6165.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6166.                 if (encoder->pre_pll_enable)
  6167.                         encoder->pre_pll_enable(encoder);
  6168.  
  6169.         if (!is_dsi) {
  6170.                 if (IS_CHERRYVIEW(dev)) {
  6171.                         chv_prepare_pll(intel_crtc, intel_crtc->config);
  6172.                         chv_enable_pll(intel_crtc, intel_crtc->config);
  6173.                 } else {
  6174.                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
  6175.                         vlv_enable_pll(intel_crtc, intel_crtc->config);
  6176.                 }
  6177.         }
  6178.  
  6179.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6180.                 if (encoder->pre_enable)
  6181.                         encoder->pre_enable(encoder);
  6182.  
  6183.         i9xx_pfit_enable(intel_crtc);
  6184.  
  6185.         intel_crtc_load_lut(crtc);
  6186.  
  6187.         intel_enable_pipe(intel_crtc);
  6188.  
  6189.         assert_vblank_disabled(crtc);
  6190.         drm_crtc_vblank_on(crtc);
  6191.  
  6192.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6193.                 encoder->enable(encoder);
  6194. }
  6195.  
  6196. static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
  6197. {
  6198.         struct drm_device *dev = crtc->base.dev;
  6199.         struct drm_i915_private *dev_priv = dev->dev_private;
  6200.  
  6201.         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
  6202.         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
  6203. }
  6204.  
  6205. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  6206. {
  6207.         struct drm_device *dev = crtc->dev;
  6208.         struct drm_i915_private *dev_priv = to_i915(dev);
  6209.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6210.         struct intel_encoder *encoder;
  6211.         int pipe = intel_crtc->pipe;
  6212.  
  6213.         if (WARN_ON(intel_crtc->active))
  6214.                 return;
  6215.  
  6216.         i9xx_set_pll_dividers(intel_crtc);
  6217.  
  6218.         if (intel_crtc->config->has_dp_encoder)
  6219.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6220.  
  6221.         intel_set_pipe_timings(intel_crtc);
  6222.  
  6223.         i9xx_set_pipeconf(intel_crtc);
  6224.  
  6225.         intel_crtc->active = true;
  6226.  
  6227.         if (!IS_GEN2(dev))
  6228.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6229.  
  6230.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6231.                 if (encoder->pre_enable)
  6232.                         encoder->pre_enable(encoder);
  6233.  
  6234.         i9xx_enable_pll(intel_crtc);
  6235.  
  6236.         i9xx_pfit_enable(intel_crtc);
  6237.  
  6238.         intel_crtc_load_lut(crtc);
  6239.  
  6240.         intel_update_watermarks(crtc);
  6241.         intel_enable_pipe(intel_crtc);
  6242.  
  6243.         assert_vblank_disabled(crtc);
  6244.         drm_crtc_vblank_on(crtc);
  6245.  
  6246.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6247.                 encoder->enable(encoder);
  6248. }
  6249.  
  6250. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  6251. {
  6252.         struct drm_device *dev = crtc->base.dev;
  6253.         struct drm_i915_private *dev_priv = dev->dev_private;
  6254.  
  6255.         if (!crtc->config->gmch_pfit.control)
  6256.                 return;
  6257.  
  6258.         assert_pipe_disabled(dev_priv, crtc->pipe);
  6259.  
  6260.         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  6261.                          I915_READ(PFIT_CONTROL));
  6262.         I915_WRITE(PFIT_CONTROL, 0);
  6263. }
  6264.  
  6265. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  6266. {
  6267.         struct drm_device *dev = crtc->dev;
  6268.         struct drm_i915_private *dev_priv = dev->dev_private;
  6269.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6270.         struct intel_encoder *encoder;
  6271.         int pipe = intel_crtc->pipe;
  6272.  
  6273.         /*
  6274.          * On gen2 planes are double buffered but the pipe isn't, so we must
  6275.          * wait for planes to fully turn off before disabling the pipe.
  6276.          * We also need to wait on all gmch platforms because of the
  6277.          * self-refresh mode constraint explained above.
  6278.          */
  6279.         intel_wait_for_vblank(dev, pipe);
  6280.  
  6281.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6282.                 encoder->disable(encoder);
  6283.  
  6284.         drm_crtc_vblank_off(crtc);
  6285.         assert_vblank_disabled(crtc);
  6286.  
  6287.         intel_disable_pipe(intel_crtc);
  6288.  
  6289.         i9xx_pfit_disable(intel_crtc);
  6290.  
  6291.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6292.                 if (encoder->post_disable)
  6293.                         encoder->post_disable(encoder);
  6294.  
  6295.         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
  6296.                 if (IS_CHERRYVIEW(dev))
  6297.                         chv_disable_pll(dev_priv, pipe);
  6298.                 else if (IS_VALLEYVIEW(dev))
  6299.                         vlv_disable_pll(dev_priv, pipe);
  6300.                 else
  6301.                         i9xx_disable_pll(intel_crtc);
  6302.         }
  6303.  
  6304.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6305.                 if (encoder->post_pll_disable)
  6306.                         encoder->post_pll_disable(encoder);
  6307.  
  6308.         if (!IS_GEN2(dev))
  6309.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  6310. }
  6311.  
  6312. static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
  6313. {
  6314.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6315.         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  6316.         enum intel_display_power_domain domain;
  6317.         unsigned long domains;
  6318.  
  6319.         if (!intel_crtc->active)
  6320.                 return;
  6321.  
  6322.         if (to_intel_plane_state(crtc->primary->state)->visible) {
  6323.                 intel_pre_disable_primary(crtc);
  6324.  
  6325.                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
  6326.                 to_intel_plane_state(crtc->primary->state)->visible = false;
  6327.         }
  6328.  
  6329.         dev_priv->display.crtc_disable(crtc);
  6330.         intel_crtc->active = false;
  6331.         intel_update_watermarks(crtc);
  6332.         intel_disable_shared_dpll(intel_crtc);
  6333.  
  6334.         domains = intel_crtc->enabled_power_domains;
  6335.         for_each_power_domain(domain, domains)
  6336.                 intel_display_power_put(dev_priv, domain);
  6337.         intel_crtc->enabled_power_domains = 0;
  6338. }
  6339.  
  6340. /*
  6341.  * turn all crtc's off, but do not adjust state
  6342.  * This has to be paired with a call to intel_modeset_setup_hw_state.
  6343.  */
  6344. int intel_display_suspend(struct drm_device *dev)
  6345. {
  6346.         struct drm_mode_config *config = &dev->mode_config;
  6347.         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
  6348.         struct drm_atomic_state *state;
  6349.         struct drm_crtc *crtc;
  6350.         unsigned crtc_mask = 0;
  6351.         int ret = 0;
  6352.  
  6353.         if (WARN_ON(!ctx))
  6354.                 return 0;
  6355.  
  6356.         lockdep_assert_held(&ctx->ww_ctx);
  6357.         state = drm_atomic_state_alloc(dev);
  6358.         if (WARN_ON(!state))
  6359.                 return -ENOMEM;
  6360.  
  6361.         state->acquire_ctx = ctx;
  6362.         state->allow_modeset = true;
  6363.  
  6364.         for_each_crtc(dev, crtc) {
  6365.                 struct drm_crtc_state *crtc_state =
  6366.                         drm_atomic_get_crtc_state(state, crtc);
  6367.  
  6368.                 ret = PTR_ERR_OR_ZERO(crtc_state);
  6369.                 if (ret)
  6370.                         goto free;
  6371.  
  6372.                 if (!crtc_state->active)
  6373.                         continue;
  6374.  
  6375.                 crtc_state->active = false;
  6376.                 crtc_mask |= 1 << drm_crtc_index(crtc);
  6377.         }
  6378.  
  6379.         if (crtc_mask) {
  6380.                 ret = drm_atomic_commit(state);
  6381.  
  6382.                 if (!ret) {
  6383.                         for_each_crtc(dev, crtc)
  6384.                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
  6385.                                         crtc->state->active = true;
  6386.  
  6387.                         return ret;
  6388.                 }
  6389.         }
  6390.  
  6391. free:
  6392.         if (ret)
  6393.                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
  6394.         drm_atomic_state_free(state);
  6395.         return ret;
  6396. }
  6397.  
  6398. void intel_encoder_destroy(struct drm_encoder *encoder)
  6399. {
  6400.         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  6401.  
  6402.         drm_encoder_cleanup(encoder);
  6403.         kfree(intel_encoder);
  6404. }
  6405.  
  6406. /* Cross check the actual hw state with our own modeset state tracking (and it's
  6407.  * internal consistency). */
  6408. static void intel_connector_check_state(struct intel_connector *connector)
  6409. {
  6410.         struct drm_crtc *crtc = connector->base.state->crtc;
  6411.  
  6412.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  6413.                       connector->base.base.id,
  6414.                       connector->base.name);
  6415.  
  6416.         if (connector->get_hw_state(connector)) {
  6417.                 struct intel_encoder *encoder = connector->encoder;
  6418.                 struct drm_connector_state *conn_state = connector->base.state;
  6419.  
  6420.                 I915_STATE_WARN(!crtc,
  6421.                          "connector enabled without attached crtc\n");
  6422.  
  6423.                 if (!crtc)
  6424.                         return;
  6425.  
  6426.                 I915_STATE_WARN(!crtc->state->active,
  6427.                       "connector is active, but attached crtc isn't\n");
  6428.  
  6429.                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
  6430.                         return;
  6431.  
  6432.                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
  6433.                         "atomic encoder doesn't match attached encoder\n");
  6434.  
  6435.                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
  6436.                         "attached encoder crtc differs from connector crtc\n");
  6437.         } else {
  6438.                 I915_STATE_WARN(crtc && crtc->state->active,
  6439.                         "attached crtc is active, but connector isn't\n");
  6440.                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
  6441.                         "best encoder set without crtc!\n");
  6442.         }
  6443. }
  6444.  
  6445. int intel_connector_init(struct intel_connector *connector)
  6446. {
  6447.         struct drm_connector_state *connector_state;
  6448.  
  6449.         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
  6450.         if (!connector_state)
  6451.                 return -ENOMEM;
  6452.  
  6453.         connector->base.state = connector_state;
  6454.         return 0;
  6455. }
  6456.  
  6457. struct intel_connector *intel_connector_alloc(void)
  6458. {
  6459.         struct intel_connector *connector;
  6460.  
  6461.         connector = kzalloc(sizeof *connector, GFP_KERNEL);
  6462.         if (!connector)
  6463.                 return NULL;
  6464.  
  6465.         if (intel_connector_init(connector) < 0) {
  6466.                 kfree(connector);
  6467.                 return NULL;
  6468.         }
  6469.  
  6470.         return connector;
  6471. }
  6472.  
  6473. /* Simple connector->get_hw_state implementation for encoders that support only
  6474.  * one connector and no cloning and hence the encoder state determines the state
  6475.  * of the connector. */
  6476. bool intel_connector_get_hw_state(struct intel_connector *connector)
  6477. {
  6478.         enum pipe pipe = 0;
  6479.         struct intel_encoder *encoder = connector->encoder;
  6480.  
  6481.         return encoder->get_hw_state(encoder, &pipe);
  6482. }
  6483.  
  6484. static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
  6485. {
  6486.         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
  6487.                 return crtc_state->fdi_lanes;
  6488.  
  6489.         return 0;
  6490. }
  6491.  
  6492. static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  6493.                                      struct intel_crtc_state *pipe_config)
  6494. {
  6495.         struct drm_atomic_state *state = pipe_config->base.state;
  6496.         struct intel_crtc *other_crtc;
  6497.         struct intel_crtc_state *other_crtc_state;
  6498.  
  6499.         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  6500.                       pipe_name(pipe), pipe_config->fdi_lanes);
  6501.         if (pipe_config->fdi_lanes > 4) {
  6502.                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  6503.                               pipe_name(pipe), pipe_config->fdi_lanes);
  6504.                 return -EINVAL;
  6505.         }
  6506.  
  6507.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  6508.                 if (pipe_config->fdi_lanes > 2) {
  6509.                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  6510.                                       pipe_config->fdi_lanes);
  6511.                         return -EINVAL;
  6512.                 } else {
  6513.                         return 0;
  6514.                 }
  6515.         }
  6516.  
  6517.         if (INTEL_INFO(dev)->num_pipes == 2)
  6518.                 return 0;
  6519.  
  6520.         /* Ivybridge 3 pipe is really complicated */
  6521.         switch (pipe) {
  6522.         case PIPE_A:
  6523.                 return 0;
  6524.         case PIPE_B:
  6525.                 if (pipe_config->fdi_lanes <= 2)
  6526.                         return 0;
  6527.  
  6528.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
  6529.                 other_crtc_state =
  6530.                         intel_atomic_get_crtc_state(state, other_crtc);
  6531.                 if (IS_ERR(other_crtc_state))
  6532.                         return PTR_ERR(other_crtc_state);
  6533.  
  6534.                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
  6535.                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  6536.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6537.                         return -EINVAL;
  6538.                 }
  6539.                 return 0;
  6540.         case PIPE_C:
  6541.                 if (pipe_config->fdi_lanes > 2) {
  6542.                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
  6543.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6544.                         return -EINVAL;
  6545.                 }
  6546.  
  6547.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
  6548.                 other_crtc_state =
  6549.                         intel_atomic_get_crtc_state(state, other_crtc);
  6550.                 if (IS_ERR(other_crtc_state))
  6551.                         return PTR_ERR(other_crtc_state);
  6552.  
  6553.                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
  6554.                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  6555.                         return -EINVAL;
  6556.                 }
  6557.                 return 0;
  6558.         default:
  6559.                 BUG();
  6560.         }
  6561. }
  6562.  
  6563. #define RETRY 1
  6564. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  6565.                                        struct intel_crtc_state *pipe_config)
  6566. {
  6567.         struct drm_device *dev = intel_crtc->base.dev;
  6568.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6569.         int lane, link_bw, fdi_dotclock, ret;
  6570.         bool needs_recompute = false;
  6571.  
  6572. retry:
  6573.         /* FDI is a binary signal running at ~2.7GHz, encoding
  6574.          * each output octet as 10 bits. The actual frequency
  6575.          * is stored as a divider into a 100MHz clock, and the
  6576.          * mode pixel clock is stored in units of 1KHz.
  6577.          * Hence the bw of each lane in terms of the mode signal
  6578.          * is:
  6579.          */
  6580.         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  6581.  
  6582.         fdi_dotclock = adjusted_mode->crtc_clock;
  6583.  
  6584.         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  6585.                                            pipe_config->pipe_bpp);
  6586.  
  6587.         pipe_config->fdi_lanes = lane;
  6588.  
  6589.         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  6590.                                link_bw, &pipe_config->fdi_m_n);
  6591.  
  6592.         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  6593.                                        intel_crtc->pipe, pipe_config);
  6594.         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
  6595.                 pipe_config->pipe_bpp -= 2*3;
  6596.                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  6597.                               pipe_config->pipe_bpp);
  6598.                 needs_recompute = true;
  6599.                 pipe_config->bw_constrained = true;
  6600.  
  6601.                 goto retry;
  6602.         }
  6603.  
  6604.         if (needs_recompute)
  6605.                 return RETRY;
  6606.  
  6607.         return ret;
  6608. }
  6609.  
  6610. static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
  6611.                                      struct intel_crtc_state *pipe_config)
  6612. {
  6613.         if (pipe_config->pipe_bpp > 24)
  6614.                 return false;
  6615.  
  6616.         /* HSW can handle pixel rate up to cdclk? */
  6617.         if (IS_HASWELL(dev_priv->dev))
  6618.                 return true;
  6619.  
  6620.         /*
  6621.          * We compare against max which means we must take
  6622.          * the increased cdclk requirement into account when
  6623.          * calculating the new cdclk.
  6624.          *
  6625.          * Should measure whether using a lower cdclk w/o IPS
  6626.          */
  6627.         return ilk_pipe_pixel_rate(pipe_config) <=
  6628.                 dev_priv->max_cdclk_freq * 95 / 100;
  6629. }
  6630.  
  6631. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  6632.                                    struct intel_crtc_state *pipe_config)
  6633. {
  6634.         struct drm_device *dev = crtc->base.dev;
  6635.         struct drm_i915_private *dev_priv = dev->dev_private;
  6636.  
  6637.         pipe_config->ips_enabled = i915.enable_ips &&
  6638.                 hsw_crtc_supports_ips(crtc) &&
  6639.                 pipe_config_supports_ips(dev_priv, pipe_config);
  6640. }
  6641.  
  6642. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  6643.                                      struct intel_crtc_state *pipe_config)
  6644. {
  6645.         struct drm_device *dev = crtc->base.dev;
  6646.         struct drm_i915_private *dev_priv = dev->dev_private;
  6647.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6648.  
  6649.         /* FIXME should check pixel clock limits on all platforms */
  6650.         if (INTEL_INFO(dev)->gen < 4) {
  6651.                 int clock_limit = dev_priv->max_cdclk_freq;
  6652.  
  6653.                 /*
  6654.                  * Enable pixel doubling when the dot clock
  6655.                  * is > 90% of the (display) core speed.
  6656.                  *
  6657.                  * GDG double wide on either pipe,
  6658.                  * otherwise pipe A only.
  6659.                  */
  6660.                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  6661.                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
  6662.                         clock_limit *= 2;
  6663.                         pipe_config->double_wide = true;
  6664.                 }
  6665.  
  6666.                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
  6667.                         return -EINVAL;
  6668.         }
  6669.  
  6670.         /*
  6671.          * Pipe horizontal size must be even in:
  6672.          * - DVO ganged mode
  6673.          * - LVDS dual channel mode
  6674.          * - Double wide pipe
  6675.          */
  6676.         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
  6677.              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  6678.                 pipe_config->pipe_src_w &= ~1;
  6679.  
  6680.         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  6681.          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  6682.          */
  6683.         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  6684.                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
  6685.                 return -EINVAL;
  6686.  
  6687.         if (HAS_IPS(dev))
  6688.                 hsw_compute_ips_config(crtc, pipe_config);
  6689.  
  6690.         if (pipe_config->has_pch_encoder)
  6691.                 return ironlake_fdi_compute_config(crtc, pipe_config);
  6692.  
  6693.         return 0;
  6694. }
  6695.  
  6696. static int skylake_get_display_clock_speed(struct drm_device *dev)
  6697. {
  6698.         struct drm_i915_private *dev_priv = to_i915(dev);
  6699.         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
  6700.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6701.         uint32_t linkrate;
  6702.  
  6703.         if (!(lcpll1 & LCPLL_PLL_ENABLE))
  6704.                 return 24000; /* 24MHz is the cd freq with NSSC ref */
  6705.  
  6706.         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
  6707.                 return 540000;
  6708.  
  6709.         linkrate = (I915_READ(DPLL_CTRL1) &
  6710.                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
  6711.  
  6712.         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
  6713.             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
  6714.                 /* vco 8640 */
  6715.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6716.                 case CDCLK_FREQ_450_432:
  6717.                         return 432000;
  6718.                 case CDCLK_FREQ_337_308:
  6719.                         return 308570;
  6720.                 case CDCLK_FREQ_675_617:
  6721.                         return 617140;
  6722.                 default:
  6723.                         WARN(1, "Unknown cd freq selection\n");
  6724.                 }
  6725.         } else {
  6726.                 /* vco 8100 */
  6727.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6728.                 case CDCLK_FREQ_450_432:
  6729.                         return 450000;
  6730.                 case CDCLK_FREQ_337_308:
  6731.                         return 337500;
  6732.                 case CDCLK_FREQ_675_617:
  6733.                         return 675000;
  6734.                 default:
  6735.                         WARN(1, "Unknown cd freq selection\n");
  6736.                 }
  6737.         }
  6738.  
  6739.         /* error case, do as if DPLL0 isn't enabled */
  6740.         return 24000;
  6741. }
  6742.  
  6743. static int broxton_get_display_clock_speed(struct drm_device *dev)
  6744. {
  6745.         struct drm_i915_private *dev_priv = to_i915(dev);
  6746.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6747.         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
  6748.         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
  6749.         int cdclk;
  6750.  
  6751.         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
  6752.                 return 19200;
  6753.  
  6754.         cdclk = 19200 * pll_ratio / 2;
  6755.  
  6756.         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
  6757.         case BXT_CDCLK_CD2X_DIV_SEL_1:
  6758.                 return cdclk;  /* 576MHz or 624MHz */
  6759.         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
  6760.                 return cdclk * 2 / 3; /* 384MHz */
  6761.         case BXT_CDCLK_CD2X_DIV_SEL_2:
  6762.                 return cdclk / 2; /* 288MHz */
  6763.         case BXT_CDCLK_CD2X_DIV_SEL_4:
  6764.                 return cdclk / 4; /* 144MHz */
  6765.         }
  6766.  
  6767.         /* error case, do as if DE PLL isn't enabled */
  6768.         return 19200;
  6769. }
  6770.  
  6771. static int broadwell_get_display_clock_speed(struct drm_device *dev)
  6772. {
  6773.         struct drm_i915_private *dev_priv = dev->dev_private;
  6774.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6775.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6776.  
  6777.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6778.                 return 800000;
  6779.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6780.                 return 450000;
  6781.         else if (freq == LCPLL_CLK_FREQ_450)
  6782.                 return 450000;
  6783.         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
  6784.                 return 540000;
  6785.         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  6786.                 return 337500;
  6787.         else
  6788.                 return 675000;
  6789. }
  6790.  
  6791. static int haswell_get_display_clock_speed(struct drm_device *dev)
  6792. {
  6793.         struct drm_i915_private *dev_priv = dev->dev_private;
  6794.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6795.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6796.  
  6797.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6798.                 return 800000;
  6799.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6800.                 return 450000;
  6801.         else if (freq == LCPLL_CLK_FREQ_450)
  6802.                 return 450000;
  6803.         else if (IS_HSW_ULT(dev))
  6804.                 return 337500;
  6805.         else
  6806.                 return 540000;
  6807. }
  6808.  
  6809. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  6810. {
  6811.         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
  6812.                                       CCK_DISPLAY_CLOCK_CONTROL);
  6813. }
  6814.  
  6815. static int ilk_get_display_clock_speed(struct drm_device *dev)
  6816. {
  6817.         return 450000;
  6818. }
  6819.  
  6820. static int i945_get_display_clock_speed(struct drm_device *dev)
  6821. {
  6822.         return 400000;
  6823. }
  6824.  
  6825. static int i915_get_display_clock_speed(struct drm_device *dev)
  6826. {
  6827.         return 333333;
  6828. }
  6829.  
  6830. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  6831. {
  6832.         return 200000;
  6833. }
  6834.  
  6835. static int pnv_get_display_clock_speed(struct drm_device *dev)
  6836. {
  6837.         u16 gcfgc = 0;
  6838.  
  6839.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6840.  
  6841.         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6842.         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  6843.                 return 266667;
  6844.         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  6845.                 return 333333;
  6846.         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  6847.                 return 444444;
  6848.         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  6849.                 return 200000;
  6850.         default:
  6851.                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  6852.         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  6853.                 return 133333;
  6854.         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  6855.                 return 166667;
  6856.         }
  6857. }
  6858.  
  6859. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  6860. {
  6861.         u16 gcfgc = 0;
  6862.  
  6863.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6864.  
  6865.         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  6866.                 return 133333;
  6867.         else {
  6868.                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6869.                 case GC_DISPLAY_CLOCK_333_MHZ:
  6870.                         return 333333;
  6871.                 default:
  6872.                 case GC_DISPLAY_CLOCK_190_200_MHZ:
  6873.                         return 190000;
  6874.                 }
  6875.         }
  6876. }
  6877.  
  6878. static int i865_get_display_clock_speed(struct drm_device *dev)
  6879. {
  6880.         return 266667;
  6881. }
  6882.  
  6883. static int i85x_get_display_clock_speed(struct drm_device *dev)
  6884. {
  6885.         u16 hpllcc = 0;
  6886.  
  6887.         /*
  6888.          * 852GM/852GMV only supports 133 MHz and the HPLLCC
  6889.          * encoding is different :(
  6890.          * FIXME is this the right way to detect 852GM/852GMV?
  6891.          */
  6892.         if (dev->pdev->revision == 0x1)
  6893.                 return 133333;
  6894.  
  6895. //   pci_bus_read_config_word(dev->pdev->bus,
  6896. //                PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
  6897.  
  6898.         /* Assume that the hardware is in the high speed state.  This
  6899.          * should be the default.
  6900.          */
  6901.         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  6902.         case GC_CLOCK_133_200:
  6903.         case GC_CLOCK_133_200_2:
  6904.         case GC_CLOCK_100_200:
  6905.                 return 200000;
  6906.         case GC_CLOCK_166_250:
  6907.                 return 250000;
  6908.         case GC_CLOCK_100_133:
  6909.                 return 133333;
  6910.         case GC_CLOCK_133_266:
  6911.         case GC_CLOCK_133_266_2:
  6912.         case GC_CLOCK_166_266:
  6913.                 return 266667;
  6914.         }
  6915.  
  6916.         /* Shouldn't happen */
  6917.         return 0;
  6918. }
  6919.  
  6920. static int i830_get_display_clock_speed(struct drm_device *dev)
  6921. {
  6922.         return 133333;
  6923. }
  6924.  
  6925. static unsigned int intel_hpll_vco(struct drm_device *dev)
  6926. {
  6927.         struct drm_i915_private *dev_priv = dev->dev_private;
  6928.         static const unsigned int blb_vco[8] = {
  6929.                 [0] = 3200000,
  6930.                 [1] = 4000000,
  6931.                 [2] = 5333333,
  6932.                 [3] = 4800000,
  6933.                 [4] = 6400000,
  6934.         };
  6935.         static const unsigned int pnv_vco[8] = {
  6936.                 [0] = 3200000,
  6937.                 [1] = 4000000,
  6938.                 [2] = 5333333,
  6939.                 [3] = 4800000,
  6940.                 [4] = 2666667,
  6941.         };
  6942.         static const unsigned int cl_vco[8] = {
  6943.                 [0] = 3200000,
  6944.                 [1] = 4000000,
  6945.                 [2] = 5333333,
  6946.                 [3] = 6400000,
  6947.                 [4] = 3333333,
  6948.                 [5] = 3566667,
  6949.                 [6] = 4266667,
  6950.         };
  6951.         static const unsigned int elk_vco[8] = {
  6952.                 [0] = 3200000,
  6953.                 [1] = 4000000,
  6954.                 [2] = 5333333,
  6955.                 [3] = 4800000,
  6956.         };
  6957.         static const unsigned int ctg_vco[8] = {
  6958.                 [0] = 3200000,
  6959.                 [1] = 4000000,
  6960.                 [2] = 5333333,
  6961.                 [3] = 6400000,
  6962.                 [4] = 2666667,
  6963.                 [5] = 4266667,
  6964.         };
  6965.         const unsigned int *vco_table;
  6966.         unsigned int vco;
  6967.         uint8_t tmp = 0;
  6968.  
  6969.         /* FIXME other chipsets? */
  6970.         if (IS_GM45(dev))
  6971.                 vco_table = ctg_vco;
  6972.         else if (IS_G4X(dev))
  6973.                 vco_table = elk_vco;
  6974.         else if (IS_CRESTLINE(dev))
  6975.                 vco_table = cl_vco;
  6976.         else if (IS_PINEVIEW(dev))
  6977.                 vco_table = pnv_vco;
  6978.         else if (IS_G33(dev))
  6979.                 vco_table = blb_vco;
  6980.         else
  6981.                 return 0;
  6982.  
  6983.         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
  6984.  
  6985.         vco = vco_table[tmp & 0x7];
  6986.         if (vco == 0)
  6987.                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
  6988.         else
  6989.                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
  6990.  
  6991.         return vco;
  6992. }
  6993.  
  6994. static int gm45_get_display_clock_speed(struct drm_device *dev)
  6995. {
  6996.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  6997.         uint16_t tmp = 0;
  6998.  
  6999.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7000.  
  7001.         cdclk_sel = (tmp >> 12) & 0x1;
  7002.  
  7003.         switch (vco) {
  7004.         case 2666667:
  7005.         case 4000000:
  7006.         case 5333333:
  7007.                 return cdclk_sel ? 333333 : 222222;
  7008.         case 3200000:
  7009.                 return cdclk_sel ? 320000 : 228571;
  7010.         default:
  7011.                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
  7012.                 return 222222;
  7013.         }
  7014. }
  7015.  
  7016. static int i965gm_get_display_clock_speed(struct drm_device *dev)
  7017. {
  7018.         static const uint8_t div_3200[] = { 16, 10,  8 };
  7019.         static const uint8_t div_4000[] = { 20, 12, 10 };
  7020.         static const uint8_t div_5333[] = { 24, 16, 14 };
  7021.         const uint8_t *div_table;
  7022.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7023.         uint16_t tmp = 0;
  7024.  
  7025.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7026.  
  7027.         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
  7028.  
  7029.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7030.                 goto fail;
  7031.  
  7032.         switch (vco) {
  7033.         case 3200000:
  7034.                 div_table = div_3200;
  7035.                 break;
  7036.         case 4000000:
  7037.                 div_table = div_4000;
  7038.                 break;
  7039.         case 5333333:
  7040.                 div_table = div_5333;
  7041.                 break;
  7042.         default:
  7043.                 goto fail;
  7044.         }
  7045.  
  7046.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7047.  
  7048. fail:
  7049.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
  7050.         return 200000;
  7051. }
  7052.  
  7053. static int g33_get_display_clock_speed(struct drm_device *dev)
  7054. {
  7055.         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
  7056.         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
  7057.         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
  7058.         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
  7059.         const uint8_t *div_table;
  7060.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7061.         uint16_t tmp = 0;
  7062.  
  7063.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7064.  
  7065.         cdclk_sel = (tmp >> 4) & 0x7;
  7066.  
  7067.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7068.                 goto fail;
  7069.  
  7070.         switch (vco) {
  7071.         case 3200000:
  7072.                 div_table = div_3200;
  7073.                 break;
  7074.         case 4000000:
  7075.                 div_table = div_4000;
  7076.                 break;
  7077.         case 4800000:
  7078.                 div_table = div_4800;
  7079.                 break;
  7080.         case 5333333:
  7081.                 div_table = div_5333;
  7082.                 break;
  7083.         default:
  7084.                 goto fail;
  7085.         }
  7086.  
  7087.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7088.  
  7089. fail:
  7090.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
  7091.         return 190476;
  7092. }
  7093.  
  7094. static void
  7095. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  7096. {
  7097.         while (*num > DATA_LINK_M_N_MASK ||
  7098.                *den > DATA_LINK_M_N_MASK) {
  7099.                 *num >>= 1;
  7100.                 *den >>= 1;
  7101.         }
  7102. }
  7103.  
  7104. static void compute_m_n(unsigned int m, unsigned int n,
  7105.                         uint32_t *ret_m, uint32_t *ret_n)
  7106. {
  7107.         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  7108.         *ret_m = div_u64((uint64_t) m * *ret_n, n);
  7109.         intel_reduce_m_n_ratio(ret_m, ret_n);
  7110. }
  7111.  
  7112. void
  7113. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  7114.                        int pixel_clock, int link_clock,
  7115.                        struct intel_link_m_n *m_n)
  7116. {
  7117.         m_n->tu = 64;
  7118.  
  7119.         compute_m_n(bits_per_pixel * pixel_clock,
  7120.                     link_clock * nlanes * 8,
  7121.                     &m_n->gmch_m, &m_n->gmch_n);
  7122.  
  7123.         compute_m_n(pixel_clock, link_clock,
  7124.                     &m_n->link_m, &m_n->link_n);
  7125. }
  7126.  
  7127. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  7128. {
  7129.         if (i915.panel_use_ssc >= 0)
  7130.                 return i915.panel_use_ssc != 0;
  7131.         return dev_priv->vbt.lvds_use_ssc
  7132.                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  7133. }
  7134.  
  7135. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  7136.                            int num_connectors)
  7137. {
  7138.         struct drm_device *dev = crtc_state->base.crtc->dev;
  7139.         struct drm_i915_private *dev_priv = dev->dev_private;
  7140.         int refclk;
  7141.  
  7142.         WARN_ON(!crtc_state->base.state);
  7143.  
  7144.         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
  7145.                 refclk = 100000;
  7146.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7147.             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  7148.                 refclk = dev_priv->vbt.lvds_ssc_freq;
  7149.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
  7150.         } else if (!IS_GEN2(dev)) {
  7151.                 refclk = 96000;
  7152.         } else {
  7153.                 refclk = 48000;
  7154.         }
  7155.  
  7156.         return refclk;
  7157. }
  7158.  
  7159. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  7160. {
  7161.         return (1 << dpll->n) << 16 | dpll->m2;
  7162. }
  7163.  
  7164. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  7165. {
  7166.         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  7167. }
  7168.  
  7169. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  7170.                                      struct intel_crtc_state *crtc_state,
  7171.                                      intel_clock_t *reduced_clock)
  7172. {
  7173.         struct drm_device *dev = crtc->base.dev;
  7174.         u32 fp, fp2 = 0;
  7175.  
  7176.         if (IS_PINEVIEW(dev)) {
  7177.                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
  7178.                 if (reduced_clock)
  7179.                         fp2 = pnv_dpll_compute_fp(reduced_clock);
  7180.         } else {
  7181.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  7182.                 if (reduced_clock)
  7183.                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
  7184.         }
  7185.  
  7186.         crtc_state->dpll_hw_state.fp0 = fp;
  7187.  
  7188.         crtc->lowfreq_avail = false;
  7189.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7190.             reduced_clock) {
  7191.                 crtc_state->dpll_hw_state.fp1 = fp2;
  7192.                 crtc->lowfreq_avail = true;
  7193.         } else {
  7194.                 crtc_state->dpll_hw_state.fp1 = fp;
  7195.         }
  7196. }
  7197.  
  7198. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  7199.                 pipe)
  7200. {
  7201.         u32 reg_val;
  7202.  
  7203.         /*
  7204.          * PLLB opamp always calibrates to max value of 0x3f, force enable it
  7205.          * and set it to a reasonable value instead.
  7206.          */
  7207.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7208.         reg_val &= 0xffffff00;
  7209.         reg_val |= 0x00000030;
  7210.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7211.  
  7212.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7213.         reg_val &= 0x8cffffff;
  7214.         reg_val = 0x8c000000;
  7215.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7216.  
  7217.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7218.         reg_val &= 0xffffff00;
  7219.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7220.  
  7221.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7222.         reg_val &= 0x00ffffff;
  7223.         reg_val |= 0xb0000000;
  7224.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7225. }
  7226.  
  7227. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  7228.                                          struct intel_link_m_n *m_n)
  7229. {
  7230.         struct drm_device *dev = crtc->base.dev;
  7231.         struct drm_i915_private *dev_priv = dev->dev_private;
  7232.         int pipe = crtc->pipe;
  7233.  
  7234.         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7235.         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  7236.         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  7237.         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  7238. }
  7239.  
  7240. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  7241.                                          struct intel_link_m_n *m_n,
  7242.                                          struct intel_link_m_n *m2_n2)
  7243. {
  7244.         struct drm_device *dev = crtc->base.dev;
  7245.         struct drm_i915_private *dev_priv = dev->dev_private;
  7246.         int pipe = crtc->pipe;
  7247.         enum transcoder transcoder = crtc->config->cpu_transcoder;
  7248.  
  7249.         if (INTEL_INFO(dev)->gen >= 5) {
  7250.                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7251.                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  7252.                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  7253.                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  7254.                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
  7255.                  * for gen < 8) and if DRRS is supported (to make sure the
  7256.                  * registers are not unnecessarily accessed).
  7257.                  */
  7258.                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
  7259.                         crtc->config->has_drrs) {
  7260.                         I915_WRITE(PIPE_DATA_M2(transcoder),
  7261.                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
  7262.                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
  7263.                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
  7264.                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
  7265.                 }
  7266.         } else {
  7267.                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7268.                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  7269.                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  7270.                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  7271.         }
  7272. }
  7273.  
  7274. void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
  7275. {
  7276.         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
  7277.  
  7278.         if (m_n == M1_N1) {
  7279.                 dp_m_n = &crtc->config->dp_m_n;
  7280.                 dp_m2_n2 = &crtc->config->dp_m2_n2;
  7281.         } else if (m_n == M2_N2) {
  7282.  
  7283.                 /*
  7284.                  * M2_N2 registers are not supported. Hence m2_n2 divider value
  7285.                  * needs to be programmed into M1_N1.
  7286.                  */
  7287.                 dp_m_n = &crtc->config->dp_m2_n2;
  7288.         } else {
  7289.                 DRM_ERROR("Unsupported divider value\n");
  7290.                 return;
  7291.         }
  7292.  
  7293.         if (crtc->config->has_pch_encoder)
  7294.                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
  7295.         else
  7296.                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
  7297. }
  7298.  
  7299. static void vlv_compute_dpll(struct intel_crtc *crtc,
  7300.                              struct intel_crtc_state *pipe_config)
  7301. {
  7302.         u32 dpll, dpll_md;
  7303.  
  7304.         /*
  7305.          * Enable DPIO clock input. We should never disable the reference
  7306.          * clock for pipe B, since VGA hotplug / manual detection depends
  7307.          * on it.
  7308.          */
  7309.         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
  7310.                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
  7311.         /* We should never disable this, set it here for state tracking */
  7312.         if (crtc->pipe == PIPE_B)
  7313.                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7314.         dpll |= DPLL_VCO_ENABLE;
  7315.         pipe_config->dpll_hw_state.dpll = dpll;
  7316.  
  7317.         dpll_md = (pipe_config->pixel_multiplier - 1)
  7318.                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7319.         pipe_config->dpll_hw_state.dpll_md = dpll_md;
  7320. }
  7321.  
  7322. static void vlv_prepare_pll(struct intel_crtc *crtc,
  7323.                             const struct intel_crtc_state *pipe_config)
  7324. {
  7325.         struct drm_device *dev = crtc->base.dev;
  7326.         struct drm_i915_private *dev_priv = dev->dev_private;
  7327.         int pipe = crtc->pipe;
  7328.         u32 mdiv;
  7329.         u32 bestn, bestm1, bestm2, bestp1, bestp2;
  7330.         u32 coreclk, reg_val;
  7331.  
  7332.         mutex_lock(&dev_priv->sb_lock);
  7333.  
  7334.         bestn = pipe_config->dpll.n;
  7335.         bestm1 = pipe_config->dpll.m1;
  7336.         bestm2 = pipe_config->dpll.m2;
  7337.         bestp1 = pipe_config->dpll.p1;
  7338.         bestp2 = pipe_config->dpll.p2;
  7339.  
  7340.         /* See eDP HDMI DPIO driver vbios notes doc */
  7341.  
  7342.         /* PLL B needs special handling */
  7343.         if (pipe == PIPE_B)
  7344.                 vlv_pllb_recal_opamp(dev_priv, pipe);
  7345.  
  7346.         /* Set up Tx target for periodic Rcomp update */
  7347.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
  7348.  
  7349.         /* Disable target IRef on PLL */
  7350.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
  7351.         reg_val &= 0x00ffffff;
  7352.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
  7353.  
  7354.         /* Disable fast lock */
  7355.         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
  7356.  
  7357.         /* Set idtafcrecal before PLL is enabled */
  7358.         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  7359.         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  7360.         mdiv |= ((bestn << DPIO_N_SHIFT));
  7361.         mdiv |= (1 << DPIO_K_SHIFT);
  7362.  
  7363.         /*
  7364.          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  7365.          * but we don't support that).
  7366.          * Note: don't use the DAC post divider as it seems unstable.
  7367.          */
  7368.         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  7369.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7370.  
  7371.         mdiv |= DPIO_ENABLE_CALIBRATION;
  7372.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7373.  
  7374.         /* Set HBR and RBR LPF coefficients */
  7375.         if (pipe_config->port_clock == 162000 ||
  7376.             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
  7377.             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  7378.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7379.                                  0x009f0003);
  7380.         else
  7381.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7382.                                  0x00d0000f);
  7383.  
  7384.         if (pipe_config->has_dp_encoder) {
  7385.                 /* Use SSC source */
  7386.                 if (pipe == PIPE_A)
  7387.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7388.                                          0x0df40000);
  7389.                 else
  7390.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7391.                                          0x0df70000);
  7392.         } else { /* HDMI or VGA */
  7393.                 /* Use bend source */
  7394.                 if (pipe == PIPE_A)
  7395.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7396.                                          0x0df70000);
  7397.                 else
  7398.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7399.                                          0x0df40000);
  7400.         }
  7401.  
  7402.         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
  7403.         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  7404.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  7405.             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  7406.                 coreclk |= 0x01000000;
  7407.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
  7408.  
  7409.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
  7410.         mutex_unlock(&dev_priv->sb_lock);
  7411. }
  7412.  
  7413. static void chv_compute_dpll(struct intel_crtc *crtc,
  7414.                              struct intel_crtc_state *pipe_config)
  7415. {
  7416.         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
  7417.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
  7418.                 DPLL_VCO_ENABLE;
  7419.         if (crtc->pipe != PIPE_A)
  7420.                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7421.  
  7422.         pipe_config->dpll_hw_state.dpll_md =
  7423.                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7424. }
  7425.  
  7426. static void chv_prepare_pll(struct intel_crtc *crtc,
  7427.                             const struct intel_crtc_state *pipe_config)
  7428. {
  7429.         struct drm_device *dev = crtc->base.dev;
  7430.         struct drm_i915_private *dev_priv = dev->dev_private;
  7431.         int pipe = crtc->pipe;
  7432.         int dpll_reg = DPLL(crtc->pipe);
  7433.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  7434.         u32 loopfilter, tribuf_calcntr;
  7435.         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
  7436.         u32 dpio_val;
  7437.         int vco;
  7438.  
  7439.         bestn = pipe_config->dpll.n;
  7440.         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
  7441.         bestm1 = pipe_config->dpll.m1;
  7442.         bestm2 = pipe_config->dpll.m2 >> 22;
  7443.         bestp1 = pipe_config->dpll.p1;
  7444.         bestp2 = pipe_config->dpll.p2;
  7445.         vco = pipe_config->dpll.vco;
  7446.         dpio_val = 0;
  7447.         loopfilter = 0;
  7448.  
  7449.         /*
  7450.          * Enable Refclk and SSC
  7451.          */
  7452.         I915_WRITE(dpll_reg,
  7453.                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
  7454.  
  7455.         mutex_lock(&dev_priv->sb_lock);
  7456.  
  7457.         /* p1 and p2 divider */
  7458.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
  7459.                         5 << DPIO_CHV_S1_DIV_SHIFT |
  7460.                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
  7461.                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
  7462.                         1 << DPIO_CHV_K_DIV_SHIFT);
  7463.  
  7464.         /* Feedback post-divider - m2 */
  7465.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
  7466.  
  7467.         /* Feedback refclk divider - n and m1 */
  7468.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
  7469.                         DPIO_CHV_M1_DIV_BY_2 |
  7470.                         1 << DPIO_CHV_N_DIV_SHIFT);
  7471.  
  7472.         /* M2 fraction division */
  7473.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
  7474.  
  7475.         /* M2 fraction division enable */
  7476.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  7477.         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
  7478.         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
  7479.         if (bestm2_frac)
  7480.                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
  7481.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
  7482.  
  7483.         /* Program digital lock detect threshold */
  7484.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
  7485.         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
  7486.                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
  7487.         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
  7488.         if (!bestm2_frac)
  7489.                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
  7490.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
  7491.  
  7492.         /* Loop filter */
  7493.         if (vco == 5400000) {
  7494.                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
  7495.                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
  7496.                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7497.                 tribuf_calcntr = 0x9;
  7498.         } else if (vco <= 6200000) {
  7499.                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
  7500.                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
  7501.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7502.                 tribuf_calcntr = 0x9;
  7503.         } else if (vco <= 6480000) {
  7504.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7505.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7506.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7507.                 tribuf_calcntr = 0x8;
  7508.         } else {
  7509.                 /* Not supported. Apply the same limits as in the max case */
  7510.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7511.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7512.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7513.                 tribuf_calcntr = 0;
  7514.         }
  7515.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
  7516.  
  7517.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
  7518.         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
  7519.         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
  7520.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
  7521.  
  7522.         /* AFC Recal */
  7523.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
  7524.                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
  7525.                         DPIO_AFC_RECAL);
  7526.  
  7527.         mutex_unlock(&dev_priv->sb_lock);
  7528. }
  7529.  
  7530. /**
  7531.  * vlv_force_pll_on - forcibly enable just the PLL
  7532.  * @dev_priv: i915 private structure
  7533.  * @pipe: pipe PLL to enable
  7534.  * @dpll: PLL configuration
  7535.  *
  7536.  * Enable the PLL for @pipe using the supplied @dpll config. To be used
  7537.  * in cases where we need the PLL enabled even when @pipe is not going to
  7538.  * be enabled.
  7539.  */
  7540. void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
  7541.                       const struct dpll *dpll)
  7542. {
  7543.         struct intel_crtc *crtc =
  7544.                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
  7545.         struct intel_crtc_state pipe_config = {
  7546.                 .base.crtc = &crtc->base,
  7547.                 .pixel_multiplier = 1,
  7548.                 .dpll = *dpll,
  7549.         };
  7550.  
  7551.         if (IS_CHERRYVIEW(dev)) {
  7552.                 chv_compute_dpll(crtc, &pipe_config);
  7553.                 chv_prepare_pll(crtc, &pipe_config);
  7554.                 chv_enable_pll(crtc, &pipe_config);
  7555.         } else {
  7556.                 vlv_compute_dpll(crtc, &pipe_config);
  7557.                 vlv_prepare_pll(crtc, &pipe_config);
  7558.                 vlv_enable_pll(crtc, &pipe_config);
  7559.         }
  7560. }
  7561.  
  7562. /**
  7563.  * vlv_force_pll_off - forcibly disable just the PLL
  7564.  * @dev_priv: i915 private structure
  7565.  * @pipe: pipe PLL to disable
  7566.  *
  7567.  * Disable the PLL for @pipe. To be used in cases where we need
  7568.  * the PLL enabled even when @pipe is not going to be enabled.
  7569.  */
  7570. void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
  7571. {
  7572.         if (IS_CHERRYVIEW(dev))
  7573.                 chv_disable_pll(to_i915(dev), pipe);
  7574.         else
  7575.                 vlv_disable_pll(to_i915(dev), pipe);
  7576. }
  7577.  
  7578. static void i9xx_compute_dpll(struct intel_crtc *crtc,
  7579.                               struct intel_crtc_state *crtc_state,
  7580.                               intel_clock_t *reduced_clock,
  7581.                               int num_connectors)
  7582. {
  7583.         struct drm_device *dev = crtc->base.dev;
  7584.         struct drm_i915_private *dev_priv = dev->dev_private;
  7585.         u32 dpll;
  7586.         bool is_sdvo;
  7587.         struct dpll *clock = &crtc_state->dpll;
  7588.  
  7589.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7590.  
  7591.         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
  7592.                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
  7593.  
  7594.         dpll = DPLL_VGA_MODE_DIS;
  7595.  
  7596.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  7597.                 dpll |= DPLLB_MODE_LVDS;
  7598.         else
  7599.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  7600.  
  7601.         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  7602.                 dpll |= (crtc_state->pixel_multiplier - 1)
  7603.                         << SDVO_MULTIPLIER_SHIFT_HIRES;
  7604.         }
  7605.  
  7606.         if (is_sdvo)
  7607.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7608.  
  7609.         if (crtc_state->has_dp_encoder)
  7610.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7611.  
  7612.         /* compute bitmask from p1 value */
  7613.         if (IS_PINEVIEW(dev))
  7614.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  7615.         else {
  7616.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7617.                 if (IS_G4X(dev) && reduced_clock)
  7618.                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  7619.         }
  7620.         switch (clock->p2) {
  7621.         case 5:
  7622.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  7623.                 break;
  7624.         case 7:
  7625.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  7626.                 break;
  7627.         case 10:
  7628.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  7629.                 break;
  7630.         case 14:
  7631.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  7632.                 break;
  7633.         }
  7634.         if (INTEL_INFO(dev)->gen >= 4)
  7635.                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  7636.  
  7637.         if (crtc_state->sdvo_tv_clock)
  7638.                 dpll |= PLL_REF_INPUT_TVCLKINBC;
  7639.         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7640.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7641.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7642.         else
  7643.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7644.  
  7645.         dpll |= DPLL_VCO_ENABLE;
  7646.         crtc_state->dpll_hw_state.dpll = dpll;
  7647.  
  7648.         if (INTEL_INFO(dev)->gen >= 4) {
  7649.                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
  7650.                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7651.                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
  7652.         }
  7653. }
  7654.  
  7655. static void i8xx_compute_dpll(struct intel_crtc *crtc,
  7656.                               struct intel_crtc_state *crtc_state,
  7657.                               intel_clock_t *reduced_clock,
  7658.                               int num_connectors)
  7659. {
  7660.         struct drm_device *dev = crtc->base.dev;
  7661.         struct drm_i915_private *dev_priv = dev->dev_private;
  7662.         u32 dpll;
  7663.         struct dpll *clock = &crtc_state->dpll;
  7664.  
  7665.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7666.  
  7667.         dpll = DPLL_VGA_MODE_DIS;
  7668.  
  7669.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  7670.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7671.         } else {
  7672.                 if (clock->p1 == 2)
  7673.                         dpll |= PLL_P1_DIVIDE_BY_TWO;
  7674.                 else
  7675.                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7676.                 if (clock->p2 == 4)
  7677.                         dpll |= PLL_P2_DIVIDE_BY_4;
  7678.         }
  7679.  
  7680.         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  7681.                 dpll |= DPLL_DVO_2X_MODE;
  7682.  
  7683.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7684.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7685.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7686.         else
  7687.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7688.  
  7689.         dpll |= DPLL_VCO_ENABLE;
  7690.         crtc_state->dpll_hw_state.dpll = dpll;
  7691. }
  7692.  
  7693. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  7694. {
  7695.         struct drm_device *dev = intel_crtc->base.dev;
  7696.         struct drm_i915_private *dev_priv = dev->dev_private;
  7697.         enum pipe pipe = intel_crtc->pipe;
  7698.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  7699.         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  7700.         uint32_t crtc_vtotal, crtc_vblank_end;
  7701.         int vsyncshift = 0;
  7702.  
  7703.         /* We need to be careful not to changed the adjusted mode, for otherwise
  7704.          * the hw state checker will get angry at the mismatch. */
  7705.         crtc_vtotal = adjusted_mode->crtc_vtotal;
  7706.         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  7707.  
  7708.         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  7709.                 /* the chip adds 2 halflines automatically */
  7710.                 crtc_vtotal -= 1;
  7711.                 crtc_vblank_end -= 1;
  7712.  
  7713.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7714.                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
  7715.                 else
  7716.                         vsyncshift = adjusted_mode->crtc_hsync_start -
  7717.                                 adjusted_mode->crtc_htotal / 2;
  7718.                 if (vsyncshift < 0)
  7719.                         vsyncshift += adjusted_mode->crtc_htotal;
  7720.         }
  7721.  
  7722.         if (INTEL_INFO(dev)->gen > 3)
  7723.                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  7724.  
  7725.         I915_WRITE(HTOTAL(cpu_transcoder),
  7726.                    (adjusted_mode->crtc_hdisplay - 1) |
  7727.                    ((adjusted_mode->crtc_htotal - 1) << 16));
  7728.         I915_WRITE(HBLANK(cpu_transcoder),
  7729.                    (adjusted_mode->crtc_hblank_start - 1) |
  7730.                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
  7731.         I915_WRITE(HSYNC(cpu_transcoder),
  7732.                    (adjusted_mode->crtc_hsync_start - 1) |
  7733.                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
  7734.  
  7735.         I915_WRITE(VTOTAL(cpu_transcoder),
  7736.                    (adjusted_mode->crtc_vdisplay - 1) |
  7737.                    ((crtc_vtotal - 1) << 16));
  7738.         I915_WRITE(VBLANK(cpu_transcoder),
  7739.                    (adjusted_mode->crtc_vblank_start - 1) |
  7740.                    ((crtc_vblank_end - 1) << 16));
  7741.         I915_WRITE(VSYNC(cpu_transcoder),
  7742.                    (adjusted_mode->crtc_vsync_start - 1) |
  7743.                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
  7744.  
  7745.         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  7746.          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  7747.          * documented on the DDI_FUNC_CTL register description, EDP Input Select
  7748.          * bits. */
  7749.         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  7750.             (pipe == PIPE_B || pipe == PIPE_C))
  7751.                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  7752.  
  7753.         /* pipesrc controls the size that is scaled from, which should
  7754.          * always be the user's requested size.
  7755.          */
  7756.         I915_WRITE(PIPESRC(pipe),
  7757.                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
  7758.                    (intel_crtc->config->pipe_src_h - 1));
  7759. }
  7760.  
  7761. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  7762.                                    struct intel_crtc_state *pipe_config)
  7763. {
  7764.         struct drm_device *dev = crtc->base.dev;
  7765.         struct drm_i915_private *dev_priv = dev->dev_private;
  7766.         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  7767.         uint32_t tmp;
  7768.  
  7769.         tmp = I915_READ(HTOTAL(cpu_transcoder));
  7770.         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  7771.         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  7772.         tmp = I915_READ(HBLANK(cpu_transcoder));
  7773.         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  7774.         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  7775.         tmp = I915_READ(HSYNC(cpu_transcoder));
  7776.         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  7777.         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  7778.  
  7779.         tmp = I915_READ(VTOTAL(cpu_transcoder));
  7780.         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  7781.         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  7782.         tmp = I915_READ(VBLANK(cpu_transcoder));
  7783.         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  7784.         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  7785.         tmp = I915_READ(VSYNC(cpu_transcoder));
  7786.         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  7787.         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  7788.  
  7789.         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  7790.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  7791.                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
  7792.                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
  7793.         }
  7794.  
  7795.         tmp = I915_READ(PIPESRC(crtc->pipe));
  7796.         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  7797.         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  7798.  
  7799.         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
  7800.         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
  7801. }
  7802.  
  7803. void intel_mode_from_pipe_config(struct drm_display_mode *mode,
  7804.                                  struct intel_crtc_state *pipe_config)
  7805. {
  7806.         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
  7807.         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
  7808.         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
  7809.         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
  7810.  
  7811.         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
  7812.         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
  7813.         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
  7814.         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
  7815.  
  7816.         mode->flags = pipe_config->base.adjusted_mode.flags;
  7817.         mode->type = DRM_MODE_TYPE_DRIVER;
  7818.  
  7819.         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
  7820.         mode->flags |= pipe_config->base.adjusted_mode.flags;
  7821.  
  7822.         mode->hsync = drm_mode_hsync(mode);
  7823.         mode->vrefresh = drm_mode_vrefresh(mode);
  7824.         drm_mode_set_name(mode);
  7825. }
  7826.  
  7827. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  7828. {
  7829.         struct drm_device *dev = intel_crtc->base.dev;
  7830.         struct drm_i915_private *dev_priv = dev->dev_private;
  7831.         uint32_t pipeconf;
  7832.  
  7833.         pipeconf = 0;
  7834.  
  7835.         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  7836.             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  7837.                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
  7838.  
  7839.         if (intel_crtc->config->double_wide)
  7840.                 pipeconf |= PIPECONF_DOUBLE_WIDE;
  7841.  
  7842.         /* only g4x and later have fancy bpc/dither controls */
  7843.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  7844.                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
  7845.                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
  7846.                         pipeconf |= PIPECONF_DITHER_EN |
  7847.                                     PIPECONF_DITHER_TYPE_SP;
  7848.  
  7849.                 switch (intel_crtc->config->pipe_bpp) {
  7850.                 case 18:
  7851.                         pipeconf |= PIPECONF_6BPC;
  7852.                         break;
  7853.                 case 24:
  7854.                         pipeconf |= PIPECONF_8BPC;
  7855.                         break;
  7856.                 case 30:
  7857.                         pipeconf |= PIPECONF_10BPC;
  7858.                         break;
  7859.                 default:
  7860.                         /* Case prevented by intel_choose_pipe_bpp_dither. */
  7861.                         BUG();
  7862.                 }
  7863.         }
  7864.  
  7865.         if (HAS_PIPE_CXSR(dev)) {
  7866.                 if (intel_crtc->lowfreq_avail) {
  7867.                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  7868.                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  7869.                 } else {
  7870.                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  7871.                 }
  7872.         }
  7873.  
  7874.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  7875.                 if (INTEL_INFO(dev)->gen < 4 ||
  7876.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7877.                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  7878.                 else
  7879.                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
  7880.         } else
  7881.                 pipeconf |= PIPECONF_PROGRESSIVE;
  7882.  
  7883.         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
  7884.                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  7885.  
  7886.         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  7887.         POSTING_READ(PIPECONF(intel_crtc->pipe));
  7888. }
  7889.  
  7890. static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
  7891.                                    struct intel_crtc_state *crtc_state)
  7892. {
  7893.         struct drm_device *dev = crtc->base.dev;
  7894.         struct drm_i915_private *dev_priv = dev->dev_private;
  7895.         int refclk, num_connectors = 0;
  7896.         intel_clock_t clock;
  7897.         bool ok;
  7898.         bool is_dsi = false;
  7899.         struct intel_encoder *encoder;
  7900.         const intel_limit_t *limit;
  7901.         struct drm_atomic_state *state = crtc_state->base.state;
  7902.         struct drm_connector *connector;
  7903.         struct drm_connector_state *connector_state;
  7904.         int i;
  7905.  
  7906.         memset(&crtc_state->dpll_hw_state, 0,
  7907.                sizeof(crtc_state->dpll_hw_state));
  7908.  
  7909.         for_each_connector_in_state(state, connector, connector_state, i) {
  7910.                 if (connector_state->crtc != &crtc->base)
  7911.                         continue;
  7912.  
  7913.                 encoder = to_intel_encoder(connector_state->best_encoder);
  7914.  
  7915.                 switch (encoder->type) {
  7916.                 case INTEL_OUTPUT_DSI:
  7917.                         is_dsi = true;
  7918.                         break;
  7919.                 default:
  7920.                         break;
  7921.                 }
  7922.  
  7923.                 num_connectors++;
  7924.         }
  7925.  
  7926.         if (is_dsi)
  7927.                 return 0;
  7928.  
  7929.         if (!crtc_state->clock_set) {
  7930.                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
  7931.  
  7932.                 /*
  7933.                  * Returns a set of divisors for the desired target clock with
  7934.                  * the given refclk, or FALSE.  The returned values represent
  7935.                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  7936.                  * 2) / p1 / p2.
  7937.                  */
  7938.                 limit = intel_limit(crtc_state, refclk);
  7939.                 ok = dev_priv->display.find_dpll(limit, crtc_state,
  7940.                                                  crtc_state->port_clock,
  7941.                                                  refclk, NULL, &clock);
  7942.                 if (!ok) {
  7943.                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
  7944.                         return -EINVAL;
  7945.                 }
  7946.  
  7947.                 /* Compat-code for transition, will disappear. */
  7948.                 crtc_state->dpll.n = clock.n;
  7949.                 crtc_state->dpll.m1 = clock.m1;
  7950.                 crtc_state->dpll.m2 = clock.m2;
  7951.                 crtc_state->dpll.p1 = clock.p1;
  7952.                 crtc_state->dpll.p2 = clock.p2;
  7953.         }
  7954.  
  7955.         if (IS_GEN2(dev)) {
  7956.                 i8xx_compute_dpll(crtc, crtc_state, NULL,
  7957.                                   num_connectors);
  7958.         } else if (IS_CHERRYVIEW(dev)) {
  7959.                 chv_compute_dpll(crtc, crtc_state);
  7960.         } else if (IS_VALLEYVIEW(dev)) {
  7961.                 vlv_compute_dpll(crtc, crtc_state);
  7962.         } else {
  7963.                 i9xx_compute_dpll(crtc, crtc_state, NULL,
  7964.                                   num_connectors);
  7965.         }
  7966.  
  7967.         return 0;
  7968. }
  7969.  
  7970. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  7971.                                  struct intel_crtc_state *pipe_config)
  7972. {
  7973.         struct drm_device *dev = crtc->base.dev;
  7974.         struct drm_i915_private *dev_priv = dev->dev_private;
  7975.         uint32_t tmp;
  7976.  
  7977.         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
  7978.                 return;
  7979.  
  7980.         tmp = I915_READ(PFIT_CONTROL);
  7981.         if (!(tmp & PFIT_ENABLE))
  7982.                 return;
  7983.  
  7984.         /* Check whether the pfit is attached to our pipe. */
  7985.         if (INTEL_INFO(dev)->gen < 4) {
  7986.                 if (crtc->pipe != PIPE_B)
  7987.                         return;
  7988.         } else {
  7989.                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  7990.                         return;
  7991.         }
  7992.  
  7993.         pipe_config->gmch_pfit.control = tmp;
  7994.         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  7995.         if (INTEL_INFO(dev)->gen < 5)
  7996.                 pipe_config->gmch_pfit.lvds_border_bits =
  7997.                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  7998. }
  7999.  
  8000. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  8001.                                struct intel_crtc_state *pipe_config)
  8002. {
  8003.         struct drm_device *dev = crtc->base.dev;
  8004.         struct drm_i915_private *dev_priv = dev->dev_private;
  8005.         int pipe = pipe_config->cpu_transcoder;
  8006.         intel_clock_t clock;
  8007.         u32 mdiv;
  8008.         int refclk = 100000;
  8009.  
  8010.         /* In case of MIPI DPLL will not even be used */
  8011.         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
  8012.                 return;
  8013.  
  8014.         mutex_lock(&dev_priv->sb_lock);
  8015.         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
  8016.         mutex_unlock(&dev_priv->sb_lock);
  8017.  
  8018.         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  8019.         clock.m2 = mdiv & DPIO_M2DIV_MASK;
  8020.         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  8021.         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  8022.         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  8023.  
  8024.         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
  8025. }
  8026.  
  8027. static void
  8028. i9xx_get_initial_plane_config(struct intel_crtc *crtc,
  8029.                               struct intel_initial_plane_config *plane_config)
  8030. {
  8031.         struct drm_device *dev = crtc->base.dev;
  8032.         struct drm_i915_private *dev_priv = dev->dev_private;
  8033.         u32 val, base, offset;
  8034.         int pipe = crtc->pipe, plane = crtc->plane;
  8035.         int fourcc, pixel_format;
  8036.         unsigned int aligned_height;
  8037.         struct drm_framebuffer *fb;
  8038.         struct intel_framebuffer *intel_fb;
  8039.  
  8040.         val = I915_READ(DSPCNTR(plane));
  8041.         if (!(val & DISPLAY_PLANE_ENABLE))
  8042.                 return;
  8043.  
  8044.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  8045.         if (!intel_fb) {
  8046.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  8047.                 return;
  8048.         }
  8049.  
  8050.         fb = &intel_fb->base;
  8051.  
  8052.         if (INTEL_INFO(dev)->gen >= 4) {
  8053.                 if (val & DISPPLANE_TILED) {
  8054.                         plane_config->tiling = I915_TILING_X;
  8055.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  8056.                 }
  8057.         }
  8058.  
  8059.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  8060.         fourcc = i9xx_format_to_fourcc(pixel_format);
  8061.         fb->pixel_format = fourcc;
  8062.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  8063.  
  8064.         if (INTEL_INFO(dev)->gen >= 4) {
  8065.                 if (plane_config->tiling)
  8066.                         offset = I915_READ(DSPTILEOFF(plane));
  8067.                 else
  8068.                         offset = I915_READ(DSPLINOFF(plane));
  8069.                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
  8070.         } else {
  8071.                 base = I915_READ(DSPADDR(plane));
  8072.         }
  8073.         plane_config->base = base;
  8074.  
  8075.         val = I915_READ(PIPESRC(pipe));
  8076.         fb->width = ((val >> 16) & 0xfff) + 1;
  8077.         fb->height = ((val >> 0) & 0xfff) + 1;
  8078.  
  8079.         val = I915_READ(DSPSTRIDE(pipe));
  8080.         fb->pitches[0] = val & 0xffffffc0;
  8081.  
  8082.         aligned_height = intel_fb_align_height(dev, fb->height,
  8083.                                                fb->pixel_format,
  8084.                                                fb->modifier[0]);
  8085.  
  8086.         plane_config->size = fb->pitches[0] * aligned_height;
  8087.  
  8088.         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  8089.                       pipe_name(pipe), plane, fb->width, fb->height,
  8090.                       fb->bits_per_pixel, base, fb->pitches[0],
  8091.                       plane_config->size);
  8092.  
  8093.         plane_config->fb = intel_fb;
  8094. }
  8095.  
  8096. static void chv_crtc_clock_get(struct intel_crtc *crtc,
  8097.                                struct intel_crtc_state *pipe_config)
  8098. {
  8099.         struct drm_device *dev = crtc->base.dev;
  8100.         struct drm_i915_private *dev_priv = dev->dev_private;
  8101.         int pipe = pipe_config->cpu_transcoder;
  8102.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  8103.         intel_clock_t clock;
  8104.         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
  8105.         int refclk = 100000;
  8106.  
  8107.         mutex_lock(&dev_priv->sb_lock);
  8108.         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
  8109.         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
  8110.         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
  8111.         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
  8112.         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  8113.         mutex_unlock(&dev_priv->sb_lock);
  8114.  
  8115.         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
  8116.         clock.m2 = (pll_dw0 & 0xff) << 22;
  8117.         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
  8118.                 clock.m2 |= pll_dw2 & 0x3fffff;
  8119.         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
  8120.         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
  8121.         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
  8122.  
  8123.         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
  8124. }
  8125.  
  8126. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  8127.                                  struct intel_crtc_state *pipe_config)
  8128. {
  8129.         struct drm_device *dev = crtc->base.dev;
  8130.         struct drm_i915_private *dev_priv = dev->dev_private;
  8131.         uint32_t tmp;
  8132.  
  8133.         if (!intel_display_power_is_enabled(dev_priv,
  8134.                                             POWER_DOMAIN_PIPE(crtc->pipe)))
  8135.                 return false;
  8136.  
  8137.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  8138.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  8139.  
  8140.         tmp = I915_READ(PIPECONF(crtc->pipe));
  8141.         if (!(tmp & PIPECONF_ENABLE))
  8142.                 return false;
  8143.  
  8144.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  8145.                 switch (tmp & PIPECONF_BPC_MASK) {
  8146.                 case PIPECONF_6BPC:
  8147.                         pipe_config->pipe_bpp = 18;
  8148.                         break;
  8149.                 case PIPECONF_8BPC:
  8150.                         pipe_config->pipe_bpp = 24;
  8151.                         break;
  8152.                 case PIPECONF_10BPC:
  8153.                         pipe_config->pipe_bpp = 30;
  8154.                         break;
  8155.                 default:
  8156.                         break;
  8157.                 }
  8158.         }
  8159.  
  8160.         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
  8161.                 pipe_config->limited_color_range = true;
  8162.  
  8163.         if (INTEL_INFO(dev)->gen < 4)
  8164.                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  8165.  
  8166.         intel_get_pipe_timings(crtc, pipe_config);
  8167.  
  8168.         i9xx_get_pfit_config(crtc, pipe_config);
  8169.  
  8170.         if (INTEL_INFO(dev)->gen >= 4) {
  8171.                 tmp = I915_READ(DPLL_MD(crtc->pipe));
  8172.                 pipe_config->pixel_multiplier =
  8173.                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  8174.                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  8175.                 pipe_config->dpll_hw_state.dpll_md = tmp;
  8176.         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  8177.                 tmp = I915_READ(DPLL(crtc->pipe));
  8178.                 pipe_config->pixel_multiplier =
  8179.                         ((tmp & SDVO_MULTIPLIER_MASK)
  8180.                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  8181.         } else {
  8182.                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
  8183.                  * port and will be fixed up in the encoder->get_config
  8184.                  * function. */
  8185.                 pipe_config->pixel_multiplier = 1;
  8186.         }
  8187.         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  8188.         if (!IS_VALLEYVIEW(dev)) {
  8189.                 /*
  8190.                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
  8191.                  * on 830. Filter it out here so that we don't
  8192.                  * report errors due to that.
  8193.                  */
  8194.                 if (IS_I830(dev))
  8195.                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
  8196.  
  8197.                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  8198.                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  8199.         } else {
  8200.                 /* Mask out read-only status bits. */
  8201.                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  8202.                                                      DPLL_PORTC_READY_MASK |
  8203.                                                      DPLL_PORTB_READY_MASK);
  8204.         }
  8205.  
  8206.         if (IS_CHERRYVIEW(dev))
  8207.                 chv_crtc_clock_get(crtc, pipe_config);
  8208.         else if (IS_VALLEYVIEW(dev))
  8209.                 vlv_crtc_clock_get(crtc, pipe_config);
  8210.         else
  8211.                 i9xx_crtc_clock_get(crtc, pipe_config);
  8212.  
  8213.         /*
  8214.          * Normally the dotclock is filled in by the encoder .get_config()
  8215.          * but in case the pipe is enabled w/o any ports we need a sane
  8216.          * default.
  8217.          */
  8218.         pipe_config->base.adjusted_mode.crtc_clock =
  8219.                 pipe_config->port_clock / pipe_config->pixel_multiplier;
  8220.  
  8221.         return true;
  8222. }
  8223.  
  8224. static void ironlake_init_pch_refclk(struct drm_device *dev)
  8225. {
  8226.         struct drm_i915_private *dev_priv = dev->dev_private;
  8227.         struct intel_encoder *encoder;
  8228.         u32 val, final;
  8229.         bool has_lvds = false;
  8230.         bool has_cpu_edp = false;
  8231.         bool has_panel = false;
  8232.         bool has_ck505 = false;
  8233.         bool can_ssc = false;
  8234.  
  8235.         /* We need to take the global config into account */
  8236.         for_each_intel_encoder(dev, encoder) {
  8237.                 switch (encoder->type) {
  8238.                 case INTEL_OUTPUT_LVDS:
  8239.                         has_panel = true;
  8240.                         has_lvds = true;
  8241.                         break;
  8242.                 case INTEL_OUTPUT_EDP:
  8243.                         has_panel = true;
  8244.                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  8245.                                 has_cpu_edp = true;
  8246.                         break;
  8247.                 default:
  8248.                         break;
  8249.                 }
  8250.         }
  8251.  
  8252.         if (HAS_PCH_IBX(dev)) {
  8253.                 has_ck505 = dev_priv->vbt.display_clock_mode;
  8254.                 can_ssc = has_ck505;
  8255.         } else {
  8256.                 has_ck505 = false;
  8257.                 can_ssc = true;
  8258.         }
  8259.  
  8260.         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  8261.                       has_panel, has_lvds, has_ck505);
  8262.  
  8263.         /* Ironlake: try to setup display ref clock before DPLL
  8264.          * enabling. This is only under driver's control after
  8265.          * PCH B stepping, previous chipset stepping should be
  8266.          * ignoring this setting.
  8267.          */
  8268.         val = I915_READ(PCH_DREF_CONTROL);
  8269.  
  8270.         /* As we must carefully and slowly disable/enable each source in turn,
  8271.          * compute the final state we want first and check if we need to
  8272.          * make any changes at all.
  8273.          */
  8274.         final = val;
  8275.         final &= ~DREF_NONSPREAD_SOURCE_MASK;
  8276.         if (has_ck505)
  8277.                 final |= DREF_NONSPREAD_CK505_ENABLE;
  8278.         else
  8279.                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
  8280.  
  8281.         final &= ~DREF_SSC_SOURCE_MASK;
  8282.         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8283.         final &= ~DREF_SSC1_ENABLE;
  8284.  
  8285.         if (has_panel) {
  8286.                 final |= DREF_SSC_SOURCE_ENABLE;
  8287.  
  8288.                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8289.                         final |= DREF_SSC1_ENABLE;
  8290.  
  8291.                 if (has_cpu_edp) {
  8292.                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8293.                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8294.                         else
  8295.                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8296.                 } else
  8297.                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8298.         } else {
  8299.                 final |= DREF_SSC_SOURCE_DISABLE;
  8300.                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8301.         }
  8302.  
  8303.         if (final == val)
  8304.                 return;
  8305.  
  8306.         /* Always enable nonspread source */
  8307.         val &= ~DREF_NONSPREAD_SOURCE_MASK;
  8308.  
  8309.         if (has_ck505)
  8310.                 val |= DREF_NONSPREAD_CK505_ENABLE;
  8311.         else
  8312.                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
  8313.  
  8314.         if (has_panel) {
  8315.                 val &= ~DREF_SSC_SOURCE_MASK;
  8316.                 val |= DREF_SSC_SOURCE_ENABLE;
  8317.  
  8318.                 /* SSC must be turned on before enabling the CPU output  */
  8319.                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8320.                         DRM_DEBUG_KMS("Using SSC on panel\n");
  8321.                         val |= DREF_SSC1_ENABLE;
  8322.                 } else
  8323.                         val &= ~DREF_SSC1_ENABLE;
  8324.  
  8325.                 /* Get SSC going before enabling the outputs */
  8326.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8327.                 POSTING_READ(PCH_DREF_CONTROL);
  8328.                 udelay(200);
  8329.  
  8330.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8331.  
  8332.                 /* Enable CPU source on CPU attached eDP */
  8333.                 if (has_cpu_edp) {
  8334.                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8335.                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
  8336.                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8337.                         } else
  8338.                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8339.                 } else
  8340.                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8341.  
  8342.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8343.                 POSTING_READ(PCH_DREF_CONTROL);
  8344.                 udelay(200);
  8345.         } else {
  8346.                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
  8347.  
  8348.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8349.  
  8350.                 /* Turn off CPU output */
  8351.                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8352.  
  8353.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8354.                 POSTING_READ(PCH_DREF_CONTROL);
  8355.                 udelay(200);
  8356.  
  8357.                 /* Turn off the SSC source */
  8358.                 val &= ~DREF_SSC_SOURCE_MASK;
  8359.                 val |= DREF_SSC_SOURCE_DISABLE;
  8360.  
  8361.                 /* Turn off SSC1 */
  8362.                 val &= ~DREF_SSC1_ENABLE;
  8363.  
  8364.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8365.                 POSTING_READ(PCH_DREF_CONTROL);
  8366.                 udelay(200);
  8367.         }
  8368.  
  8369.         BUG_ON(val != final);
  8370. }
  8371.  
  8372. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  8373. {
  8374.         uint32_t tmp;
  8375.  
  8376.         tmp = I915_READ(SOUTH_CHICKEN2);
  8377.         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  8378.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8379.  
  8380.         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  8381.                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  8382.                 DRM_ERROR("FDI mPHY reset assert timeout\n");
  8383.  
  8384.         tmp = I915_READ(SOUTH_CHICKEN2);
  8385.         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  8386.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8387.  
  8388.         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  8389.                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  8390.                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  8391. }
  8392.  
  8393. /* WaMPhyProgramming:hsw */
  8394. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  8395. {
  8396.         uint32_t tmp;
  8397.  
  8398.         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  8399.         tmp &= ~(0xFF << 24);
  8400.         tmp |= (0x12 << 24);
  8401.         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  8402.  
  8403.         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  8404.         tmp |= (1 << 11);
  8405.         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  8406.  
  8407.         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  8408.         tmp |= (1 << 11);
  8409.         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  8410.  
  8411.         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  8412.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8413.         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  8414.  
  8415.         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  8416.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8417.         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  8418.  
  8419.         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  8420.         tmp &= ~(7 << 13);
  8421.         tmp |= (5 << 13);
  8422.         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  8423.  
  8424.         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  8425.         tmp &= ~(7 << 13);
  8426.         tmp |= (5 << 13);
  8427.         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  8428.  
  8429.         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  8430.         tmp &= ~0xFF;
  8431.         tmp |= 0x1C;
  8432.         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  8433.  
  8434.         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  8435.         tmp &= ~0xFF;
  8436.         tmp |= 0x1C;
  8437.         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  8438.  
  8439.         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  8440.         tmp &= ~(0xFF << 16);
  8441.         tmp |= (0x1C << 16);
  8442.         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  8443.  
  8444.         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  8445.         tmp &= ~(0xFF << 16);
  8446.         tmp |= (0x1C << 16);
  8447.         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  8448.  
  8449.         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  8450.         tmp |= (1 << 27);
  8451.         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  8452.  
  8453.         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  8454.         tmp |= (1 << 27);
  8455.         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  8456.  
  8457.         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  8458.         tmp &= ~(0xF << 28);
  8459.         tmp |= (4 << 28);
  8460.         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  8461.  
  8462.         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  8463.         tmp &= ~(0xF << 28);
  8464.         tmp |= (4 << 28);
  8465.         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  8466. }
  8467.  
  8468. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  8469.  * Programming" based on the parameters passed:
  8470.  * - Sequence to enable CLKOUT_DP
  8471.  * - Sequence to enable CLKOUT_DP without spread
  8472.  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  8473.  */
  8474. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  8475.                                  bool with_fdi)
  8476. {
  8477.         struct drm_i915_private *dev_priv = dev->dev_private;
  8478.         uint32_t reg, tmp;
  8479.  
  8480.         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  8481.                 with_spread = true;
  8482.         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
  8483.                 with_fdi = false;
  8484.  
  8485.         mutex_lock(&dev_priv->sb_lock);
  8486.  
  8487.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8488.         tmp &= ~SBI_SSCCTL_DISABLE;
  8489.         tmp |= SBI_SSCCTL_PATHALT;
  8490.         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8491.  
  8492.         udelay(24);
  8493.  
  8494.         if (with_spread) {
  8495.                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8496.                 tmp &= ~SBI_SSCCTL_PATHALT;
  8497.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8498.  
  8499.                 if (with_fdi) {
  8500.                         lpt_reset_fdi_mphy(dev_priv);
  8501.                         lpt_program_fdi_mphy(dev_priv);
  8502.                 }
  8503.         }
  8504.  
  8505.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8506.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8507.         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8508.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8509.  
  8510.         mutex_unlock(&dev_priv->sb_lock);
  8511. }
  8512.  
  8513. /* Sequence to disable CLKOUT_DP */
  8514. static void lpt_disable_clkout_dp(struct drm_device *dev)
  8515. {
  8516.         struct drm_i915_private *dev_priv = dev->dev_private;
  8517.         uint32_t reg, tmp;
  8518.  
  8519.         mutex_lock(&dev_priv->sb_lock);
  8520.  
  8521.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8522.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8523.         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8524.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8525.  
  8526.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8527.         if (!(tmp & SBI_SSCCTL_DISABLE)) {
  8528.                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
  8529.                         tmp |= SBI_SSCCTL_PATHALT;
  8530.                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8531.                         udelay(32);
  8532.                 }
  8533.                 tmp |= SBI_SSCCTL_DISABLE;
  8534.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8535.         }
  8536.  
  8537.         mutex_unlock(&dev_priv->sb_lock);
  8538. }
  8539.  
  8540. static void lpt_init_pch_refclk(struct drm_device *dev)
  8541. {
  8542.         struct intel_encoder *encoder;
  8543.         bool has_vga = false;
  8544.  
  8545.         for_each_intel_encoder(dev, encoder) {
  8546.                 switch (encoder->type) {
  8547.                 case INTEL_OUTPUT_ANALOG:
  8548.                         has_vga = true;
  8549.                         break;
  8550.                 default:
  8551.                         break;
  8552.                 }
  8553.         }
  8554.  
  8555.         if (has_vga)
  8556.                 lpt_enable_clkout_dp(dev, true, true);
  8557.         else
  8558.                 lpt_disable_clkout_dp(dev);
  8559. }
  8560.  
  8561. /*
  8562.  * Initialize reference clocks when the driver loads
  8563.  */
  8564. void intel_init_pch_refclk(struct drm_device *dev)
  8565. {
  8566.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8567.                 ironlake_init_pch_refclk(dev);
  8568.         else if (HAS_PCH_LPT(dev))
  8569.                 lpt_init_pch_refclk(dev);
  8570. }
  8571.  
  8572. static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
  8573. {
  8574.         struct drm_device *dev = crtc_state->base.crtc->dev;
  8575.         struct drm_i915_private *dev_priv = dev->dev_private;
  8576.         struct drm_atomic_state *state = crtc_state->base.state;
  8577.         struct drm_connector *connector;
  8578.         struct drm_connector_state *connector_state;
  8579.         struct intel_encoder *encoder;
  8580.         int num_connectors = 0, i;
  8581.         bool is_lvds = false;
  8582.  
  8583.         for_each_connector_in_state(state, connector, connector_state, i) {
  8584.                 if (connector_state->crtc != crtc_state->base.crtc)
  8585.                         continue;
  8586.  
  8587.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8588.  
  8589.                 switch (encoder->type) {
  8590.                 case INTEL_OUTPUT_LVDS:
  8591.                         is_lvds = true;
  8592.                         break;
  8593.                 default:
  8594.                         break;
  8595.                 }
  8596.                 num_connectors++;
  8597.         }
  8598.  
  8599.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  8600.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
  8601.                               dev_priv->vbt.lvds_ssc_freq);
  8602.                 return dev_priv->vbt.lvds_ssc_freq;
  8603.         }
  8604.  
  8605.         return 120000;
  8606. }
  8607.  
  8608. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  8609. {
  8610.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  8611.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8612.         int pipe = intel_crtc->pipe;
  8613.         uint32_t val;
  8614.  
  8615.         val = 0;
  8616.  
  8617.         switch (intel_crtc->config->pipe_bpp) {
  8618.         case 18:
  8619.                 val |= PIPECONF_6BPC;
  8620.                 break;
  8621.         case 24:
  8622.                 val |= PIPECONF_8BPC;
  8623.                 break;
  8624.         case 30:
  8625.                 val |= PIPECONF_10BPC;
  8626.                 break;
  8627.         case 36:
  8628.                 val |= PIPECONF_12BPC;
  8629.                 break;
  8630.         default:
  8631.                 /* Case prevented by intel_choose_pipe_bpp_dither. */
  8632.                 BUG();
  8633.         }
  8634.  
  8635.         if (intel_crtc->config->dither)
  8636.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8637.  
  8638.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8639.                 val |= PIPECONF_INTERLACED_ILK;
  8640.         else
  8641.                 val |= PIPECONF_PROGRESSIVE;
  8642.  
  8643.         if (intel_crtc->config->limited_color_range)
  8644.                 val |= PIPECONF_COLOR_RANGE_SELECT;
  8645.  
  8646.         I915_WRITE(PIPECONF(pipe), val);
  8647.         POSTING_READ(PIPECONF(pipe));
  8648. }
  8649.  
  8650. /*
  8651.  * Set up the pipe CSC unit.
  8652.  *
  8653.  * Currently only full range RGB to limited range RGB conversion
  8654.  * is supported, but eventually this should handle various
  8655.  * RGB<->YCbCr scenarios as well.
  8656.  */
  8657. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  8658. {
  8659.         struct drm_device *dev = crtc->dev;
  8660.         struct drm_i915_private *dev_priv = dev->dev_private;
  8661.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8662.         int pipe = intel_crtc->pipe;
  8663.         uint16_t coeff = 0x7800; /* 1.0 */
  8664.  
  8665.         /*
  8666.          * TODO: Check what kind of values actually come out of the pipe
  8667.          * with these coeff/postoff values and adjust to get the best
  8668.          * accuracy. Perhaps we even need to take the bpc value into
  8669.          * consideration.
  8670.          */
  8671.  
  8672.         if (intel_crtc->config->limited_color_range)
  8673.                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  8674.  
  8675.         /*
  8676.          * GY/GU and RY/RU should be the other way around according
  8677.          * to BSpec, but reality doesn't agree. Just set them up in
  8678.          * a way that results in the correct picture.
  8679.          */
  8680.         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  8681.         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  8682.  
  8683.         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  8684.         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  8685.  
  8686.         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  8687.         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  8688.  
  8689.         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  8690.         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  8691.         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  8692.  
  8693.         if (INTEL_INFO(dev)->gen > 6) {
  8694.                 uint16_t postoff = 0;
  8695.  
  8696.                 if (intel_crtc->config->limited_color_range)
  8697.                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
  8698.  
  8699.                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  8700.                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  8701.                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  8702.  
  8703.                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  8704.         } else {
  8705.                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
  8706.  
  8707.                 if (intel_crtc->config->limited_color_range)
  8708.                         mode |= CSC_BLACK_SCREEN_OFFSET;
  8709.  
  8710.                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  8711.         }
  8712. }
  8713.  
  8714. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  8715. {
  8716.         struct drm_device *dev = crtc->dev;
  8717.         struct drm_i915_private *dev_priv = dev->dev_private;
  8718.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8719.         enum pipe pipe = intel_crtc->pipe;
  8720.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  8721.         uint32_t val;
  8722.  
  8723.         val = 0;
  8724.  
  8725.         if (IS_HASWELL(dev) && intel_crtc->config->dither)
  8726.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8727.  
  8728.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8729.                 val |= PIPECONF_INTERLACED_ILK;
  8730.         else
  8731.                 val |= PIPECONF_PROGRESSIVE;
  8732.  
  8733.         I915_WRITE(PIPECONF(cpu_transcoder), val);
  8734.         POSTING_READ(PIPECONF(cpu_transcoder));
  8735.  
  8736.         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  8737.         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  8738.  
  8739.         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
  8740.                 val = 0;
  8741.  
  8742.                 switch (intel_crtc->config->pipe_bpp) {
  8743.                 case 18:
  8744.                         val |= PIPEMISC_DITHER_6_BPC;
  8745.                         break;
  8746.                 case 24:
  8747.                         val |= PIPEMISC_DITHER_8_BPC;
  8748.                         break;
  8749.                 case 30:
  8750.                         val |= PIPEMISC_DITHER_10_BPC;
  8751.                         break;
  8752.                 case 36:
  8753.                         val |= PIPEMISC_DITHER_12_BPC;
  8754.                         break;
  8755.                 default:
  8756.                         /* Case prevented by pipe_config_set_bpp. */
  8757.                         BUG();
  8758.                 }
  8759.  
  8760.                 if (intel_crtc->config->dither)
  8761.                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
  8762.  
  8763.                 I915_WRITE(PIPEMISC(pipe), val);
  8764.         }
  8765. }
  8766.  
  8767. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  8768.                                     struct intel_crtc_state *crtc_state,
  8769.                                     intel_clock_t *clock,
  8770.                                     bool *has_reduced_clock,
  8771.                                     intel_clock_t *reduced_clock)
  8772. {
  8773.         struct drm_device *dev = crtc->dev;
  8774.         struct drm_i915_private *dev_priv = dev->dev_private;
  8775.         int refclk;
  8776.         const intel_limit_t *limit;
  8777.         bool ret;
  8778.  
  8779.         refclk = ironlake_get_refclk(crtc_state);
  8780.  
  8781.         /*
  8782.          * Returns a set of divisors for the desired target clock with the given
  8783.          * refclk, or FALSE.  The returned values represent the clock equation:
  8784.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  8785.          */
  8786.         limit = intel_limit(crtc_state, refclk);
  8787.         ret = dev_priv->display.find_dpll(limit, crtc_state,
  8788.                                           crtc_state->port_clock,
  8789.                                           refclk, NULL, clock);
  8790.         if (!ret)
  8791.                 return false;
  8792.  
  8793.         return true;
  8794. }
  8795.  
  8796. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  8797. {
  8798.         /*
  8799.          * Account for spread spectrum to avoid
  8800.          * oversubscribing the link. Max center spread
  8801.          * is 2.5%; use 5% for safety's sake.
  8802.          */
  8803.         u32 bps = target_clock * bpp * 21 / 20;
  8804.         return DIV_ROUND_UP(bps, link_bw * 8);
  8805. }
  8806.  
  8807. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  8808. {
  8809.         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  8810. }
  8811.  
  8812. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  8813.                                       struct intel_crtc_state *crtc_state,
  8814.                                       u32 *fp,
  8815.                                       intel_clock_t *reduced_clock, u32 *fp2)
  8816. {
  8817.         struct drm_crtc *crtc = &intel_crtc->base;
  8818.         struct drm_device *dev = crtc->dev;
  8819.         struct drm_i915_private *dev_priv = dev->dev_private;
  8820.         struct drm_atomic_state *state = crtc_state->base.state;
  8821.         struct drm_connector *connector;
  8822.         struct drm_connector_state *connector_state;
  8823.         struct intel_encoder *encoder;
  8824.         uint32_t dpll;
  8825.         int factor, num_connectors = 0, i;
  8826.         bool is_lvds = false, is_sdvo = false;
  8827.  
  8828.         for_each_connector_in_state(state, connector, connector_state, i) {
  8829.                 if (connector_state->crtc != crtc_state->base.crtc)
  8830.                         continue;
  8831.  
  8832.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8833.  
  8834.                 switch (encoder->type) {
  8835.                 case INTEL_OUTPUT_LVDS:
  8836.                         is_lvds = true;
  8837.                         break;
  8838.                 case INTEL_OUTPUT_SDVO:
  8839.                 case INTEL_OUTPUT_HDMI:
  8840.                         is_sdvo = true;
  8841.                         break;
  8842.                 default:
  8843.                         break;
  8844.                 }
  8845.  
  8846.                 num_connectors++;
  8847.         }
  8848.  
  8849.         /* Enable autotuning of the PLL clock (if permissible) */
  8850.         factor = 21;
  8851.         if (is_lvds) {
  8852.                 if ((intel_panel_use_ssc(dev_priv) &&
  8853.                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
  8854.                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  8855.                         factor = 25;
  8856.         } else if (crtc_state->sdvo_tv_clock)
  8857.                 factor = 20;
  8858.  
  8859.         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
  8860.                 *fp |= FP_CB_TUNE;
  8861.  
  8862.         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  8863.                 *fp2 |= FP_CB_TUNE;
  8864.  
  8865.         dpll = 0;
  8866.  
  8867.         if (is_lvds)
  8868.                 dpll |= DPLLB_MODE_LVDS;
  8869.         else
  8870.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  8871.  
  8872.         dpll |= (crtc_state->pixel_multiplier - 1)
  8873.                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  8874.  
  8875.         if (is_sdvo)
  8876.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8877.         if (crtc_state->has_dp_encoder)
  8878.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8879.  
  8880.         /* compute bitmask from p1 value */
  8881.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  8882.         /* also FPA1 */
  8883.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  8884.  
  8885.         switch (crtc_state->dpll.p2) {
  8886.         case 5:
  8887.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  8888.                 break;
  8889.         case 7:
  8890.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  8891.                 break;
  8892.         case 10:
  8893.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  8894.                 break;
  8895.         case 14:
  8896.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  8897.                 break;
  8898.         }
  8899.  
  8900.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  8901.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  8902.         else
  8903.                 dpll |= PLL_REF_INPUT_DREFCLK;
  8904.  
  8905.         return dpll | DPLL_VCO_ENABLE;
  8906. }
  8907.  
  8908. static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
  8909.                                        struct intel_crtc_state *crtc_state)
  8910. {
  8911.         struct drm_device *dev = crtc->base.dev;
  8912.         intel_clock_t clock, reduced_clock;
  8913.         u32 dpll = 0, fp = 0, fp2 = 0;
  8914.         bool ok, has_reduced_clock = false;
  8915.         bool is_lvds = false;
  8916.         struct intel_shared_dpll *pll;
  8917.  
  8918.         memset(&crtc_state->dpll_hw_state, 0,
  8919.                sizeof(crtc_state->dpll_hw_state));
  8920.  
  8921.         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
  8922.  
  8923.         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  8924.              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  8925.  
  8926.         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
  8927.                                      &has_reduced_clock, &reduced_clock);
  8928.         if (!ok && !crtc_state->clock_set) {
  8929.                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
  8930.                 return -EINVAL;
  8931.         }
  8932.         /* Compat-code for transition, will disappear. */
  8933.         if (!crtc_state->clock_set) {
  8934.                 crtc_state->dpll.n = clock.n;
  8935.                 crtc_state->dpll.m1 = clock.m1;
  8936.                 crtc_state->dpll.m2 = clock.m2;
  8937.                 crtc_state->dpll.p1 = clock.p1;
  8938.                 crtc_state->dpll.p2 = clock.p2;
  8939.         }
  8940.  
  8941.         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  8942.         if (crtc_state->has_pch_encoder) {
  8943.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  8944.                 if (has_reduced_clock)
  8945.                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  8946.  
  8947.                 dpll = ironlake_compute_dpll(crtc, crtc_state,
  8948.                                              &fp, &reduced_clock,
  8949.                                              has_reduced_clock ? &fp2 : NULL);
  8950.  
  8951.                 crtc_state->dpll_hw_state.dpll = dpll;
  8952.                 crtc_state->dpll_hw_state.fp0 = fp;
  8953.                 if (has_reduced_clock)
  8954.                         crtc_state->dpll_hw_state.fp1 = fp2;
  8955.                 else
  8956.                         crtc_state->dpll_hw_state.fp1 = fp;
  8957.  
  8958.                 pll = intel_get_shared_dpll(crtc, crtc_state);
  8959.                 if (pll == NULL) {
  8960.                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  8961.                                          pipe_name(crtc->pipe));
  8962.                         return -EINVAL;
  8963.                 }
  8964.         }
  8965.  
  8966.         if (is_lvds && has_reduced_clock)
  8967.                 crtc->lowfreq_avail = true;
  8968.         else
  8969.                 crtc->lowfreq_avail = false;
  8970.  
  8971.         return 0;
  8972. }
  8973.  
  8974. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  8975.                                          struct intel_link_m_n *m_n)
  8976. {
  8977.         struct drm_device *dev = crtc->base.dev;
  8978.         struct drm_i915_private *dev_priv = dev->dev_private;
  8979.         enum pipe pipe = crtc->pipe;
  8980.  
  8981.         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  8982.         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  8983.         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  8984.                 & ~TU_SIZE_MASK;
  8985.         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  8986.         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  8987.                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  8988. }
  8989.  
  8990. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  8991.                                          enum transcoder transcoder,
  8992.                                          struct intel_link_m_n *m_n,
  8993.                                          struct intel_link_m_n *m2_n2)
  8994. {
  8995.         struct drm_device *dev = crtc->base.dev;
  8996.         struct drm_i915_private *dev_priv = dev->dev_private;
  8997.         enum pipe pipe = crtc->pipe;
  8998.  
  8999.         if (INTEL_INFO(dev)->gen >= 5) {
  9000.                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  9001.                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  9002.                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  9003.                         & ~TU_SIZE_MASK;
  9004.                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  9005.                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  9006.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9007.                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
  9008.                  * gen < 8) and if DRRS is supported (to make sure the
  9009.                  * registers are not unnecessarily read).
  9010.                  */
  9011.                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
  9012.                         crtc->config->has_drrs) {
  9013.                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
  9014.                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
  9015.                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
  9016.                                         & ~TU_SIZE_MASK;
  9017.                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
  9018.                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
  9019.                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9020.                 }
  9021.         } else {
  9022.                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  9023.                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  9024.                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  9025.                         & ~TU_SIZE_MASK;
  9026.                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  9027.                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  9028.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9029.         }
  9030. }
  9031.  
  9032. void intel_dp_get_m_n(struct intel_crtc *crtc,
  9033.                       struct intel_crtc_state *pipe_config)
  9034. {
  9035.         if (pipe_config->has_pch_encoder)
  9036.                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  9037.         else
  9038.                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9039.                                              &pipe_config->dp_m_n,
  9040.                                              &pipe_config->dp_m2_n2);
  9041. }
  9042.  
  9043. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  9044.                                         struct intel_crtc_state *pipe_config)
  9045. {
  9046.         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9047.                                      &pipe_config->fdi_m_n, NULL);
  9048. }
  9049.  
  9050. static void skylake_get_pfit_config(struct intel_crtc *crtc,
  9051.                                     struct intel_crtc_state *pipe_config)
  9052. {
  9053.         struct drm_device *dev = crtc->base.dev;
  9054.         struct drm_i915_private *dev_priv = dev->dev_private;
  9055.         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
  9056.         uint32_t ps_ctrl = 0;
  9057.         int id = -1;
  9058.         int i;
  9059.  
  9060.         /* find scaler attached to this pipe */
  9061.         for (i = 0; i < crtc->num_scalers; i++) {
  9062.                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
  9063.                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
  9064.                         id = i;
  9065.                         pipe_config->pch_pfit.enabled = true;
  9066.                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
  9067.                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
  9068.                         break;
  9069.                 }
  9070.         }
  9071.  
  9072.         scaler_state->scaler_id = id;
  9073.         if (id >= 0) {
  9074.                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
  9075.         } else {
  9076.                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
  9077.         }
  9078. }
  9079.  
  9080. static void
  9081. skylake_get_initial_plane_config(struct intel_crtc *crtc,
  9082.                                  struct intel_initial_plane_config *plane_config)
  9083. {
  9084.         struct drm_device *dev = crtc->base.dev;
  9085.         struct drm_i915_private *dev_priv = dev->dev_private;
  9086.         u32 val, base, offset, stride_mult, tiling;
  9087.         int pipe = crtc->pipe;
  9088.         int fourcc, pixel_format;
  9089.         unsigned int aligned_height;
  9090.         struct drm_framebuffer *fb;
  9091.         struct intel_framebuffer *intel_fb;
  9092.  
  9093.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9094.         if (!intel_fb) {
  9095.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9096.                 return;
  9097.         }
  9098.  
  9099.         fb = &intel_fb->base;
  9100.  
  9101.         val = I915_READ(PLANE_CTL(pipe, 0));
  9102.         if (!(val & PLANE_CTL_ENABLE))
  9103.                 goto error;
  9104.  
  9105.         pixel_format = val & PLANE_CTL_FORMAT_MASK;
  9106.         fourcc = skl_format_to_fourcc(pixel_format,
  9107.                                       val & PLANE_CTL_ORDER_RGBX,
  9108.                                       val & PLANE_CTL_ALPHA_MASK);
  9109.         fb->pixel_format = fourcc;
  9110.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9111.  
  9112.         tiling = val & PLANE_CTL_TILED_MASK;
  9113.         switch (tiling) {
  9114.         case PLANE_CTL_TILED_LINEAR:
  9115.                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
  9116.                 break;
  9117.         case PLANE_CTL_TILED_X:
  9118.                 plane_config->tiling = I915_TILING_X;
  9119.                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9120.                 break;
  9121.         case PLANE_CTL_TILED_Y:
  9122.                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
  9123.                 break;
  9124.         case PLANE_CTL_TILED_YF:
  9125.                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
  9126.                 break;
  9127.         default:
  9128.                 MISSING_CASE(tiling);
  9129.                 goto error;
  9130.         }
  9131.  
  9132.         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
  9133.         plane_config->base = base;
  9134.  
  9135.         offset = I915_READ(PLANE_OFFSET(pipe, 0));
  9136.  
  9137.         val = I915_READ(PLANE_SIZE(pipe, 0));
  9138.         fb->height = ((val >> 16) & 0xfff) + 1;
  9139.         fb->width = ((val >> 0) & 0x1fff) + 1;
  9140.  
  9141.         val = I915_READ(PLANE_STRIDE(pipe, 0));
  9142.         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
  9143.                                                 fb->pixel_format);
  9144.         fb->pitches[0] = (val & 0x3ff) * stride_mult;
  9145.  
  9146.         aligned_height = intel_fb_align_height(dev, fb->height,
  9147.                                                fb->pixel_format,
  9148.                                                fb->modifier[0]);
  9149.  
  9150.         plane_config->size = fb->pitches[0] * aligned_height;
  9151.  
  9152.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9153.                       pipe_name(pipe), fb->width, fb->height,
  9154.                       fb->bits_per_pixel, base, fb->pitches[0],
  9155.                       plane_config->size);
  9156.  
  9157.         plane_config->fb = intel_fb;
  9158.         return;
  9159.  
  9160. error:
  9161.         kfree(fb);
  9162. }
  9163.  
  9164. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  9165.                                      struct intel_crtc_state *pipe_config)
  9166. {
  9167.         struct drm_device *dev = crtc->base.dev;
  9168.         struct drm_i915_private *dev_priv = dev->dev_private;
  9169.         uint32_t tmp;
  9170.  
  9171.         tmp = I915_READ(PF_CTL(crtc->pipe));
  9172.  
  9173.         if (tmp & PF_ENABLE) {
  9174.                 pipe_config->pch_pfit.enabled = true;
  9175.                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  9176.                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  9177.  
  9178.                 /* We currently do not free assignements of panel fitters on
  9179.                  * ivb/hsw (since we don't use the higher upscaling modes which
  9180.                  * differentiates them) so just WARN about this case for now. */
  9181.                 if (IS_GEN7(dev)) {
  9182.                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  9183.                                 PF_PIPE_SEL_IVB(crtc->pipe));
  9184.                 }
  9185.         }
  9186. }
  9187.  
  9188. static void
  9189. ironlake_get_initial_plane_config(struct intel_crtc *crtc,
  9190.                                   struct intel_initial_plane_config *plane_config)
  9191. {
  9192.         struct drm_device *dev = crtc->base.dev;
  9193.         struct drm_i915_private *dev_priv = dev->dev_private;
  9194.         u32 val, base, offset;
  9195.         int pipe = crtc->pipe;
  9196.         int fourcc, pixel_format;
  9197.         unsigned int aligned_height;
  9198.         struct drm_framebuffer *fb;
  9199.         struct intel_framebuffer *intel_fb;
  9200.  
  9201.         val = I915_READ(DSPCNTR(pipe));
  9202.         if (!(val & DISPLAY_PLANE_ENABLE))
  9203.                 return;
  9204.  
  9205.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9206.         if (!intel_fb) {
  9207.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9208.                 return;
  9209.         }
  9210.  
  9211.         fb = &intel_fb->base;
  9212.  
  9213.         if (INTEL_INFO(dev)->gen >= 4) {
  9214.                 if (val & DISPPLANE_TILED) {
  9215.                         plane_config->tiling = I915_TILING_X;
  9216.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9217.                 }
  9218.         }
  9219.  
  9220.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  9221.         fourcc = i9xx_format_to_fourcc(pixel_format);
  9222.         fb->pixel_format = fourcc;
  9223.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9224.  
  9225.         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
  9226.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  9227.                 offset = I915_READ(DSPOFFSET(pipe));
  9228.         } else {
  9229.                 if (plane_config->tiling)
  9230.                         offset = I915_READ(DSPTILEOFF(pipe));
  9231.                 else
  9232.                         offset = I915_READ(DSPLINOFF(pipe));
  9233.         }
  9234.         plane_config->base = base;
  9235.  
  9236.         val = I915_READ(PIPESRC(pipe));
  9237.         fb->width = ((val >> 16) & 0xfff) + 1;
  9238.         fb->height = ((val >> 0) & 0xfff) + 1;
  9239.  
  9240.         val = I915_READ(DSPSTRIDE(pipe));
  9241.         fb->pitches[0] = val & 0xffffffc0;
  9242.  
  9243.         aligned_height = intel_fb_align_height(dev, fb->height,
  9244.                                                fb->pixel_format,
  9245.                                                fb->modifier[0]);
  9246.  
  9247.         plane_config->size = fb->pitches[0] * aligned_height;
  9248.  
  9249.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9250.                       pipe_name(pipe), fb->width, fb->height,
  9251.                       fb->bits_per_pixel, base, fb->pitches[0],
  9252.                       plane_config->size);
  9253.  
  9254.         plane_config->fb = intel_fb;
  9255. }
  9256.  
  9257. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  9258.                                      struct intel_crtc_state *pipe_config)
  9259. {
  9260.         struct drm_device *dev = crtc->base.dev;
  9261.         struct drm_i915_private *dev_priv = dev->dev_private;
  9262.         uint32_t tmp;
  9263.  
  9264.         if (!intel_display_power_is_enabled(dev_priv,
  9265.                                             POWER_DOMAIN_PIPE(crtc->pipe)))
  9266.                 return false;
  9267.  
  9268.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9269.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9270.  
  9271.         tmp = I915_READ(PIPECONF(crtc->pipe));
  9272.         if (!(tmp & PIPECONF_ENABLE))
  9273.                 return false;
  9274.  
  9275.         switch (tmp & PIPECONF_BPC_MASK) {
  9276.         case PIPECONF_6BPC:
  9277.                 pipe_config->pipe_bpp = 18;
  9278.                 break;
  9279.         case PIPECONF_8BPC:
  9280.                 pipe_config->pipe_bpp = 24;
  9281.                 break;
  9282.         case PIPECONF_10BPC:
  9283.                 pipe_config->pipe_bpp = 30;
  9284.                 break;
  9285.         case PIPECONF_12BPC:
  9286.                 pipe_config->pipe_bpp = 36;
  9287.                 break;
  9288.         default:
  9289.                 break;
  9290.         }
  9291.  
  9292.         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
  9293.                 pipe_config->limited_color_range = true;
  9294.  
  9295.         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  9296.                 struct intel_shared_dpll *pll;
  9297.  
  9298.                 pipe_config->has_pch_encoder = true;
  9299.  
  9300.                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  9301.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9302.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9303.  
  9304.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9305.  
  9306.                 if (HAS_PCH_IBX(dev_priv->dev)) {
  9307.                         pipe_config->shared_dpll =
  9308.                                 (enum intel_dpll_id) crtc->pipe;
  9309.                 } else {
  9310.                         tmp = I915_READ(PCH_DPLL_SEL);
  9311.                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  9312.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  9313.                         else
  9314.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  9315.                 }
  9316.  
  9317.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9318.  
  9319.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9320.                                            &pipe_config->dpll_hw_state));
  9321.  
  9322.                 tmp = pipe_config->dpll_hw_state.dpll;
  9323.                 pipe_config->pixel_multiplier =
  9324.                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  9325.                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  9326.  
  9327.                 ironlake_pch_clock_get(crtc, pipe_config);
  9328.         } else {
  9329.                 pipe_config->pixel_multiplier = 1;
  9330.         }
  9331.  
  9332.         intel_get_pipe_timings(crtc, pipe_config);
  9333.  
  9334.         ironlake_get_pfit_config(crtc, pipe_config);
  9335.  
  9336.         return true;
  9337. }
  9338.  
  9339. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  9340. {
  9341.         struct drm_device *dev = dev_priv->dev;
  9342.         struct intel_crtc *crtc;
  9343.  
  9344.         for_each_intel_crtc(dev, crtc)
  9345.                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
  9346.                      pipe_name(crtc->pipe));
  9347.  
  9348.         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  9349.         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
  9350.         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
  9351.         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
  9352.         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  9353.         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  9354.              "CPU PWM1 enabled\n");
  9355.         if (IS_HASWELL(dev))
  9356.                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  9357.                      "CPU PWM2 enabled\n");
  9358.         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  9359.              "PCH PWM1 enabled\n");
  9360.         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  9361.              "Utility pin enabled\n");
  9362.         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  9363.  
  9364.         /*
  9365.          * In theory we can still leave IRQs enabled, as long as only the HPD
  9366.          * interrupts remain enabled. We used to check for that, but since it's
  9367.          * gen-specific and since we only disable LCPLL after we fully disable
  9368.          * the interrupts, the check below should be enough.
  9369.          */
  9370.         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
  9371. }
  9372.  
  9373. static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
  9374. {
  9375.         struct drm_device *dev = dev_priv->dev;
  9376.  
  9377.         if (IS_HASWELL(dev))
  9378.                 return I915_READ(D_COMP_HSW);
  9379.         else
  9380.                 return I915_READ(D_COMP_BDW);
  9381. }
  9382.  
  9383. static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
  9384. {
  9385.         struct drm_device *dev = dev_priv->dev;
  9386.  
  9387.         if (IS_HASWELL(dev)) {
  9388.                 mutex_lock(&dev_priv->rps.hw_lock);
  9389.                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
  9390.                                             val))
  9391.                         DRM_ERROR("Failed to write to D_COMP\n");
  9392.                 mutex_unlock(&dev_priv->rps.hw_lock);
  9393.         } else {
  9394.                 I915_WRITE(D_COMP_BDW, val);
  9395.                 POSTING_READ(D_COMP_BDW);
  9396.         }
  9397. }
  9398.  
  9399. /*
  9400.  * This function implements pieces of two sequences from BSpec:
  9401.  * - Sequence for display software to disable LCPLL
  9402.  * - Sequence for display software to allow package C8+
  9403.  * The steps implemented here are just the steps that actually touch the LCPLL
  9404.  * register. Callers should take care of disabling all the display engine
  9405.  * functions, doing the mode unset, fixing interrupts, etc.
  9406.  */
  9407. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  9408.                               bool switch_to_fclk, bool allow_power_down)
  9409. {
  9410.         uint32_t val;
  9411.  
  9412.         assert_can_disable_lcpll(dev_priv);
  9413.  
  9414.         val = I915_READ(LCPLL_CTL);
  9415.  
  9416.         if (switch_to_fclk) {
  9417.                 val |= LCPLL_CD_SOURCE_FCLK;
  9418.                 I915_WRITE(LCPLL_CTL, val);
  9419.  
  9420.                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9421.                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9422.                         DRM_ERROR("Switching to FCLK failed\n");
  9423.  
  9424.                 val = I915_READ(LCPLL_CTL);
  9425.         }
  9426.  
  9427.         val |= LCPLL_PLL_DISABLE;
  9428.         I915_WRITE(LCPLL_CTL, val);
  9429.         POSTING_READ(LCPLL_CTL);
  9430.  
  9431.         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  9432.                 DRM_ERROR("LCPLL still locked\n");
  9433.  
  9434.         val = hsw_read_dcomp(dev_priv);
  9435.         val |= D_COMP_COMP_DISABLE;
  9436.         hsw_write_dcomp(dev_priv, val);
  9437.         ndelay(100);
  9438.  
  9439.         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
  9440.                      1))
  9441.                 DRM_ERROR("D_COMP RCOMP still in progress\n");
  9442.  
  9443.         if (allow_power_down) {
  9444.                 val = I915_READ(LCPLL_CTL);
  9445.                 val |= LCPLL_POWER_DOWN_ALLOW;
  9446.                 I915_WRITE(LCPLL_CTL, val);
  9447.                 POSTING_READ(LCPLL_CTL);
  9448.         }
  9449. }
  9450.  
  9451. /*
  9452.  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  9453.  * source.
  9454.  */
  9455. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  9456. {
  9457.         uint32_t val;
  9458.  
  9459.         val = I915_READ(LCPLL_CTL);
  9460.  
  9461.         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  9462.                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  9463.                 return;
  9464.  
  9465.         /*
  9466.          * Make sure we're not on PC8 state before disabling PC8, otherwise
  9467.          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
  9468.          */
  9469.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  9470.  
  9471.         if (val & LCPLL_POWER_DOWN_ALLOW) {
  9472.                 val &= ~LCPLL_POWER_DOWN_ALLOW;
  9473.                 I915_WRITE(LCPLL_CTL, val);
  9474.                 POSTING_READ(LCPLL_CTL);
  9475.         }
  9476.  
  9477.         val = hsw_read_dcomp(dev_priv);
  9478.         val |= D_COMP_COMP_FORCE;
  9479.         val &= ~D_COMP_COMP_DISABLE;
  9480.         hsw_write_dcomp(dev_priv, val);
  9481.  
  9482.         val = I915_READ(LCPLL_CTL);
  9483.         val &= ~LCPLL_PLL_DISABLE;
  9484.         I915_WRITE(LCPLL_CTL, val);
  9485.  
  9486.         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  9487.                 DRM_ERROR("LCPLL not locked yet\n");
  9488.  
  9489.         if (val & LCPLL_CD_SOURCE_FCLK) {
  9490.                 val = I915_READ(LCPLL_CTL);
  9491.                 val &= ~LCPLL_CD_SOURCE_FCLK;
  9492.                 I915_WRITE(LCPLL_CTL, val);
  9493.  
  9494.                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9495.                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9496.                         DRM_ERROR("Switching back to LCPLL failed\n");
  9497.         }
  9498.  
  9499.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  9500.         intel_update_cdclk(dev_priv->dev);
  9501. }
  9502.  
  9503. /*
  9504.  * Package states C8 and deeper are really deep PC states that can only be
  9505.  * reached when all the devices on the system allow it, so even if the graphics
  9506.  * device allows PC8+, it doesn't mean the system will actually get to these
  9507.  * states. Our driver only allows PC8+ when going into runtime PM.
  9508.  *
  9509.  * The requirements for PC8+ are that all the outputs are disabled, the power
  9510.  * well is disabled and most interrupts are disabled, and these are also
  9511.  * requirements for runtime PM. When these conditions are met, we manually do
  9512.  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
  9513.  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
  9514.  * hang the machine.
  9515.  *
  9516.  * When we really reach PC8 or deeper states (not just when we allow it) we lose
  9517.  * the state of some registers, so when we come back from PC8+ we need to
  9518.  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
  9519.  * need to take care of the registers kept by RC6. Notice that this happens even
  9520.  * if we don't put the device in PCI D3 state (which is what currently happens
  9521.  * because of the runtime PM support).
  9522.  *
  9523.  * For more, read "Display Sequences for Package C8" on the hardware
  9524.  * documentation.
  9525.  */
  9526. void hsw_enable_pc8(struct drm_i915_private *dev_priv)
  9527. {
  9528.         struct drm_device *dev = dev_priv->dev;
  9529.         uint32_t val;
  9530.  
  9531.         DRM_DEBUG_KMS("Enabling package C8+\n");
  9532.  
  9533.         if (HAS_PCH_LPT_LP(dev)) {
  9534.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9535.                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  9536.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9537.         }
  9538.  
  9539.         lpt_disable_clkout_dp(dev);
  9540.         hsw_disable_lcpll(dev_priv, true, true);
  9541. }
  9542.  
  9543. void hsw_disable_pc8(struct drm_i915_private *dev_priv)
  9544. {
  9545.         struct drm_device *dev = dev_priv->dev;
  9546.         uint32_t val;
  9547.  
  9548.         DRM_DEBUG_KMS("Disabling package C8+\n");
  9549.  
  9550.         hsw_restore_lcpll(dev_priv);
  9551.         lpt_init_pch_refclk(dev);
  9552.  
  9553.         if (HAS_PCH_LPT_LP(dev)) {
  9554.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9555.                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  9556.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9557.         }
  9558.  
  9559.         intel_prepare_ddi(dev);
  9560. }
  9561.  
  9562. static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9563. {
  9564.         struct drm_device *dev = old_state->dev;
  9565.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  9566.  
  9567.         broxton_set_cdclk(dev, req_cdclk);
  9568. }
  9569.  
  9570. /* compute the max rate for new configuration */
  9571. static int ilk_max_pixel_rate(struct drm_atomic_state *state)
  9572. {
  9573.         struct intel_crtc *intel_crtc;
  9574.         struct intel_crtc_state *crtc_state;
  9575.         int max_pixel_rate = 0;
  9576.  
  9577.         for_each_intel_crtc(state->dev, intel_crtc) {
  9578.                 int pixel_rate;
  9579.  
  9580.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  9581.                 if (IS_ERR(crtc_state))
  9582.                         return PTR_ERR(crtc_state);
  9583.  
  9584.                 if (!crtc_state->base.enable)
  9585.                         continue;
  9586.  
  9587.                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
  9588.  
  9589.                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
  9590.                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
  9591.                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
  9592.  
  9593.                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
  9594.         }
  9595.  
  9596.         return max_pixel_rate;
  9597. }
  9598.  
  9599. static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
  9600. {
  9601.         struct drm_i915_private *dev_priv = dev->dev_private;
  9602.         uint32_t val, data;
  9603.         int ret;
  9604.  
  9605.         if (WARN((I915_READ(LCPLL_CTL) &
  9606.                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
  9607.                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
  9608.                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
  9609.                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
  9610.                  "trying to change cdclk frequency with cdclk not enabled\n"))
  9611.                 return;
  9612.  
  9613.         mutex_lock(&dev_priv->rps.hw_lock);
  9614.         ret = sandybridge_pcode_write(dev_priv,
  9615.                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
  9616.         mutex_unlock(&dev_priv->rps.hw_lock);
  9617.         if (ret) {
  9618.                 DRM_ERROR("failed to inform pcode about cdclk change\n");
  9619.                 return;
  9620.         }
  9621.  
  9622.         val = I915_READ(LCPLL_CTL);
  9623.         val |= LCPLL_CD_SOURCE_FCLK;
  9624.         I915_WRITE(LCPLL_CTL, val);
  9625.  
  9626.         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9627.                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9628.                 DRM_ERROR("Switching to FCLK failed\n");
  9629.  
  9630.         val = I915_READ(LCPLL_CTL);
  9631.         val &= ~LCPLL_CLK_FREQ_MASK;
  9632.  
  9633.         switch (cdclk) {
  9634.         case 450000:
  9635.                 val |= LCPLL_CLK_FREQ_450;
  9636.                 data = 0;
  9637.                 break;
  9638.         case 540000:
  9639.                 val |= LCPLL_CLK_FREQ_54O_BDW;
  9640.                 data = 1;
  9641.                 break;
  9642.         case 337500:
  9643.                 val |= LCPLL_CLK_FREQ_337_5_BDW;
  9644.                 data = 2;
  9645.                 break;
  9646.         case 675000:
  9647.                 val |= LCPLL_CLK_FREQ_675_BDW;
  9648.                 data = 3;
  9649.                 break;
  9650.         default:
  9651.                 WARN(1, "invalid cdclk frequency\n");
  9652.                 return;
  9653.         }
  9654.  
  9655.         I915_WRITE(LCPLL_CTL, val);
  9656.  
  9657.         val = I915_READ(LCPLL_CTL);
  9658.         val &= ~LCPLL_CD_SOURCE_FCLK;
  9659.         I915_WRITE(LCPLL_CTL, val);
  9660.  
  9661.         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9662.                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9663.                 DRM_ERROR("Switching back to LCPLL failed\n");
  9664.  
  9665.         mutex_lock(&dev_priv->rps.hw_lock);
  9666.         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
  9667.         mutex_unlock(&dev_priv->rps.hw_lock);
  9668.  
  9669.         intel_update_cdclk(dev);
  9670.  
  9671.         WARN(cdclk != dev_priv->cdclk_freq,
  9672.              "cdclk requested %d kHz but got %d kHz\n",
  9673.              cdclk, dev_priv->cdclk_freq);
  9674. }
  9675.  
  9676. static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
  9677. {
  9678.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  9679.         int max_pixclk = ilk_max_pixel_rate(state);
  9680.         int cdclk;
  9681.  
  9682.         /*
  9683.          * FIXME should also account for plane ratio
  9684.          * once 64bpp pixel formats are supported.
  9685.          */
  9686.         if (max_pixclk > 540000)
  9687.                 cdclk = 675000;
  9688.         else if (max_pixclk > 450000)
  9689.                 cdclk = 540000;
  9690.         else if (max_pixclk > 337500)
  9691.                 cdclk = 450000;
  9692.         else
  9693.                 cdclk = 337500;
  9694.  
  9695.         /*
  9696.          * FIXME move the cdclk caclulation to
  9697.          * compute_config() so we can fail gracegully.
  9698.          */
  9699.         if (cdclk > dev_priv->max_cdclk_freq) {
  9700.                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
  9701.                           cdclk, dev_priv->max_cdclk_freq);
  9702.                 cdclk = dev_priv->max_cdclk_freq;
  9703.         }
  9704.  
  9705.         to_intel_atomic_state(state)->cdclk = cdclk;
  9706.  
  9707.         return 0;
  9708. }
  9709.  
  9710. static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9711. {
  9712.         struct drm_device *dev = old_state->dev;
  9713.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  9714.  
  9715.         broadwell_set_cdclk(dev, req_cdclk);
  9716. }
  9717.  
  9718. static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
  9719.                                       struct intel_crtc_state *crtc_state)
  9720. {
  9721.         if (!intel_ddi_pll_select(crtc, crtc_state))
  9722.                 return -EINVAL;
  9723.  
  9724.         crtc->lowfreq_avail = false;
  9725.  
  9726.         return 0;
  9727. }
  9728.  
  9729. static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
  9730.                                 enum port port,
  9731.                                 struct intel_crtc_state *pipe_config)
  9732. {
  9733.         switch (port) {
  9734.         case PORT_A:
  9735.                 pipe_config->ddi_pll_sel = SKL_DPLL0;
  9736.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9737.                 break;
  9738.         case PORT_B:
  9739.                 pipe_config->ddi_pll_sel = SKL_DPLL1;
  9740.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9741.                 break;
  9742.         case PORT_C:
  9743.                 pipe_config->ddi_pll_sel = SKL_DPLL2;
  9744.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9745.                 break;
  9746.         default:
  9747.                 DRM_ERROR("Incorrect port type\n");
  9748.         }
  9749. }
  9750.  
  9751. static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
  9752.                                 enum port port,
  9753.                                 struct intel_crtc_state *pipe_config)
  9754. {
  9755.         u32 temp, dpll_ctl1;
  9756.  
  9757.         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
  9758.         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
  9759.  
  9760.         switch (pipe_config->ddi_pll_sel) {
  9761.         case SKL_DPLL0:
  9762.                 /*
  9763.                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
  9764.                  * of the shared DPLL framework and thus needs to be read out
  9765.                  * separately
  9766.                  */
  9767.                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
  9768.                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
  9769.                 break;
  9770.         case SKL_DPLL1:
  9771.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9772.                 break;
  9773.         case SKL_DPLL2:
  9774.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9775.                 break;
  9776.         case SKL_DPLL3:
  9777.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9778.                 break;
  9779.         }
  9780. }
  9781.  
  9782. static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
  9783.                                 enum port port,
  9784.                                 struct intel_crtc_state *pipe_config)
  9785. {
  9786.         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
  9787.  
  9788.         switch (pipe_config->ddi_pll_sel) {
  9789.         case PORT_CLK_SEL_WRPLL1:
  9790.                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
  9791.                 break;
  9792.         case PORT_CLK_SEL_WRPLL2:
  9793.                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
  9794.                 break;
  9795.         case PORT_CLK_SEL_SPLL:
  9796.                 pipe_config->shared_dpll = DPLL_ID_SPLL;
  9797.         }
  9798. }
  9799.  
  9800. static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
  9801.                                        struct intel_crtc_state *pipe_config)
  9802. {
  9803.         struct drm_device *dev = crtc->base.dev;
  9804.         struct drm_i915_private *dev_priv = dev->dev_private;
  9805.         struct intel_shared_dpll *pll;
  9806.         enum port port;
  9807.         uint32_t tmp;
  9808.  
  9809.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  9810.  
  9811.         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
  9812.  
  9813.         if (IS_SKYLAKE(dev))
  9814.                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
  9815.         else if (IS_BROXTON(dev))
  9816.                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
  9817.         else
  9818.                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
  9819.  
  9820.         if (pipe_config->shared_dpll >= 0) {
  9821.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9822.  
  9823.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9824.                                            &pipe_config->dpll_hw_state));
  9825.         }
  9826.  
  9827.         /*
  9828.          * Haswell has only FDI/PCH transcoder A. It is which is connected to
  9829.          * DDI E. So just check whether this pipe is wired to DDI E and whether
  9830.          * the PCH transcoder is on.
  9831.          */
  9832.         if (INTEL_INFO(dev)->gen < 9 &&
  9833.             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  9834.                 pipe_config->has_pch_encoder = true;
  9835.  
  9836.                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  9837.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9838.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9839.  
  9840.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9841.         }
  9842. }
  9843.  
  9844. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  9845.                                     struct intel_crtc_state *pipe_config)
  9846. {
  9847.         struct drm_device *dev = crtc->base.dev;
  9848.         struct drm_i915_private *dev_priv = dev->dev_private;
  9849.         enum intel_display_power_domain pfit_domain;
  9850.         uint32_t tmp;
  9851.  
  9852.         if (!intel_display_power_is_enabled(dev_priv,
  9853.                                          POWER_DOMAIN_PIPE(crtc->pipe)))
  9854.                 return false;
  9855.  
  9856.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9857.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9858.  
  9859.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  9860.         if (tmp & TRANS_DDI_FUNC_ENABLE) {
  9861.                 enum pipe trans_edp_pipe;
  9862.                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  9863.                 default:
  9864.                         WARN(1, "unknown pipe linked to edp transcoder\n");
  9865.                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
  9866.                 case TRANS_DDI_EDP_INPUT_A_ON:
  9867.                         trans_edp_pipe = PIPE_A;
  9868.                         break;
  9869.                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
  9870.                         trans_edp_pipe = PIPE_B;
  9871.                         break;
  9872.                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
  9873.                         trans_edp_pipe = PIPE_C;
  9874.                         break;
  9875.                 }
  9876.  
  9877.                 if (trans_edp_pipe == crtc->pipe)
  9878.                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
  9879.         }
  9880.  
  9881.         if (!intel_display_power_is_enabled(dev_priv,
  9882.                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  9883.                 return false;
  9884.  
  9885.         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  9886.         if (!(tmp & PIPECONF_ENABLE))
  9887.                 return false;
  9888.  
  9889.         haswell_get_ddi_port_state(crtc, pipe_config);
  9890.  
  9891.         intel_get_pipe_timings(crtc, pipe_config);
  9892.  
  9893.         if (INTEL_INFO(dev)->gen >= 9) {
  9894.                 skl_init_scalers(dev, crtc, pipe_config);
  9895.         }
  9896.  
  9897.         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  9898.  
  9899.         if (INTEL_INFO(dev)->gen >= 9) {
  9900.                 pipe_config->scaler_state.scaler_id = -1;
  9901.                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
  9902.         }
  9903.  
  9904.         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
  9905.                 if (INTEL_INFO(dev)->gen >= 9)
  9906.                         skylake_get_pfit_config(crtc, pipe_config);
  9907.                 else
  9908.                         ironlake_get_pfit_config(crtc, pipe_config);
  9909.         }
  9910.  
  9911.         if (IS_HASWELL(dev))
  9912.                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  9913.                         (I915_READ(IPS_CTL) & IPS_ENABLE);
  9914.  
  9915.         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
  9916.                 pipe_config->pixel_multiplier =
  9917.                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
  9918.         } else {
  9919.                 pipe_config->pixel_multiplier = 1;
  9920.         }
  9921.  
  9922.         return true;
  9923. }
  9924.  
  9925. static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
  9926. {
  9927.         struct drm_device *dev = crtc->dev;
  9928.         struct drm_i915_private *dev_priv = dev->dev_private;
  9929.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  9930.         uint32_t cntl = 0, size = 0;
  9931.  
  9932.         if (on) {
  9933.                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
  9934.                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
  9935.                 unsigned int stride = roundup_pow_of_two(width) * 4;
  9936.  
  9937.                 switch (stride) {
  9938.                 default:
  9939.                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
  9940.                                   width, stride);
  9941.                         stride = 256;
  9942.                         /* fallthrough */
  9943.                 case 256:
  9944.                 case 512:
  9945.                 case 1024:
  9946.                 case 2048:
  9947.                         break;
  9948.                 }
  9949.  
  9950.                 cntl |= CURSOR_ENABLE |
  9951.                         CURSOR_GAMMA_ENABLE |
  9952.                         CURSOR_FORMAT_ARGB |
  9953.                         CURSOR_STRIDE(stride);
  9954.  
  9955.                 size = (height << 12) | width;
  9956.         }
  9957.  
  9958.         if (intel_crtc->cursor_cntl != 0 &&
  9959.             (intel_crtc->cursor_base != base ||
  9960.              intel_crtc->cursor_size != size ||
  9961.              intel_crtc->cursor_cntl != cntl)) {
  9962.                 /* On these chipsets we can only modify the base/size/stride
  9963.                  * whilst the cursor is disabled.
  9964.                  */
  9965.                 I915_WRITE(CURCNTR(PIPE_A), 0);
  9966.                 POSTING_READ(CURCNTR(PIPE_A));
  9967.                 intel_crtc->cursor_cntl = 0;
  9968.         }
  9969.  
  9970.         if (intel_crtc->cursor_base != base) {
  9971.                 I915_WRITE(CURBASE(PIPE_A), base);
  9972.                 intel_crtc->cursor_base = base;
  9973.         }
  9974.  
  9975.         if (intel_crtc->cursor_size != size) {
  9976.                 I915_WRITE(CURSIZE, size);
  9977.                 intel_crtc->cursor_size = size;
  9978.         }
  9979.  
  9980.         if (intel_crtc->cursor_cntl != cntl) {
  9981.                 I915_WRITE(CURCNTR(PIPE_A), cntl);
  9982.                 POSTING_READ(CURCNTR(PIPE_A));
  9983.                 intel_crtc->cursor_cntl = cntl;
  9984.         }
  9985. }
  9986.  
  9987. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
  9988. {
  9989.         struct drm_device *dev = crtc->dev;
  9990.         struct drm_i915_private *dev_priv = dev->dev_private;
  9991.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  9992.         int pipe = intel_crtc->pipe;
  9993.         uint32_t cntl = 0;
  9994.  
  9995.         if (on) {
  9996.                 cntl = MCURSOR_GAMMA_ENABLE;
  9997.                 switch (intel_crtc->base.cursor->state->crtc_w) {
  9998.                         case 64:
  9999.                                 cntl |= CURSOR_MODE_64_ARGB_AX;
  10000.                                 break;
  10001.                         case 128:
  10002.                                 cntl |= CURSOR_MODE_128_ARGB_AX;
  10003.                                 break;
  10004.                         case 256:
  10005.                                 cntl |= CURSOR_MODE_256_ARGB_AX;
  10006.                                 break;
  10007.                         default:
  10008.                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
  10009.                                 return;
  10010.                 }
  10011.                 cntl |= pipe << 28; /* Connect to correct pipe */
  10012.  
  10013.                 if (HAS_DDI(dev))
  10014.                         cntl |= CURSOR_PIPE_CSC_ENABLE;
  10015.         }
  10016.  
  10017.         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
  10018.                 cntl |= CURSOR_ROTATE_180;
  10019.  
  10020.         if (intel_crtc->cursor_cntl != cntl) {
  10021.                 I915_WRITE(CURCNTR(pipe), cntl);
  10022.                 POSTING_READ(CURCNTR(pipe));
  10023.                 intel_crtc->cursor_cntl = cntl;
  10024.         }
  10025.  
  10026.         /* and commit changes on next vblank */
  10027.         I915_WRITE(CURBASE(pipe), base);
  10028.         POSTING_READ(CURBASE(pipe));
  10029.  
  10030.         intel_crtc->cursor_base = base;
  10031. }
  10032.  
  10033. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  10034. void intel_crtc_update_cursor(struct drm_crtc *crtc,
  10035.                                      bool on)
  10036. {
  10037.         struct drm_device *dev = crtc->dev;
  10038.         struct drm_i915_private *dev_priv = dev->dev_private;
  10039.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10040.         int pipe = intel_crtc->pipe;
  10041.         struct drm_plane_state *cursor_state = crtc->cursor->state;
  10042.         int x = cursor_state->crtc_x;
  10043.         int y = cursor_state->crtc_y;
  10044.         u32 base = 0, pos = 0;
  10045.  
  10046.         base = intel_crtc->cursor_addr;
  10047.  
  10048.         if (x >= intel_crtc->config->pipe_src_w)
  10049.                 on = false;
  10050.  
  10051.         if (y >= intel_crtc->config->pipe_src_h)
  10052.                 on = false;
  10053.  
  10054.         if (x < 0) {
  10055.                 if (x + cursor_state->crtc_w <= 0)
  10056.                         on = false;
  10057.  
  10058.                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  10059.                 x = -x;
  10060.         }
  10061.         pos |= x << CURSOR_X_SHIFT;
  10062.  
  10063.         if (y < 0) {
  10064.                 if (y + cursor_state->crtc_h <= 0)
  10065.                         on = false;
  10066.  
  10067.                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  10068.                 y = -y;
  10069.         }
  10070.         pos |= y << CURSOR_Y_SHIFT;
  10071.  
  10072.         I915_WRITE(CURPOS(pipe), pos);
  10073.  
  10074.         /* ILK+ do this automagically */
  10075.         if (HAS_GMCH_DISPLAY(dev) &&
  10076.             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
  10077.                 base += (cursor_state->crtc_h *
  10078.                          cursor_state->crtc_w - 1) * 4;
  10079.         }
  10080.  
  10081.         if (IS_845G(dev) || IS_I865G(dev))
  10082.                 i845_update_cursor(crtc, base, on);
  10083.         else
  10084.                 i9xx_update_cursor(crtc, base, on);
  10085. }
  10086.  
  10087. static bool cursor_size_ok(struct drm_device *dev,
  10088.                            uint32_t width, uint32_t height)
  10089. {
  10090.         if (width == 0 || height == 0)
  10091.                 return false;
  10092.  
  10093.         /*
  10094.          * 845g/865g are special in that they are only limited by
  10095.          * the width of their cursors, the height is arbitrary up to
  10096.          * the precision of the register. Everything else requires
  10097.          * square cursors, limited to a few power-of-two sizes.
  10098.          */
  10099.         if (IS_845G(dev) || IS_I865G(dev)) {
  10100.                 if ((width & 63) != 0)
  10101.                         return false;
  10102.  
  10103.                 if (width > (IS_845G(dev) ? 64 : 512))
  10104.                         return false;
  10105.  
  10106.                 if (height > 1023)
  10107.                         return false;
  10108.         } else {
  10109.                 switch (width | height) {
  10110.                 case 256:
  10111.                 case 128:
  10112.                         if (IS_GEN2(dev))
  10113.                                 return false;
  10114.                 case 64:
  10115.                         break;
  10116.                 default:
  10117.                         return false;
  10118.                 }
  10119.         }
  10120.  
  10121.         return true;
  10122. }
  10123.  
  10124. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  10125.                                  u16 *blue, uint32_t start, uint32_t size)
  10126. {
  10127.         int end = (start + size > 256) ? 256 : start + size, i;
  10128.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10129.  
  10130.         for (i = start; i < end; i++) {
  10131.                 intel_crtc->lut_r[i] = red[i] >> 8;
  10132.                 intel_crtc->lut_g[i] = green[i] >> 8;
  10133.                 intel_crtc->lut_b[i] = blue[i] >> 8;
  10134.         }
  10135.  
  10136.         intel_crtc_load_lut(crtc);
  10137. }
  10138.  
  10139. /* VESA 640x480x72Hz mode to set on the pipe */
  10140. static struct drm_display_mode load_detect_mode = {
  10141.         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  10142.                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  10143. };
  10144.  
  10145. struct drm_framebuffer *
  10146. __intel_framebuffer_create(struct drm_device *dev,
  10147.                            struct drm_mode_fb_cmd2 *mode_cmd,
  10148.                            struct drm_i915_gem_object *obj)
  10149. {
  10150.         struct intel_framebuffer *intel_fb;
  10151.         int ret;
  10152.  
  10153.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  10154.         if (!intel_fb) {
  10155.                 drm_gem_object_unreference(&obj->base);
  10156.                 return ERR_PTR(-ENOMEM);
  10157.         }
  10158.  
  10159.         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  10160.         if (ret)
  10161.                 goto err;
  10162.  
  10163.         return &intel_fb->base;
  10164. err:
  10165.         drm_gem_object_unreference(&obj->base);
  10166.         kfree(intel_fb);
  10167.  
  10168.         return ERR_PTR(ret);
  10169. }
  10170.  
  10171. static struct drm_framebuffer *
  10172. intel_framebuffer_create(struct drm_device *dev,
  10173.                          struct drm_mode_fb_cmd2 *mode_cmd,
  10174.                          struct drm_i915_gem_object *obj)
  10175. {
  10176.         struct drm_framebuffer *fb;
  10177.         int ret;
  10178.  
  10179.         ret = i915_mutex_lock_interruptible(dev);
  10180.         if (ret)
  10181.                 return ERR_PTR(ret);
  10182.         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
  10183.         mutex_unlock(&dev->struct_mutex);
  10184.  
  10185.         return fb;
  10186. }
  10187.  
  10188. static u32
  10189. intel_framebuffer_pitch_for_width(int width, int bpp)
  10190. {
  10191.         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  10192.         return ALIGN(pitch, 64);
  10193. }
  10194.  
  10195. static u32
  10196. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  10197. {
  10198.         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  10199.         return PAGE_ALIGN(pitch * mode->vdisplay);
  10200. }
  10201.  
  10202. static struct drm_framebuffer *
  10203. intel_framebuffer_create_for_mode(struct drm_device *dev,
  10204.                                   struct drm_display_mode *mode,
  10205.                                   int depth, int bpp)
  10206. {
  10207.         struct drm_i915_gem_object *obj;
  10208.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  10209.  
  10210.         obj = i915_gem_alloc_object(dev,
  10211.                                     intel_framebuffer_size_for_mode(mode, bpp));
  10212.         if (obj == NULL)
  10213.                 return ERR_PTR(-ENOMEM);
  10214.  
  10215.         mode_cmd.width = mode->hdisplay;
  10216.         mode_cmd.height = mode->vdisplay;
  10217.         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  10218.                                                                 bpp);
  10219.         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  10220.  
  10221.         return intel_framebuffer_create(dev, &mode_cmd, obj);
  10222. }
  10223.  
  10224. static struct drm_framebuffer *
  10225. mode_fits_in_fbdev(struct drm_device *dev,
  10226.                    struct drm_display_mode *mode)
  10227. {
  10228. #ifdef CONFIG_DRM_FBDEV_EMULATION
  10229.         struct drm_i915_private *dev_priv = dev->dev_private;
  10230.         struct drm_i915_gem_object *obj;
  10231.         struct drm_framebuffer *fb;
  10232.  
  10233.         if (!dev_priv->fbdev)
  10234.                 return NULL;
  10235.  
  10236.         if (!dev_priv->fbdev->fb)
  10237.                 return NULL;
  10238.  
  10239.         obj = dev_priv->fbdev->fb->obj;
  10240.         BUG_ON(!obj);
  10241.  
  10242.         fb = &dev_priv->fbdev->fb->base;
  10243.         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  10244.                                                                fb->bits_per_pixel))
  10245.                 return NULL;
  10246.  
  10247.         if (obj->base.size < mode->vdisplay * fb->pitches[0])
  10248.                 return NULL;
  10249.  
  10250.         return fb;
  10251. #else
  10252.         return NULL;
  10253. #endif
  10254. }
  10255.  
  10256. static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
  10257.                                            struct drm_crtc *crtc,
  10258.                                            struct drm_display_mode *mode,
  10259.                                            struct drm_framebuffer *fb,
  10260.                                            int x, int y)
  10261. {
  10262.         struct drm_plane_state *plane_state;
  10263.         int hdisplay, vdisplay;
  10264.         int ret;
  10265.  
  10266.         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
  10267.         if (IS_ERR(plane_state))
  10268.                 return PTR_ERR(plane_state);
  10269.  
  10270.         if (mode)
  10271.                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
  10272.         else
  10273.                 hdisplay = vdisplay = 0;
  10274.  
  10275.         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
  10276.         if (ret)
  10277.                 return ret;
  10278.         drm_atomic_set_fb_for_plane(plane_state, fb);
  10279.         plane_state->crtc_x = 0;
  10280.         plane_state->crtc_y = 0;
  10281.         plane_state->crtc_w = hdisplay;
  10282.         plane_state->crtc_h = vdisplay;
  10283.         plane_state->src_x = x << 16;
  10284.         plane_state->src_y = y << 16;
  10285.         plane_state->src_w = hdisplay << 16;
  10286.         plane_state->src_h = vdisplay << 16;
  10287.  
  10288.         return 0;
  10289. }
  10290.  
  10291. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  10292.                                 struct drm_display_mode *mode,
  10293.                                 struct intel_load_detect_pipe *old,
  10294.                                 struct drm_modeset_acquire_ctx *ctx)
  10295. {
  10296.         struct intel_crtc *intel_crtc;
  10297.         struct intel_encoder *intel_encoder =
  10298.                 intel_attached_encoder(connector);
  10299.         struct drm_crtc *possible_crtc;
  10300.         struct drm_encoder *encoder = &intel_encoder->base;
  10301.         struct drm_crtc *crtc = NULL;
  10302.         struct drm_device *dev = encoder->dev;
  10303.         struct drm_framebuffer *fb;
  10304.         struct drm_mode_config *config = &dev->mode_config;
  10305.         struct drm_atomic_state *state = NULL;
  10306.         struct drm_connector_state *connector_state;
  10307.         struct intel_crtc_state *crtc_state;
  10308.         int ret, i = -1;
  10309.  
  10310.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10311.                       connector->base.id, connector->name,
  10312.                       encoder->base.id, encoder->name);
  10313.  
  10314. retry:
  10315.         ret = drm_modeset_lock(&config->connection_mutex, ctx);
  10316.         if (ret)
  10317.                 goto fail;
  10318.  
  10319.         /*
  10320.          * Algorithm gets a little messy:
  10321.          *
  10322.          *   - if the connector already has an assigned crtc, use it (but make
  10323.          *     sure it's on first)
  10324.          *
  10325.          *   - try to find the first unused crtc that can drive this connector,
  10326.          *     and use that if we find one
  10327.          */
  10328.  
  10329.         /* See if we already have a CRTC for this connector */
  10330.         if (encoder->crtc) {
  10331.                 crtc = encoder->crtc;
  10332.  
  10333.                 ret = drm_modeset_lock(&crtc->mutex, ctx);
  10334.                 if (ret)
  10335.                         goto fail;
  10336.                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
  10337.                 if (ret)
  10338.                         goto fail;
  10339.  
  10340.                 old->dpms_mode = connector->dpms;
  10341.                 old->load_detect_temp = false;
  10342.  
  10343.                 /* Make sure the crtc and connector are running */
  10344.                 if (connector->dpms != DRM_MODE_DPMS_ON)
  10345.                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  10346.  
  10347.                 return true;
  10348.         }
  10349.  
  10350.         /* Find an unused one (if possible) */
  10351.         for_each_crtc(dev, possible_crtc) {
  10352.                 i++;
  10353.                 if (!(encoder->possible_crtcs & (1 << i)))
  10354.                         continue;
  10355.                 if (possible_crtc->state->enable)
  10356.                         continue;
  10357.  
  10358.                 crtc = possible_crtc;
  10359.                 break;
  10360.         }
  10361.  
  10362.         /*
  10363.          * If we didn't find an unused CRTC, don't use any.
  10364.          */
  10365.         if (!crtc) {
  10366.                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
  10367.                 goto fail;
  10368.         }
  10369.  
  10370.         ret = drm_modeset_lock(&crtc->mutex, ctx);
  10371.         if (ret)
  10372.                 goto fail;
  10373.         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
  10374.         if (ret)
  10375.                 goto fail;
  10376.  
  10377.         intel_crtc = to_intel_crtc(crtc);
  10378.         old->dpms_mode = connector->dpms;
  10379.         old->load_detect_temp = true;
  10380.         old->release_fb = NULL;
  10381.  
  10382.         state = drm_atomic_state_alloc(dev);
  10383.         if (!state)
  10384.                 return false;
  10385.  
  10386.         state->acquire_ctx = ctx;
  10387.  
  10388.         connector_state = drm_atomic_get_connector_state(state, connector);
  10389.         if (IS_ERR(connector_state)) {
  10390.                 ret = PTR_ERR(connector_state);
  10391.                 goto fail;
  10392.         }
  10393.  
  10394.         connector_state->crtc = crtc;
  10395.         connector_state->best_encoder = &intel_encoder->base;
  10396.  
  10397.         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  10398.         if (IS_ERR(crtc_state)) {
  10399.                 ret = PTR_ERR(crtc_state);
  10400.                 goto fail;
  10401.         }
  10402.  
  10403.         crtc_state->base.active = crtc_state->base.enable = true;
  10404.  
  10405.         if (!mode)
  10406.                 mode = &load_detect_mode;
  10407.  
  10408.         /* We need a framebuffer large enough to accommodate all accesses
  10409.          * that the plane may generate whilst we perform load detection.
  10410.          * We can not rely on the fbcon either being present (we get called
  10411.          * during its initialisation to detect all boot displays, or it may
  10412.          * not even exist) or that it is large enough to satisfy the
  10413.          * requested mode.
  10414.          */
  10415.         fb = mode_fits_in_fbdev(dev, mode);
  10416.         if (fb == NULL) {
  10417.                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  10418.                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  10419.                 old->release_fb = fb;
  10420.         } else
  10421.                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  10422.         if (IS_ERR(fb)) {
  10423.                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  10424.                 goto fail;
  10425.         }
  10426.  
  10427.         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
  10428.         if (ret)
  10429.                 goto fail;
  10430.  
  10431.         drm_mode_copy(&crtc_state->base.mode, mode);
  10432.  
  10433.         if (drm_atomic_commit(state)) {
  10434.                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  10435.                 if (old->release_fb)
  10436.                         old->release_fb->funcs->destroy(old->release_fb);
  10437.                 goto fail;
  10438.         }
  10439.         crtc->primary->crtc = crtc;
  10440.  
  10441.         /* let the connector get through one full cycle before testing */
  10442.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  10443.         return true;
  10444.  
  10445. fail:
  10446.         drm_atomic_state_free(state);
  10447.         state = NULL;
  10448.  
  10449.         if (ret == -EDEADLK) {
  10450.                 drm_modeset_backoff(ctx);
  10451.                 goto retry;
  10452.         }
  10453.  
  10454.         return false;
  10455. }
  10456.  
  10457. void intel_release_load_detect_pipe(struct drm_connector *connector,
  10458.                                     struct intel_load_detect_pipe *old,
  10459.                                     struct drm_modeset_acquire_ctx *ctx)
  10460. {
  10461.         struct drm_device *dev = connector->dev;
  10462.         struct intel_encoder *intel_encoder =
  10463.                 intel_attached_encoder(connector);
  10464.         struct drm_encoder *encoder = &intel_encoder->base;
  10465.         struct drm_crtc *crtc = encoder->crtc;
  10466.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10467.         struct drm_atomic_state *state;
  10468.         struct drm_connector_state *connector_state;
  10469.         struct intel_crtc_state *crtc_state;
  10470.         int ret;
  10471.  
  10472.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10473.                       connector->base.id, connector->name,
  10474.                       encoder->base.id, encoder->name);
  10475.  
  10476.         if (old->load_detect_temp) {
  10477.                 state = drm_atomic_state_alloc(dev);
  10478.                 if (!state)
  10479.                         goto fail;
  10480.  
  10481.                 state->acquire_ctx = ctx;
  10482.  
  10483.                 connector_state = drm_atomic_get_connector_state(state, connector);
  10484.                 if (IS_ERR(connector_state))
  10485.                         goto fail;
  10486.  
  10487.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  10488.                 if (IS_ERR(crtc_state))
  10489.                         goto fail;
  10490.  
  10491.                 connector_state->best_encoder = NULL;
  10492.                 connector_state->crtc = NULL;
  10493.  
  10494.                 crtc_state->base.enable = crtc_state->base.active = false;
  10495.  
  10496.                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
  10497.                                                       0, 0);
  10498.                 if (ret)
  10499.                         goto fail;
  10500.  
  10501.                 ret = drm_atomic_commit(state);
  10502.                 if (ret)
  10503.                         goto fail;
  10504.  
  10505.                 if (old->release_fb) {
  10506.                         drm_framebuffer_unregister_private(old->release_fb);
  10507.                         drm_framebuffer_unreference(old->release_fb);
  10508.                 }
  10509.  
  10510.                 return;
  10511.         }
  10512.  
  10513.         /* Switch crtc and encoder back off if necessary */
  10514.         if (old->dpms_mode != DRM_MODE_DPMS_ON)
  10515.                 connector->funcs->dpms(connector, old->dpms_mode);
  10516.  
  10517.         return;
  10518. fail:
  10519.         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
  10520.         drm_atomic_state_free(state);
  10521. }
  10522.  
  10523. static int i9xx_pll_refclk(struct drm_device *dev,
  10524.                            const struct intel_crtc_state *pipe_config)
  10525. {
  10526.         struct drm_i915_private *dev_priv = dev->dev_private;
  10527.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10528.  
  10529.         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  10530.                 return dev_priv->vbt.lvds_ssc_freq;
  10531.         else if (HAS_PCH_SPLIT(dev))
  10532.                 return 120000;
  10533.         else if (!IS_GEN2(dev))
  10534.                 return 96000;
  10535.         else
  10536.                 return 48000;
  10537. }
  10538.  
  10539. /* Returns the clock of the currently programmed mode of the given pipe. */
  10540. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  10541.                                 struct intel_crtc_state *pipe_config)
  10542. {
  10543.         struct drm_device *dev = crtc->base.dev;
  10544.         struct drm_i915_private *dev_priv = dev->dev_private;
  10545.         int pipe = pipe_config->cpu_transcoder;
  10546.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10547.         u32 fp;
  10548.         intel_clock_t clock;
  10549.         int port_clock;
  10550.         int refclk = i9xx_pll_refclk(dev, pipe_config);
  10551.  
  10552.         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  10553.                 fp = pipe_config->dpll_hw_state.fp0;
  10554.         else
  10555.                 fp = pipe_config->dpll_hw_state.fp1;
  10556.  
  10557.         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  10558.         if (IS_PINEVIEW(dev)) {
  10559.                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  10560.                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10561.         } else {
  10562.                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  10563.                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10564.         }
  10565.  
  10566.         if (!IS_GEN2(dev)) {
  10567.                 if (IS_PINEVIEW(dev))
  10568.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  10569.                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  10570.                 else
  10571.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  10572.                                DPLL_FPA01_P1_POST_DIV_SHIFT);
  10573.  
  10574.                 switch (dpll & DPLL_MODE_MASK) {
  10575.                 case DPLLB_MODE_DAC_SERIAL:
  10576.                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  10577.                                 5 : 10;
  10578.                         break;
  10579.                 case DPLLB_MODE_LVDS:
  10580.                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  10581.                                 7 : 14;
  10582.                         break;
  10583.                 default:
  10584.                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  10585.                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
  10586.                         return;
  10587.                 }
  10588.  
  10589.                 if (IS_PINEVIEW(dev))
  10590.                         port_clock = pnv_calc_dpll_params(refclk, &clock);
  10591.                 else
  10592.                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10593.         } else {
  10594.                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
  10595.                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
  10596.  
  10597.                 if (is_lvds) {
  10598.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  10599.                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
  10600.  
  10601.                         if (lvds & LVDS_CLKB_POWER_UP)
  10602.                                 clock.p2 = 7;
  10603.                         else
  10604.                                 clock.p2 = 14;
  10605.                 } else {
  10606.                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
  10607.                                 clock.p1 = 2;
  10608.                         else {
  10609.                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  10610.                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  10611.                         }
  10612.                         if (dpll & PLL_P2_DIVIDE_BY_4)
  10613.                                 clock.p2 = 4;
  10614.                         else
  10615.                                 clock.p2 = 2;
  10616.                 }
  10617.  
  10618.                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10619.         }
  10620.  
  10621.         /*
  10622.          * This value includes pixel_multiplier. We will use
  10623.          * port_clock to compute adjusted_mode.crtc_clock in the
  10624.          * encoder's get_config() function.
  10625.          */
  10626.         pipe_config->port_clock = port_clock;
  10627. }
  10628.  
  10629. int intel_dotclock_calculate(int link_freq,
  10630.                              const struct intel_link_m_n *m_n)
  10631. {
  10632.         /*
  10633.          * The calculation for the data clock is:
  10634.          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  10635.          * But we want to avoid losing precison if possible, so:
  10636.          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  10637.          *
  10638.          * and the link clock is simpler:
  10639.          * link_clock = (m * link_clock) / n
  10640.          */
  10641.  
  10642.         if (!m_n->link_n)
  10643.                 return 0;
  10644.  
  10645.         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  10646. }
  10647.  
  10648. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  10649.                                    struct intel_crtc_state *pipe_config)
  10650. {
  10651.         struct drm_device *dev = crtc->base.dev;
  10652.  
  10653.         /* read out port_clock from the DPLL */
  10654.         i9xx_crtc_clock_get(crtc, pipe_config);
  10655.  
  10656.         /*
  10657.          * This value does not include pixel_multiplier.
  10658.          * We will check that port_clock and adjusted_mode.crtc_clock
  10659.          * agree once we know their relationship in the encoder's
  10660.          * get_config() function.
  10661.          */
  10662.         pipe_config->base.adjusted_mode.crtc_clock =
  10663.                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  10664.                                          &pipe_config->fdi_m_n);
  10665. }
  10666.  
  10667. /** Returns the currently programmed mode of the given pipe. */
  10668. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  10669.                                              struct drm_crtc *crtc)
  10670. {
  10671.         struct drm_i915_private *dev_priv = dev->dev_private;
  10672.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10673.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  10674.         struct drm_display_mode *mode;
  10675.         struct intel_crtc_state pipe_config;
  10676.         int htot = I915_READ(HTOTAL(cpu_transcoder));
  10677.         int hsync = I915_READ(HSYNC(cpu_transcoder));
  10678.         int vtot = I915_READ(VTOTAL(cpu_transcoder));
  10679.         int vsync = I915_READ(VSYNC(cpu_transcoder));
  10680.         enum pipe pipe = intel_crtc->pipe;
  10681.  
  10682.         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  10683.         if (!mode)
  10684.                 return NULL;
  10685.  
  10686.         /*
  10687.          * Construct a pipe_config sufficient for getting the clock info
  10688.          * back out of crtc_clock_get.
  10689.          *
  10690.          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  10691.          * to use a real value here instead.
  10692.          */
  10693.         pipe_config.cpu_transcoder = (enum transcoder) pipe;
  10694.         pipe_config.pixel_multiplier = 1;
  10695.         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  10696.         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  10697.         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  10698.         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  10699.  
  10700.         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  10701.         mode->hdisplay = (htot & 0xffff) + 1;
  10702.         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  10703.         mode->hsync_start = (hsync & 0xffff) + 1;
  10704.         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  10705.         mode->vdisplay = (vtot & 0xffff) + 1;
  10706.         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  10707.         mode->vsync_start = (vsync & 0xffff) + 1;
  10708.         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  10709.  
  10710.         drm_mode_set_name(mode);
  10711.  
  10712.         return mode;
  10713. }
  10714.  
  10715. void intel_mark_busy(struct drm_device *dev)
  10716. {
  10717.         struct drm_i915_private *dev_priv = dev->dev_private;
  10718.  
  10719.         if (dev_priv->mm.busy)
  10720.                 return;
  10721.  
  10722.         intel_runtime_pm_get(dev_priv);
  10723.         i915_update_gfx_val(dev_priv);
  10724.         if (INTEL_INFO(dev)->gen >= 6)
  10725.                 gen6_rps_busy(dev_priv);
  10726.         dev_priv->mm.busy = true;
  10727. }
  10728.  
  10729. void intel_mark_idle(struct drm_device *dev)
  10730. {
  10731.         struct drm_i915_private *dev_priv = dev->dev_private;
  10732.  
  10733.         if (!dev_priv->mm.busy)
  10734.                 return;
  10735.  
  10736.         dev_priv->mm.busy = false;
  10737.  
  10738.         if (INTEL_INFO(dev)->gen >= 6)
  10739.                 gen6_rps_idle(dev->dev_private);
  10740.  
  10741.         intel_runtime_pm_put(dev_priv);
  10742. }
  10743.  
  10744. static void intel_crtc_destroy(struct drm_crtc *crtc)
  10745. {
  10746.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10747.         struct drm_device *dev = crtc->dev;
  10748.         struct intel_unpin_work *work;
  10749.  
  10750.         spin_lock_irq(&dev->event_lock);
  10751.         work = intel_crtc->unpin_work;
  10752.         intel_crtc->unpin_work = NULL;
  10753.         spin_unlock_irq(&dev->event_lock);
  10754.  
  10755.         if (work) {
  10756.                 cancel_work_sync(&work->work);
  10757.                 kfree(work);
  10758.         }
  10759.  
  10760.         drm_crtc_cleanup(crtc);
  10761.  
  10762.         kfree(intel_crtc);
  10763. }
  10764.  
  10765. static void intel_unpin_work_fn(struct work_struct *__work)
  10766. {
  10767.         struct intel_unpin_work *work =
  10768.                 container_of(__work, struct intel_unpin_work, work);
  10769.         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
  10770.         struct drm_device *dev = crtc->base.dev;
  10771.         struct drm_plane *primary = crtc->base.primary;
  10772.  
  10773.         mutex_lock(&dev->struct_mutex);
  10774.         intel_unpin_fb_obj(work->old_fb, primary->state);
  10775.         drm_gem_object_unreference(&work->pending_flip_obj->base);
  10776.  
  10777.         if (work->flip_queued_req)
  10778.                 i915_gem_request_assign(&work->flip_queued_req, NULL);
  10779.         mutex_unlock(&dev->struct_mutex);
  10780.  
  10781.         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
  10782.         drm_framebuffer_unreference(work->old_fb);
  10783.  
  10784.         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
  10785.         atomic_dec(&crtc->unpin_work_count);
  10786.  
  10787.         kfree(work);
  10788. }
  10789.  
  10790. static void do_intel_finish_page_flip(struct drm_device *dev,
  10791.                                       struct drm_crtc *crtc)
  10792. {
  10793.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10794.         struct intel_unpin_work *work;
  10795.         unsigned long flags;
  10796.  
  10797.         /* Ignore early vblank irqs */
  10798.         if (intel_crtc == NULL)
  10799.                 return;
  10800.  
  10801.         /*
  10802.          * This is called both by irq handlers and the reset code (to complete
  10803.          * lost pageflips) so needs the full irqsave spinlocks.
  10804.          */
  10805.         spin_lock_irqsave(&dev->event_lock, flags);
  10806.         work = intel_crtc->unpin_work;
  10807.  
  10808.         /* Ensure we don't miss a work->pending update ... */
  10809.         smp_rmb();
  10810.  
  10811.         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  10812.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  10813.                 return;
  10814.         }
  10815.  
  10816.         page_flip_completed(intel_crtc);
  10817.  
  10818.         spin_unlock_irqrestore(&dev->event_lock, flags);
  10819. }
  10820.  
  10821. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  10822. {
  10823.         struct drm_i915_private *dev_priv = dev->dev_private;
  10824.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  10825.  
  10826.         do_intel_finish_page_flip(dev, crtc);
  10827. }
  10828.  
  10829. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  10830. {
  10831.         struct drm_i915_private *dev_priv = dev->dev_private;
  10832.         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  10833.  
  10834.         do_intel_finish_page_flip(dev, crtc);
  10835. }
  10836.  
  10837. /* Is 'a' after or equal to 'b'? */
  10838. static bool g4x_flip_count_after_eq(u32 a, u32 b)
  10839. {
  10840.         return !((a - b) & 0x80000000);
  10841. }
  10842.  
  10843. static bool page_flip_finished(struct intel_crtc *crtc)
  10844. {
  10845.         struct drm_device *dev = crtc->base.dev;
  10846.         struct drm_i915_private *dev_priv = dev->dev_private;
  10847.  
  10848.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  10849.             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  10850.                 return true;
  10851.  
  10852.         /*
  10853.          * The relevant registers doen't exist on pre-ctg.
  10854.          * As the flip done interrupt doesn't trigger for mmio
  10855.          * flips on gmch platforms, a flip count check isn't
  10856.          * really needed there. But since ctg has the registers,
  10857.          * include it in the check anyway.
  10858.          */
  10859.         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
  10860.                 return true;
  10861.  
  10862.         /*
  10863.          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
  10864.          * used the same base address. In that case the mmio flip might
  10865.          * have completed, but the CS hasn't even executed the flip yet.
  10866.          *
  10867.          * A flip count check isn't enough as the CS might have updated
  10868.          * the base address just after start of vblank, but before we
  10869.          * managed to process the interrupt. This means we'd complete the
  10870.          * CS flip too soon.
  10871.          *
  10872.          * Combining both checks should get us a good enough result. It may
  10873.          * still happen that the CS flip has been executed, but has not
  10874.          * yet actually completed. But in case the base address is the same
  10875.          * anyway, we don't really care.
  10876.          */
  10877.         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
  10878.                 crtc->unpin_work->gtt_offset &&
  10879.                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
  10880.                                     crtc->unpin_work->flip_count);
  10881. }
  10882.  
  10883. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  10884. {
  10885.         struct drm_i915_private *dev_priv = dev->dev_private;
  10886.         struct intel_crtc *intel_crtc =
  10887.                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  10888.         unsigned long flags;
  10889.  
  10890.  
  10891.         /*
  10892.          * This is called both by irq handlers and the reset code (to complete
  10893.          * lost pageflips) so needs the full irqsave spinlocks.
  10894.          *
  10895.          * NB: An MMIO update of the plane base pointer will also
  10896.          * generate a page-flip completion irq, i.e. every modeset
  10897.          * is also accompanied by a spurious intel_prepare_page_flip().
  10898.          */
  10899.         spin_lock_irqsave(&dev->event_lock, flags);
  10900.         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
  10901.                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  10902.         spin_unlock_irqrestore(&dev->event_lock, flags);
  10903. }
  10904.  
  10905. static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
  10906. {
  10907.         /* Ensure that the work item is consistent when activating it ... */
  10908.         smp_wmb();
  10909.         atomic_set(&work->pending, INTEL_FLIP_PENDING);
  10910.         /* and that it is marked active as soon as the irq could fire. */
  10911.         smp_wmb();
  10912. }
  10913. #if 0
  10914. static int intel_gen2_queue_flip(struct drm_device *dev,
  10915.                                  struct drm_crtc *crtc,
  10916.                                  struct drm_framebuffer *fb,
  10917.                                  struct drm_i915_gem_object *obj,
  10918.                                  struct drm_i915_gem_request *req,
  10919.                                  uint32_t flags)
  10920. {
  10921.         struct intel_engine_cs *ring = req->ring;
  10922.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10923.         u32 flip_mask;
  10924.         int ret;
  10925.  
  10926.         ret = intel_ring_begin(req, 6);
  10927.         if (ret)
  10928.                 return ret;
  10929.  
  10930.         /* Can't queue multiple flips, so wait for the previous
  10931.          * one to finish before executing the next.
  10932.          */
  10933.         if (intel_crtc->plane)
  10934.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  10935.         else
  10936.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  10937.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  10938.         intel_ring_emit(ring, MI_NOOP);
  10939.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  10940.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  10941.         intel_ring_emit(ring, fb->pitches[0]);
  10942.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  10943.         intel_ring_emit(ring, 0); /* aux display base address, unused */
  10944.  
  10945.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  10946.         return 0;
  10947. }
  10948.  
  10949. static int intel_gen3_queue_flip(struct drm_device *dev,
  10950.                                  struct drm_crtc *crtc,
  10951.                                  struct drm_framebuffer *fb,
  10952.                                  struct drm_i915_gem_object *obj,
  10953.                                  struct drm_i915_gem_request *req,
  10954.                                  uint32_t flags)
  10955. {
  10956.         struct intel_engine_cs *ring = req->ring;
  10957.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10958.         u32 flip_mask;
  10959.         int ret;
  10960.  
  10961.         ret = intel_ring_begin(req, 6);
  10962.         if (ret)
  10963.                 return ret;
  10964.  
  10965.         if (intel_crtc->plane)
  10966.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  10967.         else
  10968.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  10969.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  10970.         intel_ring_emit(ring, MI_NOOP);
  10971.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  10972.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  10973.         intel_ring_emit(ring, fb->pitches[0]);
  10974.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  10975.         intel_ring_emit(ring, MI_NOOP);
  10976.  
  10977.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  10978.         return 0;
  10979. }
  10980.  
  10981. static int intel_gen4_queue_flip(struct drm_device *dev,
  10982.                                  struct drm_crtc *crtc,
  10983.                                  struct drm_framebuffer *fb,
  10984.                                  struct drm_i915_gem_object *obj,
  10985.                                  struct drm_i915_gem_request *req,
  10986.                                  uint32_t flags)
  10987. {
  10988.         struct intel_engine_cs *ring = req->ring;
  10989.         struct drm_i915_private *dev_priv = dev->dev_private;
  10990.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10991.         uint32_t pf, pipesrc;
  10992.         int ret;
  10993.  
  10994.         ret = intel_ring_begin(req, 4);
  10995.         if (ret)
  10996.                 return ret;
  10997.  
  10998.         /* i965+ uses the linear or tiled offsets from the
  10999.          * Display Registers (which do not change across a page-flip)
  11000.          * so we need only reprogram the base address.
  11001.          */
  11002.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11003.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11004.         intel_ring_emit(ring, fb->pitches[0]);
  11005.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
  11006.                         obj->tiling_mode);
  11007.  
  11008.         /* XXX Enabling the panel-fitter across page-flip is so far
  11009.          * untested on non-native modes, so ignore it for now.
  11010.          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  11011.          */
  11012.         pf = 0;
  11013.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11014.         intel_ring_emit(ring, pf | pipesrc);
  11015.  
  11016.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11017.         return 0;
  11018. }
  11019.  
  11020. static int intel_gen6_queue_flip(struct drm_device *dev,
  11021.                                  struct drm_crtc *crtc,
  11022.                                  struct drm_framebuffer *fb,
  11023.                                  struct drm_i915_gem_object *obj,
  11024.                                  struct drm_i915_gem_request *req,
  11025.                                  uint32_t flags)
  11026. {
  11027.         struct intel_engine_cs *ring = req->ring;
  11028.         struct drm_i915_private *dev_priv = dev->dev_private;
  11029.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11030.         uint32_t pf, pipesrc;
  11031.         int ret;
  11032.  
  11033.         ret = intel_ring_begin(req, 4);
  11034.         if (ret)
  11035.                 return ret;
  11036.  
  11037.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11038.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11039.         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  11040.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11041.  
  11042.         /* Contrary to the suggestions in the documentation,
  11043.          * "Enable Panel Fitter" does not seem to be required when page
  11044.          * flipping with a non-native mode, and worse causes a normal
  11045.          * modeset to fail.
  11046.          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  11047.          */
  11048.         pf = 0;
  11049.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11050.         intel_ring_emit(ring, pf | pipesrc);
  11051.  
  11052.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11053.         return 0;
  11054. }
  11055.  
  11056. static int intel_gen7_queue_flip(struct drm_device *dev,
  11057.                                  struct drm_crtc *crtc,
  11058.                                  struct drm_framebuffer *fb,
  11059.                                  struct drm_i915_gem_object *obj,
  11060.                                  struct drm_i915_gem_request *req,
  11061.                                  uint32_t flags)
  11062. {
  11063.         struct intel_engine_cs *ring = req->ring;
  11064.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11065.         uint32_t plane_bit = 0;
  11066.         int len, ret;
  11067.  
  11068.         switch (intel_crtc->plane) {
  11069.         case PLANE_A:
  11070.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  11071.                 break;
  11072.         case PLANE_B:
  11073.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  11074.                 break;
  11075.         case PLANE_C:
  11076.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  11077.                 break;
  11078.         default:
  11079.                 WARN_ONCE(1, "unknown plane in flip command\n");
  11080.                 return -ENODEV;
  11081.         }
  11082.  
  11083.         len = 4;
  11084.         if (ring->id == RCS) {
  11085.                 len += 6;
  11086.                 /*
  11087.                  * On Gen 8, SRM is now taking an extra dword to accommodate
  11088.                  * 48bits addresses, and we need a NOOP for the batch size to
  11089.                  * stay even.
  11090.                  */
  11091.                 if (IS_GEN8(dev))
  11092.                         len += 2;
  11093.         }
  11094.  
  11095.         /*
  11096.          * BSpec MI_DISPLAY_FLIP for IVB:
  11097.          * "The full packet must be contained within the same cache line."
  11098.          *
  11099.          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
  11100.          * cacheline, if we ever start emitting more commands before
  11101.          * the MI_DISPLAY_FLIP we may need to first emit everything else,
  11102.          * then do the cacheline alignment, and finally emit the
  11103.          * MI_DISPLAY_FLIP.
  11104.          */
  11105.         ret = intel_ring_cacheline_align(req);
  11106.         if (ret)
  11107.                 return ret;
  11108.  
  11109.         ret = intel_ring_begin(req, len);
  11110.         if (ret)
  11111.                 return ret;
  11112.  
  11113.         /* Unmask the flip-done completion message. Note that the bspec says that
  11114.          * we should do this for both the BCS and RCS, and that we must not unmask
  11115.          * more than one flip event at any time (or ensure that one flip message
  11116.          * can be sent by waiting for flip-done prior to queueing new flips).
  11117.          * Experimentation says that BCS works despite DERRMR masking all
  11118.          * flip-done completion events and that unmasking all planes at once
  11119.          * for the RCS also doesn't appear to drop events. Setting the DERRMR
  11120.          * to zero does lead to lockups within MI_DISPLAY_FLIP.
  11121.          */
  11122.         if (ring->id == RCS) {
  11123.                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  11124.                 intel_ring_emit(ring, DERRMR);
  11125.                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  11126.                                         DERRMR_PIPEB_PRI_FLIP_DONE |
  11127.                                         DERRMR_PIPEC_PRI_FLIP_DONE));
  11128.                 if (IS_GEN8(dev))
  11129.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
  11130.                                               MI_SRM_LRM_GLOBAL_GTT);
  11131.                 else
  11132.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
  11133.                                               MI_SRM_LRM_GLOBAL_GTT);
  11134.                 intel_ring_emit(ring, DERRMR);
  11135.                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  11136.                 if (IS_GEN8(dev)) {
  11137.                         intel_ring_emit(ring, 0);
  11138.                         intel_ring_emit(ring, MI_NOOP);
  11139.                 }
  11140.         }
  11141.  
  11142.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  11143.         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  11144.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11145.         intel_ring_emit(ring, (MI_NOOP));
  11146.  
  11147.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11148.         return 0;
  11149. }
  11150.  
  11151. static bool use_mmio_flip(struct intel_engine_cs *ring,
  11152.                           struct drm_i915_gem_object *obj)
  11153. {
  11154.         /*
  11155.          * This is not being used for older platforms, because
  11156.          * non-availability of flip done interrupt forces us to use
  11157.          * CS flips. Older platforms derive flip done using some clever
  11158.          * tricks involving the flip_pending status bits and vblank irqs.
  11159.          * So using MMIO flips there would disrupt this mechanism.
  11160.          */
  11161.  
  11162.         if (ring == NULL)
  11163.                 return true;
  11164.  
  11165.         if (INTEL_INFO(ring->dev)->gen < 5)
  11166.                 return false;
  11167.  
  11168.         if (i915.use_mmio_flip < 0)
  11169.                 return false;
  11170.         else if (i915.use_mmio_flip > 0)
  11171.                 return true;
  11172.         else if (i915.enable_execlists)
  11173.                 return true;
  11174.         else
  11175.                 return ring != i915_gem_request_get_ring(obj->last_write_req);
  11176. }
  11177.  
  11178. static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
  11179.                              struct intel_unpin_work *work)
  11180. {
  11181.         struct drm_device *dev = intel_crtc->base.dev;
  11182.         struct drm_i915_private *dev_priv = dev->dev_private;
  11183.         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
  11184.         const enum pipe pipe = intel_crtc->pipe;
  11185.         u32 ctl, stride;
  11186.  
  11187.         ctl = I915_READ(PLANE_CTL(pipe, 0));
  11188.         ctl &= ~PLANE_CTL_TILED_MASK;
  11189.         switch (fb->modifier[0]) {
  11190.         case DRM_FORMAT_MOD_NONE:
  11191.                 break;
  11192.         case I915_FORMAT_MOD_X_TILED:
  11193.                 ctl |= PLANE_CTL_TILED_X;
  11194.                 break;
  11195.         case I915_FORMAT_MOD_Y_TILED:
  11196.                 ctl |= PLANE_CTL_TILED_Y;
  11197.                 break;
  11198.         case I915_FORMAT_MOD_Yf_TILED:
  11199.                 ctl |= PLANE_CTL_TILED_YF;
  11200.                 break;
  11201.         default:
  11202.                 MISSING_CASE(fb->modifier[0]);
  11203.         }
  11204.  
  11205.         /*
  11206.          * The stride is either expressed as a multiple of 64 bytes chunks for
  11207.          * linear buffers or in number of tiles for tiled buffers.
  11208.          */
  11209.         stride = fb->pitches[0] /
  11210.                  intel_fb_stride_alignment(dev, fb->modifier[0],
  11211.                                            fb->pixel_format);
  11212.  
  11213.         /*
  11214.          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
  11215.          * PLANE_SURF updates, the update is then guaranteed to be atomic.
  11216.          */
  11217.         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
  11218.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  11219.  
  11220.         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
  11221.         POSTING_READ(PLANE_SURF(pipe, 0));
  11222. }
  11223.  
  11224. static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
  11225.                              struct intel_unpin_work *work)
  11226. {
  11227.         struct drm_device *dev = intel_crtc->base.dev;
  11228.         struct drm_i915_private *dev_priv = dev->dev_private;
  11229.         struct intel_framebuffer *intel_fb =
  11230.                 to_intel_framebuffer(intel_crtc->base.primary->fb);
  11231.         struct drm_i915_gem_object *obj = intel_fb->obj;
  11232.         u32 dspcntr;
  11233.         u32 reg;
  11234.  
  11235.         reg = DSPCNTR(intel_crtc->plane);
  11236.         dspcntr = I915_READ(reg);
  11237.  
  11238.         if (obj->tiling_mode != I915_TILING_NONE)
  11239.                 dspcntr |= DISPPLANE_TILED;
  11240.         else
  11241.                 dspcntr &= ~DISPPLANE_TILED;
  11242.  
  11243.         I915_WRITE(reg, dspcntr);
  11244.  
  11245.         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
  11246.         POSTING_READ(DSPSURF(intel_crtc->plane));
  11247. }
  11248.  
  11249. /*
  11250.  * XXX: This is the temporary way to update the plane registers until we get
  11251.  * around to using the usual plane update functions for MMIO flips
  11252.  */
  11253. static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
  11254. {
  11255.         struct intel_crtc *crtc = mmio_flip->crtc;
  11256.         struct intel_unpin_work *work;
  11257.  
  11258.         spin_lock_irq(&crtc->base.dev->event_lock);
  11259.         work = crtc->unpin_work;
  11260.         spin_unlock_irq(&crtc->base.dev->event_lock);
  11261.         if (work == NULL)
  11262.                 return;
  11263.  
  11264.         intel_mark_page_flip_active(work);
  11265.  
  11266.         intel_pipe_update_start(crtc);
  11267.  
  11268.         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
  11269.                 skl_do_mmio_flip(crtc, work);
  11270.         else
  11271.                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
  11272.                 ilk_do_mmio_flip(crtc, work);
  11273.  
  11274.         intel_pipe_update_end(crtc);
  11275. }
  11276.  
  11277. static void intel_mmio_flip_work_func(struct work_struct *work)
  11278. {
  11279.         struct intel_mmio_flip *mmio_flip =
  11280.                 container_of(work, struct intel_mmio_flip, work);
  11281.  
  11282.         if (mmio_flip->req) {
  11283.                 WARN_ON(__i915_wait_request(mmio_flip->req,
  11284.                                             mmio_flip->crtc->reset_counter,
  11285.                                             false, NULL,
  11286.                                             &mmio_flip->i915->rps.mmioflips));
  11287.                 i915_gem_request_unreference__unlocked(mmio_flip->req);
  11288.         }
  11289.  
  11290.         intel_do_mmio_flip(mmio_flip);
  11291.         kfree(mmio_flip);
  11292. }
  11293.  
  11294. static int intel_queue_mmio_flip(struct drm_device *dev,
  11295.                                  struct drm_crtc *crtc,
  11296.                                  struct drm_framebuffer *fb,
  11297.                                  struct drm_i915_gem_object *obj,
  11298.                                  struct intel_engine_cs *ring,
  11299.                                  uint32_t flags)
  11300. {
  11301.         struct intel_mmio_flip *mmio_flip;
  11302.  
  11303.         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
  11304.         if (mmio_flip == NULL)
  11305.                 return -ENOMEM;
  11306.  
  11307.         mmio_flip->i915 = to_i915(dev);
  11308.         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
  11309.         mmio_flip->crtc = to_intel_crtc(crtc);
  11310.  
  11311.         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
  11312.         schedule_work(&mmio_flip->work);
  11313.  
  11314.         return 0;
  11315. }
  11316.  
  11317. static int intel_default_queue_flip(struct drm_device *dev,
  11318.                                     struct drm_crtc *crtc,
  11319.                                     struct drm_framebuffer *fb,
  11320.                                     struct drm_i915_gem_object *obj,
  11321.                                     struct drm_i915_gem_request *req,
  11322.                                     uint32_t flags)
  11323. {
  11324.         return -ENODEV;
  11325. }
  11326.  
  11327. static bool __intel_pageflip_stall_check(struct drm_device *dev,
  11328.                                          struct drm_crtc *crtc)
  11329. {
  11330.         struct drm_i915_private *dev_priv = dev->dev_private;
  11331.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11332.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  11333.         u32 addr;
  11334.  
  11335.         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
  11336.                 return true;
  11337.  
  11338.         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
  11339.                 return false;
  11340.  
  11341.         if (!work->enable_stall_check)
  11342.                 return false;
  11343.  
  11344.         if (work->flip_ready_vblank == 0) {
  11345.                 if (work->flip_queued_req &&
  11346.                     !i915_gem_request_completed(work->flip_queued_req, true))
  11347.                         return false;
  11348.  
  11349.                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
  11350.         }
  11351.  
  11352.         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
  11353.                 return false;
  11354.  
  11355.         /* Potential stall - if we see that the flip has happened,
  11356.          * assume a missed interrupt. */
  11357.         if (INTEL_INFO(dev)->gen >= 4)
  11358.                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
  11359.         else
  11360.                 addr = I915_READ(DSPADDR(intel_crtc->plane));
  11361.  
  11362.         /* There is a potential issue here with a false positive after a flip
  11363.          * to the same address. We could address this by checking for a
  11364.          * non-incrementing frame counter.
  11365.          */
  11366.         return addr == work->gtt_offset;
  11367. }
  11368.  
  11369. void intel_check_page_flip(struct drm_device *dev, int pipe)
  11370. {
  11371.         struct drm_i915_private *dev_priv = dev->dev_private;
  11372.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  11373.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11374.         struct intel_unpin_work *work;
  11375.  
  11376.         WARN_ON(!in_interrupt());
  11377.  
  11378.         if (crtc == NULL)
  11379.                 return;
  11380.  
  11381.         spin_lock(&dev->event_lock);
  11382.         work = intel_crtc->unpin_work;
  11383.         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
  11384.                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
  11385.                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
  11386.                 page_flip_completed(intel_crtc);
  11387.                 work = NULL;
  11388.         }
  11389.         if (work != NULL &&
  11390.             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
  11391.                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
  11392.         spin_unlock(&dev->event_lock);
  11393. }
  11394. #endif
  11395. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  11396.                                 struct drm_framebuffer *fb,
  11397.                                 struct drm_pending_vblank_event *event,
  11398.                                 uint32_t page_flip_flags)
  11399. {
  11400.         struct drm_device *dev = crtc->dev;
  11401.         struct drm_i915_private *dev_priv = dev->dev_private;
  11402.         struct drm_framebuffer *old_fb = crtc->primary->fb;
  11403.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  11404.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11405.         struct drm_plane *primary = crtc->primary;
  11406.         enum pipe pipe = intel_crtc->pipe;
  11407.         struct intel_unpin_work *work;
  11408.         struct intel_engine_cs *ring;
  11409.         bool mmio_flip;
  11410.         struct drm_i915_gem_request *request = NULL;
  11411.         int ret;
  11412.  
  11413.         /*
  11414.          * drm_mode_page_flip_ioctl() should already catch this, but double
  11415.          * check to be safe.  In the future we may enable pageflipping from
  11416.          * a disabled primary plane.
  11417.          */
  11418.         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
  11419.                 return -EBUSY;
  11420.  
  11421.         /* Can't change pixel format via MI display flips. */
  11422.         if (fb->pixel_format != crtc->primary->fb->pixel_format)
  11423.                 return -EINVAL;
  11424.  
  11425.         /*
  11426.          * TILEOFF/LINOFF registers can't be changed via MI display flips.
  11427.          * Note that pitch changes could also affect these register.
  11428.          */
  11429.         if (INTEL_INFO(dev)->gen > 3 &&
  11430.             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
  11431.              fb->pitches[0] != crtc->primary->fb->pitches[0]))
  11432.                 return -EINVAL;
  11433.  
  11434.         if (i915_terminally_wedged(&dev_priv->gpu_error))
  11435.                 goto out_hang;
  11436.  
  11437.         work = kzalloc(sizeof(*work), GFP_KERNEL);
  11438.         if (work == NULL)
  11439.                 return -ENOMEM;
  11440.  
  11441.         work->event = event;
  11442.         work->crtc = crtc;
  11443.         work->old_fb = old_fb;
  11444. //      INIT_WORK(&work->work, intel_unpin_work_fn);
  11445.  
  11446.         ret = drm_crtc_vblank_get(crtc);
  11447.         if (ret)
  11448.                 goto free_work;
  11449.  
  11450.         /* We borrow the event spin lock for protecting unpin_work */
  11451.         spin_lock_irq(&dev->event_lock);
  11452.         if (intel_crtc->unpin_work) {
  11453.                 /* Before declaring the flip queue wedged, check if
  11454.                  * the hardware completed the operation behind our backs.
  11455.                  */
  11456.                 if (__intel_pageflip_stall_check(dev, crtc)) {
  11457.                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
  11458.                         page_flip_completed(intel_crtc);
  11459.                 } else {
  11460.                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  11461.                         spin_unlock_irq(&dev->event_lock);
  11462.  
  11463.                         drm_crtc_vblank_put(crtc);
  11464.                         kfree(work);
  11465.                         return -EBUSY;
  11466.                 }
  11467.         }
  11468.         intel_crtc->unpin_work = work;
  11469.         spin_unlock_irq(&dev->event_lock);
  11470.  
  11471.         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  11472.                 flush_workqueue(dev_priv->wq);
  11473.  
  11474.         /* Reference the objects for the scheduled work. */
  11475.         drm_framebuffer_reference(work->old_fb);
  11476.         drm_gem_object_reference(&obj->base);
  11477.  
  11478.         crtc->primary->fb = fb;
  11479.         update_state_fb(crtc->primary);
  11480.  
  11481.         work->pending_flip_obj = obj;
  11482.  
  11483.         ret = i915_mutex_lock_interruptible(dev);
  11484.         if (ret)
  11485.                 goto cleanup;
  11486.  
  11487.         atomic_inc(&intel_crtc->unpin_work_count);
  11488.         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  11489.  
  11490.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  11491.                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
  11492.  
  11493.         if (IS_VALLEYVIEW(dev)) {
  11494.                 ring = &dev_priv->ring[BCS];
  11495.                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
  11496.                         /* vlv: DISPLAY_FLIP fails to change tiling */
  11497.                         ring = NULL;
  11498.         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  11499.                 ring = &dev_priv->ring[BCS];
  11500.         } else if (INTEL_INFO(dev)->gen >= 7) {
  11501.                 ring = i915_gem_request_get_ring(obj->last_write_req);
  11502.                 if (ring == NULL || ring->id != RCS)
  11503.                         ring = &dev_priv->ring[BCS];
  11504.         } else {
  11505.                 ring = &dev_priv->ring[RCS];
  11506.         }
  11507.  
  11508.         mmio_flip = use_mmio_flip(ring, obj);
  11509.  
  11510.         /* When using CS flips, we want to emit semaphores between rings.
  11511.          * However, when using mmio flips we will create a task to do the
  11512.          * synchronisation, so all we want here is to pin the framebuffer
  11513.          * into the display plane and skip any waits.
  11514.          */
  11515.         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
  11516.                                          crtc->primary->state,
  11517.                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
  11518.         if (ret)
  11519.                 goto cleanup_pending;
  11520.  
  11521.         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
  11522.                                                   obj, 0);
  11523.         work->gtt_offset += intel_crtc->dspaddr_offset;
  11524.  
  11525.         if (mmio_flip) {
  11526.                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
  11527.                                             page_flip_flags);
  11528.                 if (ret)
  11529.                         goto cleanup_unpin;
  11530.  
  11531.                 i915_gem_request_assign(&work->flip_queued_req,
  11532.                                         obj->last_write_req);
  11533.         } else {
  11534.                 if (!request) {
  11535.                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
  11536.                         if (ret)
  11537.                                 goto cleanup_unpin;
  11538.                 }
  11539.  
  11540.                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
  11541.                                                    page_flip_flags);
  11542.                 if (ret)
  11543.                         goto cleanup_unpin;
  11544.  
  11545.                 i915_gem_request_assign(&work->flip_queued_req, request);
  11546.         }
  11547.  
  11548.         if (request)
  11549.                 i915_add_request_no_flush(request);
  11550.  
  11551.         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
  11552.         work->enable_stall_check = true;
  11553.  
  11554.         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
  11555.                           to_intel_plane(primary)->frontbuffer_bit);
  11556.         mutex_unlock(&dev->struct_mutex);
  11557.  
  11558.         intel_fbc_disable_crtc(intel_crtc);
  11559.         intel_frontbuffer_flip_prepare(dev,
  11560.                                        to_intel_plane(primary)->frontbuffer_bit);
  11561.  
  11562.         trace_i915_flip_request(intel_crtc->plane, obj);
  11563.  
  11564.         return 0;
  11565.  
  11566. cleanup_unpin:
  11567.         intel_unpin_fb_obj(fb, crtc->primary->state);
  11568. cleanup_pending:
  11569.         if (request)
  11570.                 i915_gem_request_cancel(request);
  11571.         atomic_dec(&intel_crtc->unpin_work_count);
  11572.         mutex_unlock(&dev->struct_mutex);
  11573. cleanup:
  11574.         crtc->primary->fb = old_fb;
  11575.         update_state_fb(crtc->primary);
  11576.  
  11577.         drm_gem_object_unreference_unlocked(&obj->base);
  11578.         drm_framebuffer_unreference(work->old_fb);
  11579.  
  11580.         spin_lock_irq(&dev->event_lock);
  11581.         intel_crtc->unpin_work = NULL;
  11582.         spin_unlock_irq(&dev->event_lock);
  11583.  
  11584.         drm_crtc_vblank_put(crtc);
  11585. free_work:
  11586.         kfree(work);
  11587.  
  11588.         if (ret == -EIO) {
  11589.                 struct drm_atomic_state *state;
  11590.                 struct drm_plane_state *plane_state;
  11591.  
  11592. out_hang:
  11593.                 state = drm_atomic_state_alloc(dev);
  11594.                 if (!state)
  11595.                         return -ENOMEM;
  11596.                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  11597.  
  11598. retry:
  11599.                 plane_state = drm_atomic_get_plane_state(state, primary);
  11600.                 ret = PTR_ERR_OR_ZERO(plane_state);
  11601.                 if (!ret) {
  11602.                         drm_atomic_set_fb_for_plane(plane_state, fb);
  11603.  
  11604.                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
  11605.                         if (!ret)
  11606.                                 ret = drm_atomic_commit(state);
  11607.                 }
  11608.  
  11609.                 if (ret == -EDEADLK) {
  11610.                         drm_modeset_backoff(state->acquire_ctx);
  11611.                         drm_atomic_state_clear(state);
  11612.                         goto retry;
  11613.                 }
  11614.  
  11615.                 if (ret)
  11616.                         drm_atomic_state_free(state);
  11617.  
  11618.                 if (ret == 0 && event) {
  11619.                         spin_lock_irq(&dev->event_lock);
  11620.                         drm_send_vblank_event(dev, pipe, event);
  11621.                         spin_unlock_irq(&dev->event_lock);
  11622.                 }
  11623.         }
  11624.         return ret;
  11625. }
  11626.  
  11627.  
  11628. /**
  11629.  * intel_wm_need_update - Check whether watermarks need updating
  11630.  * @plane: drm plane
  11631.  * @state: new plane state
  11632.  *
  11633.  * Check current plane state versus the new one to determine whether
  11634.  * watermarks need to be recalculated.
  11635.  *
  11636.  * Returns true or false.
  11637.  */
  11638. static bool intel_wm_need_update(struct drm_plane *plane,
  11639.                                  struct drm_plane_state *state)
  11640. {
  11641.         /* Update watermarks on tiling changes. */
  11642.         if (!plane->state->fb || !state->fb ||
  11643.             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
  11644.             plane->state->rotation != state->rotation)
  11645.                 return true;
  11646.  
  11647.         if (plane->state->crtc_w != state->crtc_w)
  11648.                 return true;
  11649.  
  11650.         return false;
  11651. }
  11652.  
  11653. int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
  11654.                                     struct drm_plane_state *plane_state)
  11655. {
  11656.         struct drm_crtc *crtc = crtc_state->crtc;
  11657.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11658.         struct drm_plane *plane = plane_state->plane;
  11659.         struct drm_device *dev = crtc->dev;
  11660.         struct drm_i915_private *dev_priv = dev->dev_private;
  11661.         struct intel_plane_state *old_plane_state =
  11662.                 to_intel_plane_state(plane->state);
  11663.         int idx = intel_crtc->base.base.id, ret;
  11664.         int i = drm_plane_index(plane);
  11665.         bool mode_changed = needs_modeset(crtc_state);
  11666.         bool was_crtc_enabled = crtc->state->active;
  11667.         bool is_crtc_enabled = crtc_state->active;
  11668.  
  11669.         bool turn_off, turn_on, visible, was_visible;
  11670.         struct drm_framebuffer *fb = plane_state->fb;
  11671.  
  11672.         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
  11673.             plane->type != DRM_PLANE_TYPE_CURSOR) {
  11674.                 ret = skl_update_scaler_plane(
  11675.                         to_intel_crtc_state(crtc_state),
  11676.                         to_intel_plane_state(plane_state));
  11677.                 if (ret)
  11678.                         return ret;
  11679.         }
  11680.  
  11681.         /*
  11682.          * Disabling a plane is always okay; we just need to update
  11683.          * fb tracking in a special way since cleanup_fb() won't
  11684.          * get called by the plane helpers.
  11685.          */
  11686.         if (old_plane_state->base.fb && !fb)
  11687.                 intel_crtc->atomic.disabled_planes |= 1 << i;
  11688.  
  11689.         was_visible = old_plane_state->visible;
  11690.         visible = to_intel_plane_state(plane_state)->visible;
  11691.  
  11692.         if (!was_crtc_enabled && WARN_ON(was_visible))
  11693.                 was_visible = false;
  11694.  
  11695.         if (!is_crtc_enabled && WARN_ON(visible))
  11696.                 visible = false;
  11697.  
  11698.         if (!was_visible && !visible)
  11699.                 return 0;
  11700.  
  11701.         turn_off = was_visible && (!visible || mode_changed);
  11702.         turn_on = visible && (!was_visible || mode_changed);
  11703.  
  11704.         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
  11705.                          plane->base.id, fb ? fb->base.id : -1);
  11706.  
  11707.         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
  11708.                          plane->base.id, was_visible, visible,
  11709.                          turn_off, turn_on, mode_changed);
  11710.  
  11711.         if (turn_on) {
  11712.                 intel_crtc->atomic.update_wm_pre = true;
  11713.                 /* must disable cxsr around plane enable/disable */
  11714.                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
  11715.                         intel_crtc->atomic.disable_cxsr = true;
  11716.                         /* to potentially re-enable cxsr */
  11717.                         intel_crtc->atomic.wait_vblank = true;
  11718.                         intel_crtc->atomic.update_wm_post = true;
  11719.                 }
  11720.         } else if (turn_off) {
  11721.                 intel_crtc->atomic.update_wm_post = true;
  11722.                 /* must disable cxsr around plane enable/disable */
  11723.                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
  11724.                         if (is_crtc_enabled)
  11725.                                 intel_crtc->atomic.wait_vblank = true;
  11726.                         intel_crtc->atomic.disable_cxsr = true;
  11727.                 }
  11728.         } else if (intel_wm_need_update(plane, plane_state)) {
  11729.                 intel_crtc->atomic.update_wm_pre = true;
  11730.         }
  11731.  
  11732.         if (visible || was_visible)
  11733.                 intel_crtc->atomic.fb_bits |=
  11734.                         to_intel_plane(plane)->frontbuffer_bit;
  11735.  
  11736.         switch (plane->type) {
  11737.         case DRM_PLANE_TYPE_PRIMARY:
  11738.                 intel_crtc->atomic.wait_for_flips = true;
  11739.                 intel_crtc->atomic.pre_disable_primary = turn_off;
  11740.                 intel_crtc->atomic.post_enable_primary = turn_on;
  11741.  
  11742.                 if (turn_off) {
  11743.                         /*
  11744.                          * FIXME: Actually if we will still have any other
  11745.                          * plane enabled on the pipe we could let IPS enabled
  11746.                          * still, but for now lets consider that when we make
  11747.                          * primary invisible by setting DSPCNTR to 0 on
  11748.                          * update_primary_plane function IPS needs to be
  11749.                          * disable.
  11750.                          */
  11751.                         intel_crtc->atomic.disable_ips = true;
  11752.  
  11753.                         intel_crtc->atomic.disable_fbc = true;
  11754.                 }
  11755.  
  11756.                 /*
  11757.                  * FBC does not work on some platforms for rotated
  11758.                  * planes, so disable it when rotation is not 0 and
  11759.                  * update it when rotation is set back to 0.
  11760.                  *
  11761.                  * FIXME: This is redundant with the fbc update done in
  11762.                  * the primary plane enable function except that that
  11763.                  * one is done too late. We eventually need to unify
  11764.                  * this.
  11765.                  */
  11766.  
  11767.                 if (visible &&
  11768.                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
  11769.                     dev_priv->fbc.crtc == intel_crtc &&
  11770.                     plane_state->rotation != BIT(DRM_ROTATE_0))
  11771.                         intel_crtc->atomic.disable_fbc = true;
  11772.  
  11773.                 /*
  11774.                  * BDW signals flip done immediately if the plane
  11775.                  * is disabled, even if the plane enable is already
  11776.                  * armed to occur at the next vblank :(
  11777.                  */
  11778.                 if (turn_on && IS_BROADWELL(dev))
  11779.                         intel_crtc->atomic.wait_vblank = true;
  11780.  
  11781.                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
  11782.                 break;
  11783.         case DRM_PLANE_TYPE_CURSOR:
  11784.                 break;
  11785.         case DRM_PLANE_TYPE_OVERLAY:
  11786.                 if (turn_off && !mode_changed) {
  11787.                         intel_crtc->atomic.wait_vblank = true;
  11788.                         intel_crtc->atomic.update_sprite_watermarks |=
  11789.                                 1 << i;
  11790.                 }
  11791.         }
  11792.         return 0;
  11793. }
  11794.  
  11795. static bool encoders_cloneable(const struct intel_encoder *a,
  11796.                                const struct intel_encoder *b)
  11797. {
  11798.         /* masks could be asymmetric, so check both ways */
  11799.         return a == b || (a->cloneable & (1 << b->type) &&
  11800.                           b->cloneable & (1 << a->type));
  11801. }
  11802.  
  11803. static bool check_single_encoder_cloning(struct drm_atomic_state *state,
  11804.                                          struct intel_crtc *crtc,
  11805.                                          struct intel_encoder *encoder)
  11806. {
  11807.         struct intel_encoder *source_encoder;
  11808.         struct drm_connector *connector;
  11809.         struct drm_connector_state *connector_state;
  11810.         int i;
  11811.  
  11812.         for_each_connector_in_state(state, connector, connector_state, i) {
  11813.                 if (connector_state->crtc != &crtc->base)
  11814.                         continue;
  11815.  
  11816.                 source_encoder =
  11817.                         to_intel_encoder(connector_state->best_encoder);
  11818.                 if (!encoders_cloneable(encoder, source_encoder))
  11819.                         return false;
  11820.         }
  11821.  
  11822.         return true;
  11823. }
  11824.  
  11825. static bool check_encoder_cloning(struct drm_atomic_state *state,
  11826.                                   struct intel_crtc *crtc)
  11827. {
  11828.         struct intel_encoder *encoder;
  11829.         struct drm_connector *connector;
  11830.         struct drm_connector_state *connector_state;
  11831.         int i;
  11832.  
  11833.         for_each_connector_in_state(state, connector, connector_state, i) {
  11834.                 if (connector_state->crtc != &crtc->base)
  11835.                         continue;
  11836.  
  11837.                 encoder = to_intel_encoder(connector_state->best_encoder);
  11838.                 if (!check_single_encoder_cloning(state, crtc, encoder))
  11839.                         return false;
  11840.         }
  11841.  
  11842.         return true;
  11843. }
  11844.  
  11845. static int intel_crtc_atomic_check(struct drm_crtc *crtc,
  11846.                                    struct drm_crtc_state *crtc_state)
  11847. {
  11848.         struct drm_device *dev = crtc->dev;
  11849.         struct drm_i915_private *dev_priv = dev->dev_private;
  11850.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11851.         struct intel_crtc_state *pipe_config =
  11852.                 to_intel_crtc_state(crtc_state);
  11853.         struct drm_atomic_state *state = crtc_state->state;
  11854.         int ret;
  11855.         bool mode_changed = needs_modeset(crtc_state);
  11856.  
  11857.         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
  11858.                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  11859.                 return -EINVAL;
  11860.         }
  11861.  
  11862.         if (mode_changed && !crtc_state->active)
  11863.                 intel_crtc->atomic.update_wm_post = true;
  11864.  
  11865.         if (mode_changed && crtc_state->enable &&
  11866.             dev_priv->display.crtc_compute_clock &&
  11867.             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
  11868.                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
  11869.                                                            pipe_config);
  11870.                 if (ret)
  11871.                         return ret;
  11872.         }
  11873.  
  11874.         ret = 0;
  11875.         if (INTEL_INFO(dev)->gen >= 9) {
  11876.                 if (mode_changed)
  11877.                         ret = skl_update_scaler_crtc(pipe_config);
  11878.  
  11879.                 if (!ret)
  11880.                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
  11881.                                                          pipe_config);
  11882.         }
  11883.  
  11884.         return ret;
  11885. }
  11886.  
  11887. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  11888.         .mode_set_base_atomic = intel_pipe_set_base_atomic,
  11889.         .load_lut = intel_crtc_load_lut,
  11890.         .atomic_begin = intel_begin_crtc_commit,
  11891.         .atomic_flush = intel_finish_crtc_commit,
  11892.         .atomic_check = intel_crtc_atomic_check,
  11893. };
  11894.  
  11895. static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
  11896. {
  11897.         struct intel_connector *connector;
  11898.  
  11899.         for_each_intel_connector(dev, connector) {
  11900.                 if (connector->base.encoder) {
  11901.                         connector->base.state->best_encoder =
  11902.                                 connector->base.encoder;
  11903.                         connector->base.state->crtc =
  11904.                                 connector->base.encoder->crtc;
  11905.                 } else {
  11906.                         connector->base.state->best_encoder = NULL;
  11907.                         connector->base.state->crtc = NULL;
  11908.                 }
  11909.         }
  11910. }
  11911.  
  11912. static void
  11913. connected_sink_compute_bpp(struct intel_connector *connector,
  11914.                            struct intel_crtc_state *pipe_config)
  11915. {
  11916.         int bpp = pipe_config->pipe_bpp;
  11917.  
  11918.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  11919.                 connector->base.base.id,
  11920.                 connector->base.name);
  11921.  
  11922.         /* Don't use an invalid EDID bpc value */
  11923.         if (connector->base.display_info.bpc &&
  11924.             connector->base.display_info.bpc * 3 < bpp) {
  11925.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  11926.                               bpp, connector->base.display_info.bpc*3);
  11927.                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  11928.         }
  11929.  
  11930.         /* Clamp bpp to 8 on screens without EDID 1.4 */
  11931.         if (connector->base.display_info.bpc == 0 && bpp > 24) {
  11932.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  11933.                               bpp);
  11934.                 pipe_config->pipe_bpp = 24;
  11935.         }
  11936. }
  11937.  
  11938. static int
  11939. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  11940.                           struct intel_crtc_state *pipe_config)
  11941. {
  11942.         struct drm_device *dev = crtc->base.dev;
  11943.         struct drm_atomic_state *state;
  11944.         struct drm_connector *connector;
  11945.         struct drm_connector_state *connector_state;
  11946.         int bpp, i;
  11947.  
  11948.         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
  11949.                 bpp = 10*3;
  11950.         else if (INTEL_INFO(dev)->gen >= 5)
  11951.                 bpp = 12*3;
  11952.         else
  11953.                 bpp = 8*3;
  11954.  
  11955.  
  11956.         pipe_config->pipe_bpp = bpp;
  11957.  
  11958.         state = pipe_config->base.state;
  11959.  
  11960.         /* Clamp display bpp to EDID value */
  11961.         for_each_connector_in_state(state, connector, connector_state, i) {
  11962.                 if (connector_state->crtc != &crtc->base)
  11963.                         continue;
  11964.  
  11965.                 connected_sink_compute_bpp(to_intel_connector(connector),
  11966.                                            pipe_config);
  11967.         }
  11968.  
  11969.         return bpp;
  11970. }
  11971.  
  11972. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  11973. {
  11974.         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  11975.                         "type: 0x%x flags: 0x%x\n",
  11976.                 mode->crtc_clock,
  11977.                 mode->crtc_hdisplay, mode->crtc_hsync_start,
  11978.                 mode->crtc_hsync_end, mode->crtc_htotal,
  11979.                 mode->crtc_vdisplay, mode->crtc_vsync_start,
  11980.                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  11981. }
  11982.  
  11983. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  11984.                                    struct intel_crtc_state *pipe_config,
  11985.                                    const char *context)
  11986. {
  11987.         struct drm_device *dev = crtc->base.dev;
  11988.         struct drm_plane *plane;
  11989.         struct intel_plane *intel_plane;
  11990.         struct intel_plane_state *state;
  11991.         struct drm_framebuffer *fb;
  11992.  
  11993.         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
  11994.                       context, pipe_config, pipe_name(crtc->pipe));
  11995.  
  11996.         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  11997.         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  11998.                       pipe_config->pipe_bpp, pipe_config->dither);
  11999.         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12000.                       pipe_config->has_pch_encoder,
  12001.                       pipe_config->fdi_lanes,
  12002.                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  12003.                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  12004.                       pipe_config->fdi_m_n.tu);
  12005.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12006.                       pipe_config->has_dp_encoder,
  12007.                       pipe_config->lane_count,
  12008.                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  12009.                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  12010.                       pipe_config->dp_m_n.tu);
  12011.  
  12012.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
  12013.                       pipe_config->has_dp_encoder,
  12014.                       pipe_config->lane_count,
  12015.                       pipe_config->dp_m2_n2.gmch_m,
  12016.                       pipe_config->dp_m2_n2.gmch_n,
  12017.                       pipe_config->dp_m2_n2.link_m,
  12018.                       pipe_config->dp_m2_n2.link_n,
  12019.                       pipe_config->dp_m2_n2.tu);
  12020.  
  12021.         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
  12022.                       pipe_config->has_audio,
  12023.                       pipe_config->has_infoframe);
  12024.  
  12025.         DRM_DEBUG_KMS("requested mode:\n");
  12026.         drm_mode_debug_printmodeline(&pipe_config->base.mode);
  12027.         DRM_DEBUG_KMS("adjusted mode:\n");
  12028.         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
  12029.         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
  12030.         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  12031.         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  12032.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  12033.         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
  12034.                       crtc->num_scalers,
  12035.                       pipe_config->scaler_state.scaler_users,
  12036.                       pipe_config->scaler_state.scaler_id);
  12037.         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  12038.                       pipe_config->gmch_pfit.control,
  12039.                       pipe_config->gmch_pfit.pgm_ratios,
  12040.                       pipe_config->gmch_pfit.lvds_border_bits);
  12041.         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  12042.                       pipe_config->pch_pfit.pos,
  12043.                       pipe_config->pch_pfit.size,
  12044.                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  12045.         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  12046.         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  12047.  
  12048.         if (IS_BROXTON(dev)) {
  12049.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
  12050.                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
  12051.                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
  12052.                               pipe_config->ddi_pll_sel,
  12053.                               pipe_config->dpll_hw_state.ebb0,
  12054.                               pipe_config->dpll_hw_state.ebb4,
  12055.                               pipe_config->dpll_hw_state.pll0,
  12056.                               pipe_config->dpll_hw_state.pll1,
  12057.                               pipe_config->dpll_hw_state.pll2,
  12058.                               pipe_config->dpll_hw_state.pll3,
  12059.                               pipe_config->dpll_hw_state.pll6,
  12060.                               pipe_config->dpll_hw_state.pll8,
  12061.                               pipe_config->dpll_hw_state.pll9,
  12062.                               pipe_config->dpll_hw_state.pll10,
  12063.                               pipe_config->dpll_hw_state.pcsdw12);
  12064.         } else if (IS_SKYLAKE(dev)) {
  12065.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
  12066.                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
  12067.                               pipe_config->ddi_pll_sel,
  12068.                               pipe_config->dpll_hw_state.ctrl1,
  12069.                               pipe_config->dpll_hw_state.cfgcr1,
  12070.                               pipe_config->dpll_hw_state.cfgcr2);
  12071.         } else if (HAS_DDI(dev)) {
  12072.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
  12073.                               pipe_config->ddi_pll_sel,
  12074.                               pipe_config->dpll_hw_state.wrpll,
  12075.                               pipe_config->dpll_hw_state.spll);
  12076.         } else {
  12077.                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  12078.                               "fp0: 0x%x, fp1: 0x%x\n",
  12079.                               pipe_config->dpll_hw_state.dpll,
  12080.                               pipe_config->dpll_hw_state.dpll_md,
  12081.                               pipe_config->dpll_hw_state.fp0,
  12082.                               pipe_config->dpll_hw_state.fp1);
  12083.         }
  12084.  
  12085.         DRM_DEBUG_KMS("planes on this crtc\n");
  12086.         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  12087.                 intel_plane = to_intel_plane(plane);
  12088.                 if (intel_plane->pipe != crtc->pipe)
  12089.                         continue;
  12090.  
  12091.                 state = to_intel_plane_state(plane->state);
  12092.                 fb = state->base.fb;
  12093.                 if (!fb) {
  12094.                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
  12095.                                 "disabled, scaler_id = %d\n",
  12096.                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12097.                                 plane->base.id, intel_plane->pipe,
  12098.                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
  12099.                                 drm_plane_index(plane), state->scaler_id);
  12100.                         continue;
  12101.                 }
  12102.  
  12103.                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
  12104.                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12105.                         plane->base.id, intel_plane->pipe,
  12106.                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
  12107.                         drm_plane_index(plane));
  12108.                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
  12109.                         fb->base.id, fb->width, fb->height, fb->pixel_format);
  12110.                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
  12111.                         state->scaler_id,
  12112.                         state->src.x1 >> 16, state->src.y1 >> 16,
  12113.                         drm_rect_width(&state->src) >> 16,
  12114.                         drm_rect_height(&state->src) >> 16,
  12115.                         state->dst.x1, state->dst.y1,
  12116.                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
  12117.         }
  12118. }
  12119.  
  12120. static bool check_digital_port_conflicts(struct drm_atomic_state *state)
  12121. {
  12122.         struct drm_device *dev = state->dev;
  12123.         struct drm_connector *connector;
  12124.         unsigned int used_ports = 0;
  12125.  
  12126.         /*
  12127.          * Walk the connector list instead of the encoder
  12128.          * list to detect the problem on ddi platforms
  12129.          * where there's just one encoder per digital port.
  12130.          */
  12131.         drm_for_each_connector(connector, dev) {
  12132.                 struct drm_connector_state *connector_state;
  12133.                 struct intel_encoder *encoder;
  12134.  
  12135.                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
  12136.                 if (!connector_state)
  12137.                         connector_state = connector->state;
  12138.  
  12139.                 if (!connector_state->best_encoder)
  12140.                         continue;
  12141.  
  12142.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12143.  
  12144.                 WARN_ON(!connector_state->crtc);
  12145.  
  12146.                 switch (encoder->type) {
  12147.                         unsigned int port_mask;
  12148.                 case INTEL_OUTPUT_UNKNOWN:
  12149.                         if (WARN_ON(!HAS_DDI(dev)))
  12150.                                 break;
  12151.                 case INTEL_OUTPUT_DISPLAYPORT:
  12152.                 case INTEL_OUTPUT_HDMI:
  12153.                 case INTEL_OUTPUT_EDP:
  12154.                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
  12155.  
  12156.                         /* the same port mustn't appear more than once */
  12157.                         if (used_ports & port_mask)
  12158.                                 return false;
  12159.  
  12160.                         used_ports |= port_mask;
  12161.                 default:
  12162.                         break;
  12163.                 }
  12164.         }
  12165.  
  12166.         return true;
  12167. }
  12168.  
  12169. static void
  12170. clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
  12171. {
  12172.         struct drm_crtc_state tmp_state;
  12173.         struct intel_crtc_scaler_state scaler_state;
  12174.         struct intel_dpll_hw_state dpll_hw_state;
  12175.         enum intel_dpll_id shared_dpll;
  12176.         uint32_t ddi_pll_sel;
  12177.         bool force_thru;
  12178.  
  12179.         /* FIXME: before the switch to atomic started, a new pipe_config was
  12180.          * kzalloc'd. Code that depends on any field being zero should be
  12181.          * fixed, so that the crtc_state can be safely duplicated. For now,
  12182.          * only fields that are know to not cause problems are preserved. */
  12183.  
  12184.         tmp_state = crtc_state->base;
  12185.         scaler_state = crtc_state->scaler_state;
  12186.         shared_dpll = crtc_state->shared_dpll;
  12187.         dpll_hw_state = crtc_state->dpll_hw_state;
  12188.         ddi_pll_sel = crtc_state->ddi_pll_sel;
  12189.         force_thru = crtc_state->pch_pfit.force_thru;
  12190.  
  12191.         memset(crtc_state, 0, sizeof *crtc_state);
  12192.  
  12193.         crtc_state->base = tmp_state;
  12194.         crtc_state->scaler_state = scaler_state;
  12195.         crtc_state->shared_dpll = shared_dpll;
  12196.         crtc_state->dpll_hw_state = dpll_hw_state;
  12197.         crtc_state->ddi_pll_sel = ddi_pll_sel;
  12198.         crtc_state->pch_pfit.force_thru = force_thru;
  12199. }
  12200.  
  12201. static int
  12202. intel_modeset_pipe_config(struct drm_crtc *crtc,
  12203.                           struct intel_crtc_state *pipe_config)
  12204. {
  12205.         struct drm_atomic_state *state = pipe_config->base.state;
  12206.         struct intel_encoder *encoder;
  12207.         struct drm_connector *connector;
  12208.         struct drm_connector_state *connector_state;
  12209.         int base_bpp, ret = -EINVAL;
  12210.         int i;
  12211.         bool retry = true;
  12212.  
  12213.         clear_intel_crtc_state(pipe_config);
  12214.  
  12215.         pipe_config->cpu_transcoder =
  12216.                 (enum transcoder) to_intel_crtc(crtc)->pipe;
  12217.  
  12218.         /*
  12219.          * Sanitize sync polarity flags based on requested ones. If neither
  12220.          * positive or negative polarity is requested, treat this as meaning
  12221.          * negative polarity.
  12222.          */
  12223.         if (!(pipe_config->base.adjusted_mode.flags &
  12224.               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  12225.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  12226.  
  12227.         if (!(pipe_config->base.adjusted_mode.flags &
  12228.               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  12229.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  12230.  
  12231.         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  12232.                                              pipe_config);
  12233.         if (base_bpp < 0)
  12234.                 goto fail;
  12235.  
  12236.         /*
  12237.          * Determine the real pipe dimensions. Note that stereo modes can
  12238.          * increase the actual pipe size due to the frame doubling and
  12239.          * insertion of additional space for blanks between the frame. This
  12240.          * is stored in the crtc timings. We use the requested mode to do this
  12241.          * computation to clearly distinguish it from the adjusted mode, which
  12242.          * can be changed by the connectors in the below retry loop.
  12243.          */
  12244.         drm_crtc_get_hv_timing(&pipe_config->base.mode,
  12245.                                &pipe_config->pipe_src_w,
  12246.                                &pipe_config->pipe_src_h);
  12247.  
  12248. encoder_retry:
  12249.         /* Ensure the port clock defaults are reset when retrying. */
  12250.         pipe_config->port_clock = 0;
  12251.         pipe_config->pixel_multiplier = 1;
  12252.  
  12253.         /* Fill in default crtc timings, allow encoders to overwrite them. */
  12254.         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
  12255.                               CRTC_STEREO_DOUBLE);
  12256.  
  12257.         /* Pass our mode to the connectors and the CRTC to give them a chance to
  12258.          * adjust it according to limitations or connector properties, and also
  12259.          * a chance to reject the mode entirely.
  12260.          */
  12261.         for_each_connector_in_state(state, connector, connector_state, i) {
  12262.                 if (connector_state->crtc != crtc)
  12263.                         continue;
  12264.  
  12265.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12266.  
  12267.                 if (!(encoder->compute_config(encoder, pipe_config))) {
  12268.                         DRM_DEBUG_KMS("Encoder config failure\n");
  12269.                         goto fail;
  12270.                 }
  12271.         }
  12272.  
  12273.         /* Set default port clock if not overwritten by the encoder. Needs to be
  12274.          * done afterwards in case the encoder adjusts the mode. */
  12275.         if (!pipe_config->port_clock)
  12276.                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
  12277.                         * pipe_config->pixel_multiplier;
  12278.  
  12279.         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  12280.         if (ret < 0) {
  12281.                 DRM_DEBUG_KMS("CRTC fixup failed\n");
  12282.                 goto fail;
  12283.         }
  12284.  
  12285.         if (ret == RETRY) {
  12286.                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
  12287.                         ret = -EINVAL;
  12288.                         goto fail;
  12289.                 }
  12290.  
  12291.                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  12292.                 retry = false;
  12293.                 goto encoder_retry;
  12294.         }
  12295.  
  12296.         /* Dithering seems to not pass-through bits correctly when it should, so
  12297.          * only enable it on 6bpc panels. */
  12298.         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
  12299.         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
  12300.                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  12301.  
  12302. fail:
  12303.         return ret;
  12304. }
  12305.  
  12306. static void
  12307. intel_modeset_update_crtc_state(struct drm_atomic_state *state)
  12308. {
  12309.         struct drm_crtc *crtc;
  12310.         struct drm_crtc_state *crtc_state;
  12311.         int i;
  12312.  
  12313.         /* Double check state. */
  12314.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12315.                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
  12316.  
  12317.                 /* Update hwmode for vblank functions */
  12318.                 if (crtc->state->active)
  12319.                         crtc->hwmode = crtc->state->adjusted_mode;
  12320.                 else
  12321.                         crtc->hwmode.crtc_clock = 0;
  12322.         }
  12323. }
  12324.  
  12325. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  12326. {
  12327.         int diff;
  12328.  
  12329.         if (clock1 == clock2)
  12330.                 return true;
  12331.  
  12332.         if (!clock1 || !clock2)
  12333.                 return false;
  12334.  
  12335.         diff = abs(clock1 - clock2);
  12336.  
  12337.         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  12338.                 return true;
  12339.  
  12340.         return false;
  12341. }
  12342.  
  12343. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  12344.         list_for_each_entry((intel_crtc), \
  12345.                             &(dev)->mode_config.crtc_list, \
  12346.                             base.head) \
  12347.                 if (mask & (1 <<(intel_crtc)->pipe))
  12348.  
  12349. static bool
  12350. intel_compare_m_n(unsigned int m, unsigned int n,
  12351.                   unsigned int m2, unsigned int n2,
  12352.                   bool exact)
  12353. {
  12354.         if (m == m2 && n == n2)
  12355.                 return true;
  12356.  
  12357.         if (exact || !m || !n || !m2 || !n2)
  12358.                 return false;
  12359.  
  12360.         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
  12361.  
  12362.         if (m > m2) {
  12363.                 while (m > m2) {
  12364.                         m2 <<= 1;
  12365.                         n2 <<= 1;
  12366.                 }
  12367.         } else if (m < m2) {
  12368.                 while (m < m2) {
  12369.                         m <<= 1;
  12370.                         n <<= 1;
  12371.                 }
  12372.         }
  12373.  
  12374.         return m == m2 && n == n2;
  12375. }
  12376.  
  12377. static bool
  12378. intel_compare_link_m_n(const struct intel_link_m_n *m_n,
  12379.                        struct intel_link_m_n *m2_n2,
  12380.                        bool adjust)
  12381. {
  12382.         if (m_n->tu == m2_n2->tu &&
  12383.             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
  12384.                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
  12385.             intel_compare_m_n(m_n->link_m, m_n->link_n,
  12386.                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
  12387.                 if (adjust)
  12388.                         *m2_n2 = *m_n;
  12389.  
  12390.                 return true;
  12391.         }
  12392.  
  12393.         return false;
  12394. }
  12395.  
  12396. static bool
  12397. intel_pipe_config_compare(struct drm_device *dev,
  12398.                           struct intel_crtc_state *current_config,
  12399.                           struct intel_crtc_state *pipe_config,
  12400.                           bool adjust)
  12401. {
  12402.         bool ret = true;
  12403.  
  12404. #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
  12405.         do { \
  12406.                 if (!adjust) \
  12407.                         DRM_ERROR(fmt, ##__VA_ARGS__); \
  12408.                 else \
  12409.                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
  12410.         } while (0)
  12411.  
  12412. #define PIPE_CONF_CHECK_X(name) \
  12413.         if (current_config->name != pipe_config->name) { \
  12414.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12415.                           "(expected 0x%08x, found 0x%08x)\n", \
  12416.                           current_config->name, \
  12417.                           pipe_config->name); \
  12418.                 ret = false; \
  12419.         }
  12420.  
  12421. #define PIPE_CONF_CHECK_I(name) \
  12422.         if (current_config->name != pipe_config->name) { \
  12423.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12424.                           "(expected %i, found %i)\n", \
  12425.                           current_config->name, \
  12426.                           pipe_config->name); \
  12427.                 ret = false; \
  12428.         }
  12429.  
  12430. #define PIPE_CONF_CHECK_M_N(name) \
  12431.         if (!intel_compare_link_m_n(&current_config->name, \
  12432.                                     &pipe_config->name,\
  12433.                                     adjust)) { \
  12434.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12435.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12436.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12437.                           current_config->name.tu, \
  12438.                           current_config->name.gmch_m, \
  12439.                           current_config->name.gmch_n, \
  12440.                           current_config->name.link_m, \
  12441.                           current_config->name.link_n, \
  12442.                           pipe_config->name.tu, \
  12443.                           pipe_config->name.gmch_m, \
  12444.                           pipe_config->name.gmch_n, \
  12445.                           pipe_config->name.link_m, \
  12446.                           pipe_config->name.link_n); \
  12447.                 ret = false; \
  12448.         }
  12449.  
  12450. #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
  12451.         if (!intel_compare_link_m_n(&current_config->name, \
  12452.                                     &pipe_config->name, adjust) && \
  12453.             !intel_compare_link_m_n(&current_config->alt_name, \
  12454.                                     &pipe_config->name, adjust)) { \
  12455.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12456.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12457.                           "or tu %i gmch %i/%i link %i/%i, " \
  12458.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12459.                           current_config->name.tu, \
  12460.                           current_config->name.gmch_m, \
  12461.                           current_config->name.gmch_n, \
  12462.                           current_config->name.link_m, \
  12463.                           current_config->name.link_n, \
  12464.                           current_config->alt_name.tu, \
  12465.                           current_config->alt_name.gmch_m, \
  12466.                           current_config->alt_name.gmch_n, \
  12467.                           current_config->alt_name.link_m, \
  12468.                           current_config->alt_name.link_n, \
  12469.                           pipe_config->name.tu, \
  12470.                           pipe_config->name.gmch_m, \
  12471.                           pipe_config->name.gmch_n, \
  12472.                           pipe_config->name.link_m, \
  12473.                           pipe_config->name.link_n); \
  12474.                 ret = false; \
  12475.         }
  12476.  
  12477. /* This is required for BDW+ where there is only one set of registers for
  12478.  * switching between high and low RR.
  12479.  * This macro can be used whenever a comparison has to be made between one
  12480.  * hw state and multiple sw state variables.
  12481.  */
  12482. #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
  12483.         if ((current_config->name != pipe_config->name) && \
  12484.                 (current_config->alt_name != pipe_config->name)) { \
  12485.                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12486.                                   "(expected %i or %i, found %i)\n", \
  12487.                                   current_config->name, \
  12488.                                   current_config->alt_name, \
  12489.                                   pipe_config->name); \
  12490.                         ret = false; \
  12491.         }
  12492.  
  12493. #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
  12494.         if ((current_config->name ^ pipe_config->name) & (mask)) { \
  12495.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
  12496.                           "(expected %i, found %i)\n", \
  12497.                           current_config->name & (mask), \
  12498.                           pipe_config->name & (mask)); \
  12499.                 ret = false; \
  12500.         }
  12501.  
  12502. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  12503.         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  12504.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12505.                           "(expected %i, found %i)\n", \
  12506.                           current_config->name, \
  12507.                           pipe_config->name); \
  12508.                 ret = false; \
  12509.         }
  12510.  
  12511. #define PIPE_CONF_QUIRK(quirk)  \
  12512.         ((current_config->quirks | pipe_config->quirks) & (quirk))
  12513.  
  12514.         PIPE_CONF_CHECK_I(cpu_transcoder);
  12515.  
  12516.         PIPE_CONF_CHECK_I(has_pch_encoder);
  12517.         PIPE_CONF_CHECK_I(fdi_lanes);
  12518.         PIPE_CONF_CHECK_M_N(fdi_m_n);
  12519.  
  12520.         PIPE_CONF_CHECK_I(has_dp_encoder);
  12521.         PIPE_CONF_CHECK_I(lane_count);
  12522.  
  12523.         if (INTEL_INFO(dev)->gen < 8) {
  12524.                 PIPE_CONF_CHECK_M_N(dp_m_n);
  12525.  
  12526.                 if (current_config->has_drrs)
  12527.                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
  12528.         } else
  12529.                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
  12530.  
  12531.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
  12532.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
  12533.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
  12534.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
  12535.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
  12536.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
  12537.  
  12538.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
  12539.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
  12540.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
  12541.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
  12542.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
  12543.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
  12544.  
  12545.         PIPE_CONF_CHECK_I(pixel_multiplier);
  12546.         PIPE_CONF_CHECK_I(has_hdmi_sink);
  12547.         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
  12548.             IS_VALLEYVIEW(dev))
  12549.                 PIPE_CONF_CHECK_I(limited_color_range);
  12550.         PIPE_CONF_CHECK_I(has_infoframe);
  12551.  
  12552.         PIPE_CONF_CHECK_I(has_audio);
  12553.  
  12554.         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12555.                               DRM_MODE_FLAG_INTERLACE);
  12556.  
  12557.         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  12558.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12559.                                       DRM_MODE_FLAG_PHSYNC);
  12560.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12561.                                       DRM_MODE_FLAG_NHSYNC);
  12562.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12563.                                       DRM_MODE_FLAG_PVSYNC);
  12564.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12565.                                       DRM_MODE_FLAG_NVSYNC);
  12566.         }
  12567.  
  12568.         PIPE_CONF_CHECK_X(gmch_pfit.control);
  12569.         /* pfit ratios are autocomputed by the hw on gen4+ */
  12570.         if (INTEL_INFO(dev)->gen < 4)
  12571.                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  12572.         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
  12573.  
  12574.         if (!adjust) {
  12575.                 PIPE_CONF_CHECK_I(pipe_src_w);
  12576.                 PIPE_CONF_CHECK_I(pipe_src_h);
  12577.  
  12578.                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
  12579.                 if (current_config->pch_pfit.enabled) {
  12580.                         PIPE_CONF_CHECK_X(pch_pfit.pos);
  12581.                         PIPE_CONF_CHECK_X(pch_pfit.size);
  12582.                 }
  12583.  
  12584.                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
  12585.         }
  12586.  
  12587.         /* BDW+ don't expose a synchronous way to read the state */
  12588.         if (IS_HASWELL(dev))
  12589.                 PIPE_CONF_CHECK_I(ips_enabled);
  12590.  
  12591.         PIPE_CONF_CHECK_I(double_wide);
  12592.  
  12593.         PIPE_CONF_CHECK_X(ddi_pll_sel);
  12594.  
  12595.         PIPE_CONF_CHECK_I(shared_dpll);
  12596.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  12597.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  12598.         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  12599.         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  12600.         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
  12601.         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
  12602.         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
  12603.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
  12604.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
  12605.  
  12606.         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  12607.                 PIPE_CONF_CHECK_I(pipe_bpp);
  12608.  
  12609.         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
  12610.         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  12611.  
  12612. #undef PIPE_CONF_CHECK_X
  12613. #undef PIPE_CONF_CHECK_I
  12614. #undef PIPE_CONF_CHECK_I_ALT
  12615. #undef PIPE_CONF_CHECK_FLAGS
  12616. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  12617. #undef PIPE_CONF_QUIRK
  12618. #undef INTEL_ERR_OR_DBG_KMS
  12619.  
  12620.         return ret;
  12621. }
  12622.  
  12623. static void check_wm_state(struct drm_device *dev)
  12624. {
  12625.         struct drm_i915_private *dev_priv = dev->dev_private;
  12626.         struct skl_ddb_allocation hw_ddb, *sw_ddb;
  12627.         struct intel_crtc *intel_crtc;
  12628.         int plane;
  12629.  
  12630.         if (INTEL_INFO(dev)->gen < 9)
  12631.                 return;
  12632.  
  12633.         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
  12634.         sw_ddb = &dev_priv->wm.skl_hw.ddb;
  12635.  
  12636.         for_each_intel_crtc(dev, intel_crtc) {
  12637.                 struct skl_ddb_entry *hw_entry, *sw_entry;
  12638.                 const enum pipe pipe = intel_crtc->pipe;
  12639.  
  12640.                 if (!intel_crtc->active)
  12641.                         continue;
  12642.  
  12643.                 /* planes */
  12644.                 for_each_plane(dev_priv, pipe, plane) {
  12645.                         hw_entry = &hw_ddb.plane[pipe][plane];
  12646.                         sw_entry = &sw_ddb->plane[pipe][plane];
  12647.  
  12648.                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12649.                                 continue;
  12650.  
  12651.                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
  12652.                                   "(expected (%u,%u), found (%u,%u))\n",
  12653.                                   pipe_name(pipe), plane + 1,
  12654.                                   sw_entry->start, sw_entry->end,
  12655.                                   hw_entry->start, hw_entry->end);
  12656.                 }
  12657.  
  12658.                 /* cursor */
  12659.                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
  12660.                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
  12661.  
  12662.                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12663.                         continue;
  12664.  
  12665.                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
  12666.                           "(expected (%u,%u), found (%u,%u))\n",
  12667.                           pipe_name(pipe),
  12668.                           sw_entry->start, sw_entry->end,
  12669.                           hw_entry->start, hw_entry->end);
  12670.         }
  12671. }
  12672.  
  12673. static void
  12674. check_connector_state(struct drm_device *dev,
  12675.                       struct drm_atomic_state *old_state)
  12676. {
  12677.         struct drm_connector_state *old_conn_state;
  12678.         struct drm_connector *connector;
  12679.         int i;
  12680.  
  12681.         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
  12682.                 struct drm_encoder *encoder = connector->encoder;
  12683.                 struct drm_connector_state *state = connector->state;
  12684.  
  12685.                 /* This also checks the encoder/connector hw state with the
  12686.                  * ->get_hw_state callbacks. */
  12687.                 intel_connector_check_state(to_intel_connector(connector));
  12688.  
  12689.                 I915_STATE_WARN(state->best_encoder != encoder,
  12690.                      "connector's atomic encoder doesn't match legacy encoder\n");
  12691.         }
  12692. }
  12693.  
  12694. static void
  12695. check_encoder_state(struct drm_device *dev)
  12696. {
  12697.         struct intel_encoder *encoder;
  12698.         struct intel_connector *connector;
  12699.  
  12700.         for_each_intel_encoder(dev, encoder) {
  12701.                 bool enabled = false;
  12702.                 enum pipe pipe;
  12703.  
  12704.                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  12705.                               encoder->base.base.id,
  12706.                               encoder->base.name);
  12707.  
  12708.                 for_each_intel_connector(dev, connector) {
  12709.                         if (connector->base.state->best_encoder != &encoder->base)
  12710.                                 continue;
  12711.                         enabled = true;
  12712.  
  12713.                         I915_STATE_WARN(connector->base.state->crtc !=
  12714.                                         encoder->base.crtc,
  12715.                              "connector's crtc doesn't match encoder crtc\n");
  12716.                 }
  12717.  
  12718.                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
  12719.                      "encoder's enabled state mismatch "
  12720.                      "(expected %i, found %i)\n",
  12721.                      !!encoder->base.crtc, enabled);
  12722.  
  12723.                 if (!encoder->base.crtc) {
  12724.                         bool active;
  12725.  
  12726.                         active = encoder->get_hw_state(encoder, &pipe);
  12727.                         I915_STATE_WARN(active,
  12728.                              "encoder detached but still enabled on pipe %c.\n",
  12729.                              pipe_name(pipe));
  12730.                 }
  12731.         }
  12732. }
  12733.  
  12734. static void
  12735. check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
  12736. {
  12737.         struct drm_i915_private *dev_priv = dev->dev_private;
  12738.         struct intel_encoder *encoder;
  12739.         struct drm_crtc_state *old_crtc_state;
  12740.         struct drm_crtc *crtc;
  12741.         int i;
  12742.  
  12743.         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
  12744.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  12745.                 struct intel_crtc_state *pipe_config, *sw_config;
  12746.                 bool active;
  12747.  
  12748.                 if (!needs_modeset(crtc->state) &&
  12749.                     !to_intel_crtc_state(crtc->state)->update_pipe)
  12750.                         continue;
  12751.  
  12752.                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
  12753.                 pipe_config = to_intel_crtc_state(old_crtc_state);
  12754.                 memset(pipe_config, 0, sizeof(*pipe_config));
  12755.                 pipe_config->base.crtc = crtc;
  12756.                 pipe_config->base.state = old_state;
  12757.  
  12758.                 DRM_DEBUG_KMS("[CRTC:%d]\n",
  12759.                               crtc->base.id);
  12760.  
  12761.                 active = dev_priv->display.get_pipe_config(intel_crtc,
  12762.                                                            pipe_config);
  12763.  
  12764.                 /* hw state is inconsistent with the pipe quirk */
  12765.                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  12766.                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  12767.                         active = crtc->state->active;
  12768.  
  12769.                 I915_STATE_WARN(crtc->state->active != active,
  12770.                      "crtc active state doesn't match with hw state "
  12771.                      "(expected %i, found %i)\n", crtc->state->active, active);
  12772.  
  12773.                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
  12774.                      "transitional active state does not match atomic hw state "
  12775.                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
  12776.  
  12777.                 for_each_encoder_on_crtc(dev, crtc, encoder) {
  12778.                         enum pipe pipe;
  12779.  
  12780.                         active = encoder->get_hw_state(encoder, &pipe);
  12781.                         I915_STATE_WARN(active != crtc->state->active,
  12782.                                 "[ENCODER:%i] active %i with crtc active %i\n",
  12783.                                 encoder->base.base.id, active, crtc->state->active);
  12784.  
  12785.                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
  12786.                                         "Encoder connected to wrong pipe %c\n",
  12787.                                         pipe_name(pipe));
  12788.  
  12789.                         if (active)
  12790.                                 encoder->get_config(encoder, pipe_config);
  12791.                 }
  12792.  
  12793.                 if (!crtc->state->active)
  12794.                         continue;
  12795.  
  12796.                 sw_config = to_intel_crtc_state(crtc->state);
  12797.                 if (!intel_pipe_config_compare(dev, sw_config,
  12798.                                                pipe_config, false)) {
  12799.                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
  12800.                         intel_dump_pipe_config(intel_crtc, pipe_config,
  12801.                                                "[hw state]");
  12802.                         intel_dump_pipe_config(intel_crtc, sw_config,
  12803.                                                "[sw state]");
  12804.                 }
  12805.         }
  12806. }
  12807.  
  12808. static void
  12809. check_shared_dpll_state(struct drm_device *dev)
  12810. {
  12811.         struct drm_i915_private *dev_priv = dev->dev_private;
  12812.         struct intel_crtc *crtc;
  12813.         struct intel_dpll_hw_state dpll_hw_state;
  12814.         int i;
  12815.  
  12816.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  12817.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  12818.                 int enabled_crtcs = 0, active_crtcs = 0;
  12819.                 bool active;
  12820.  
  12821.                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  12822.  
  12823.                 DRM_DEBUG_KMS("%s\n", pll->name);
  12824.  
  12825.                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  12826.  
  12827.                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
  12828.                      "more active pll users than references: %i vs %i\n",
  12829.                      pll->active, hweight32(pll->config.crtc_mask));
  12830.                 I915_STATE_WARN(pll->active && !pll->on,
  12831.                      "pll in active use but not on in sw tracking\n");
  12832.                 I915_STATE_WARN(pll->on && !pll->active,
  12833.                      "pll in on but not on in use in sw tracking\n");
  12834.                 I915_STATE_WARN(pll->on != active,
  12835.                      "pll on state mismatch (expected %i, found %i)\n",
  12836.                      pll->on, active);
  12837.  
  12838.                 for_each_intel_crtc(dev, crtc) {
  12839.                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
  12840.                                 enabled_crtcs++;
  12841.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  12842.                                 active_crtcs++;
  12843.                 }
  12844.                 I915_STATE_WARN(pll->active != active_crtcs,
  12845.                      "pll active crtcs mismatch (expected %i, found %i)\n",
  12846.                      pll->active, active_crtcs);
  12847.                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
  12848.                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
  12849.                      hweight32(pll->config.crtc_mask), enabled_crtcs);
  12850.  
  12851.                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
  12852.                                        sizeof(dpll_hw_state)),
  12853.                      "pll hw state mismatch\n");
  12854.         }
  12855. }
  12856.  
  12857. static void
  12858. intel_modeset_check_state(struct drm_device *dev,
  12859.                           struct drm_atomic_state *old_state)
  12860. {
  12861.         check_wm_state(dev);
  12862.         check_connector_state(dev, old_state);
  12863.         check_encoder_state(dev);
  12864.         check_crtc_state(dev, old_state);
  12865.         check_shared_dpll_state(dev);
  12866. }
  12867.  
  12868. void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
  12869.                                      int dotclock)
  12870. {
  12871.         /*
  12872.          * FDI already provided one idea for the dotclock.
  12873.          * Yell if the encoder disagrees.
  12874.          */
  12875.         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
  12876.              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  12877.              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
  12878. }
  12879.  
  12880. static void update_scanline_offset(struct intel_crtc *crtc)
  12881. {
  12882.         struct drm_device *dev = crtc->base.dev;
  12883.  
  12884.         /*
  12885.          * The scanline counter increments at the leading edge of hsync.
  12886.          *
  12887.          * On most platforms it starts counting from vtotal-1 on the
  12888.          * first active line. That means the scanline counter value is
  12889.          * always one less than what we would expect. Ie. just after
  12890.          * start of vblank, which also occurs at start of hsync (on the
  12891.          * last active line), the scanline counter will read vblank_start-1.
  12892.          *
  12893.          * On gen2 the scanline counter starts counting from 1 instead
  12894.          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
  12895.          * to keep the value positive), instead of adding one.
  12896.          *
  12897.          * On HSW+ the behaviour of the scanline counter depends on the output
  12898.          * type. For DP ports it behaves like most other platforms, but on HDMI
  12899.          * there's an extra 1 line difference. So we need to add two instead of
  12900.          * one to the value.
  12901.          */
  12902.         if (IS_GEN2(dev)) {
  12903.                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
  12904.                 int vtotal;
  12905.  
  12906.                 vtotal = adjusted_mode->crtc_vtotal;
  12907.                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  12908.                         vtotal /= 2;
  12909.  
  12910.                 crtc->scanline_offset = vtotal - 1;
  12911.         } else if (HAS_DDI(dev) &&
  12912.                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
  12913.                 crtc->scanline_offset = 2;
  12914.         } else
  12915.                 crtc->scanline_offset = 1;
  12916. }
  12917.  
  12918. static void intel_modeset_clear_plls(struct drm_atomic_state *state)
  12919. {
  12920.         struct drm_device *dev = state->dev;
  12921.         struct drm_i915_private *dev_priv = to_i915(dev);
  12922.         struct intel_shared_dpll_config *shared_dpll = NULL;
  12923.         struct intel_crtc *intel_crtc;
  12924.         struct intel_crtc_state *intel_crtc_state;
  12925.         struct drm_crtc *crtc;
  12926.         struct drm_crtc_state *crtc_state;
  12927.         int i;
  12928.  
  12929.         if (!dev_priv->display.crtc_compute_clock)
  12930.                 return;
  12931.  
  12932.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12933.                 int dpll;
  12934.  
  12935.                 intel_crtc = to_intel_crtc(crtc);
  12936.                 intel_crtc_state = to_intel_crtc_state(crtc_state);
  12937.                 dpll = intel_crtc_state->shared_dpll;
  12938.  
  12939.                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
  12940.                         continue;
  12941.  
  12942.                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
  12943.  
  12944.                 if (!shared_dpll)
  12945.                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
  12946.  
  12947.                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
  12948.         }
  12949. }
  12950.  
  12951. /*
  12952.  * This implements the workaround described in the "notes" section of the mode
  12953.  * set sequence documentation. When going from no pipes or single pipe to
  12954.  * multiple pipes, and planes are enabled after the pipe, we need to wait at
  12955.  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  12956.  */
  12957. static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
  12958. {
  12959.         struct drm_crtc_state *crtc_state;
  12960.         struct intel_crtc *intel_crtc;
  12961.         struct drm_crtc *crtc;
  12962.         struct intel_crtc_state *first_crtc_state = NULL;
  12963.         struct intel_crtc_state *other_crtc_state = NULL;
  12964.         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
  12965.         int i;
  12966.  
  12967.         /* look at all crtc's that are going to be enabled in during modeset */
  12968.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12969.                 intel_crtc = to_intel_crtc(crtc);
  12970.  
  12971.                 if (!crtc_state->active || !needs_modeset(crtc_state))
  12972.                         continue;
  12973.  
  12974.                 if (first_crtc_state) {
  12975.                         other_crtc_state = to_intel_crtc_state(crtc_state);
  12976.                         break;
  12977.                 } else {
  12978.                         first_crtc_state = to_intel_crtc_state(crtc_state);
  12979.                         first_pipe = intel_crtc->pipe;
  12980.                 }
  12981.         }
  12982.  
  12983.         /* No workaround needed? */
  12984.         if (!first_crtc_state)
  12985.                 return 0;
  12986.  
  12987.         /* w/a possibly needed, check how many crtc's are already enabled. */
  12988.         for_each_intel_crtc(state->dev, intel_crtc) {
  12989.                 struct intel_crtc_state *pipe_config;
  12990.  
  12991.                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
  12992.                 if (IS_ERR(pipe_config))
  12993.                         return PTR_ERR(pipe_config);
  12994.  
  12995.                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
  12996.  
  12997.                 if (!pipe_config->base.active ||
  12998.                     needs_modeset(&pipe_config->base))
  12999.                         continue;
  13000.  
  13001.                 /* 2 or more enabled crtcs means no need for w/a */
  13002.                 if (enabled_pipe != INVALID_PIPE)
  13003.                         return 0;
  13004.  
  13005.                 enabled_pipe = intel_crtc->pipe;
  13006.         }
  13007.  
  13008.         if (enabled_pipe != INVALID_PIPE)
  13009.                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
  13010.         else if (other_crtc_state)
  13011.                 other_crtc_state->hsw_workaround_pipe = first_pipe;
  13012.  
  13013.         return 0;
  13014. }
  13015.  
  13016. static int intel_modeset_all_pipes(struct drm_atomic_state *state)
  13017. {
  13018.         struct drm_crtc *crtc;
  13019.         struct drm_crtc_state *crtc_state;
  13020.         int ret = 0;
  13021.  
  13022.         /* add all active pipes to the state */
  13023.         for_each_crtc(state->dev, crtc) {
  13024.                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13025.                 if (IS_ERR(crtc_state))
  13026.                         return PTR_ERR(crtc_state);
  13027.  
  13028.                 if (!crtc_state->active || needs_modeset(crtc_state))
  13029.                         continue;
  13030.  
  13031.                 crtc_state->mode_changed = true;
  13032.  
  13033.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13034.                 if (ret)
  13035.                         break;
  13036.  
  13037.                 ret = drm_atomic_add_affected_planes(state, crtc);
  13038.                 if (ret)
  13039.                         break;
  13040.         }
  13041.  
  13042.         return ret;
  13043. }
  13044.  
  13045. static int intel_modeset_checks(struct drm_atomic_state *state)
  13046. {
  13047.         struct drm_device *dev = state->dev;
  13048.         struct drm_i915_private *dev_priv = dev->dev_private;
  13049.         int ret;
  13050.  
  13051.         if (!check_digital_port_conflicts(state)) {
  13052.                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
  13053.                 return -EINVAL;
  13054.         }
  13055.  
  13056.         /*
  13057.          * See if the config requires any additional preparation, e.g.
  13058.          * to adjust global state with pipes off.  We need to do this
  13059.          * here so we can get the modeset_pipe updated config for the new
  13060.          * mode set on this crtc.  For other crtcs we need to use the
  13061.          * adjusted_mode bits in the crtc directly.
  13062.          */
  13063.         if (dev_priv->display.modeset_calc_cdclk) {
  13064.                 unsigned int cdclk;
  13065.  
  13066.                 ret = dev_priv->display.modeset_calc_cdclk(state);
  13067.  
  13068.                 cdclk = to_intel_atomic_state(state)->cdclk;
  13069.                 if (!ret && cdclk != dev_priv->cdclk_freq)
  13070.                         ret = intel_modeset_all_pipes(state);
  13071.  
  13072.                 if (ret < 0)
  13073.                         return ret;
  13074.         } else
  13075.                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
  13076.  
  13077.         intel_modeset_clear_plls(state);
  13078.  
  13079.         if (IS_HASWELL(dev))
  13080.                 return haswell_mode_set_planes_workaround(state);
  13081.  
  13082.         return 0;
  13083. }
  13084.  
  13085. /**
  13086.  * intel_atomic_check - validate state object
  13087.  * @dev: drm device
  13088.  * @state: state to validate
  13089.  */
  13090. static int intel_atomic_check(struct drm_device *dev,
  13091.                               struct drm_atomic_state *state)
  13092. {
  13093.         struct drm_crtc *crtc;
  13094.         struct drm_crtc_state *crtc_state;
  13095.         int ret, i;
  13096.         bool any_ms = false;
  13097.  
  13098.         ret = drm_atomic_helper_check_modeset(dev, state);
  13099.         if (ret)
  13100.                 return ret;
  13101.  
  13102.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13103.                 struct intel_crtc_state *pipe_config =
  13104.                         to_intel_crtc_state(crtc_state);
  13105.  
  13106.                 memset(&to_intel_crtc(crtc)->atomic, 0,
  13107.                        sizeof(struct intel_crtc_atomic_commit));
  13108.  
  13109.                 /* Catch I915_MODE_FLAG_INHERITED */
  13110.                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
  13111.                         crtc_state->mode_changed = true;
  13112.  
  13113.                 if (!crtc_state->enable) {
  13114.                         if (needs_modeset(crtc_state))
  13115.                                 any_ms = true;
  13116.                         continue;
  13117.                 }
  13118.  
  13119.                 if (!needs_modeset(crtc_state))
  13120.                         continue;
  13121.  
  13122.                 /* FIXME: For only active_changed we shouldn't need to do any
  13123.                  * state recomputation at all. */
  13124.  
  13125.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13126.                 if (ret)
  13127.                         return ret;
  13128.  
  13129.                 ret = intel_modeset_pipe_config(crtc, pipe_config);
  13130.                 if (ret)
  13131.                         return ret;
  13132.  
  13133.                 if (i915.fastboot &&
  13134.                     intel_pipe_config_compare(state->dev,
  13135.                                         to_intel_crtc_state(crtc->state),
  13136.                                         pipe_config, true)) {
  13137.                         crtc_state->mode_changed = false;
  13138.                         to_intel_crtc_state(crtc_state)->update_pipe = true;
  13139.                 }
  13140.  
  13141.                 if (needs_modeset(crtc_state)) {
  13142.                         any_ms = true;
  13143.  
  13144.                         ret = drm_atomic_add_affected_planes(state, crtc);
  13145.                         if (ret)
  13146.                                 return ret;
  13147.                 }
  13148.  
  13149.                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  13150.                                        needs_modeset(crtc_state) ?
  13151.                                        "[modeset]" : "[fastset]");
  13152.         }
  13153.  
  13154.         if (any_ms) {
  13155.                 ret = intel_modeset_checks(state);
  13156.  
  13157.                 if (ret)
  13158.                         return ret;
  13159.         } else
  13160.                 to_intel_atomic_state(state)->cdclk =
  13161.                         to_i915(state->dev)->cdclk_freq;
  13162.  
  13163.         return drm_atomic_helper_check_planes(state->dev, state);
  13164. }
  13165.  
  13166. /**
  13167.  * intel_atomic_commit - commit validated state object
  13168.  * @dev: DRM device
  13169.  * @state: the top-level driver state object
  13170.  * @async: asynchronous commit
  13171.  *
  13172.  * This function commits a top-level state object that has been validated
  13173.  * with drm_atomic_helper_check().
  13174.  *
  13175.  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
  13176.  * we can only handle plane-related operations and do not yet support
  13177.  * asynchronous commit.
  13178.  *
  13179.  * RETURNS
  13180.  * Zero for success or -errno.
  13181.  */
  13182. static int intel_atomic_commit(struct drm_device *dev,
  13183.                                struct drm_atomic_state *state,
  13184.                                bool async)
  13185. {
  13186.         struct drm_i915_private *dev_priv = dev->dev_private;
  13187.         struct drm_crtc *crtc;
  13188.         struct drm_crtc_state *crtc_state;
  13189.         int ret = 0;
  13190.         int i;
  13191.         bool any_ms = false;
  13192.  
  13193.         if (async) {
  13194.                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
  13195.                 return -EINVAL;
  13196.         }
  13197.  
  13198.         ret = drm_atomic_helper_prepare_planes(dev, state);
  13199.         if (ret)
  13200.                 return ret;
  13201.  
  13202.         drm_atomic_helper_swap_state(dev, state);
  13203.  
  13204.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13205.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13206.  
  13207.                 if (!needs_modeset(crtc->state))
  13208.                         continue;
  13209.  
  13210.                 any_ms = true;
  13211.                 intel_pre_plane_update(intel_crtc);
  13212.  
  13213.                 if (crtc_state->active) {
  13214.                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
  13215.                         dev_priv->display.crtc_disable(crtc);
  13216.                         intel_crtc->active = false;
  13217.                         intel_disable_shared_dpll(intel_crtc);
  13218.                 }
  13219.         }
  13220.  
  13221.         /* Only after disabling all output pipelines that will be changed can we
  13222.          * update the the output configuration. */
  13223.         intel_modeset_update_crtc_state(state);
  13224.  
  13225.         if (any_ms) {
  13226.                 intel_shared_dpll_commit(state);
  13227.  
  13228.                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
  13229.                 modeset_update_crtc_power_domains(state);
  13230.         }
  13231.  
  13232.         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  13233.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13234.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13235.                 bool modeset = needs_modeset(crtc->state);
  13236.                 bool update_pipe = !modeset &&
  13237.                         to_intel_crtc_state(crtc->state)->update_pipe;
  13238.                 unsigned long put_domains = 0;
  13239.  
  13240.                 if (modeset && crtc->state->active) {
  13241.                         update_scanline_offset(to_intel_crtc(crtc));
  13242.                         dev_priv->display.crtc_enable(crtc);
  13243.                 }
  13244.  
  13245.                 if (update_pipe) {
  13246.                         put_domains = modeset_get_crtc_power_domains(crtc);
  13247.  
  13248.                         /* make sure intel_modeset_check_state runs */
  13249.                         any_ms = true;
  13250.                 }
  13251.  
  13252.                 if (!modeset)
  13253.                         intel_pre_plane_update(intel_crtc);
  13254.  
  13255.                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
  13256.  
  13257.                 if (put_domains)
  13258.                         modeset_put_power_domains(dev_priv, put_domains);
  13259.  
  13260.                 intel_post_plane_update(intel_crtc);
  13261.         }
  13262.  
  13263.         /* FIXME: add subpixel order */
  13264.  
  13265.         drm_atomic_helper_wait_for_vblanks(dev, state);
  13266.         drm_atomic_helper_cleanup_planes(dev, state);
  13267.  
  13268.         if (any_ms)
  13269.                 intel_modeset_check_state(dev, state);
  13270.  
  13271.         drm_atomic_state_free(state);
  13272.  
  13273.         return 0;
  13274. }
  13275.  
  13276. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  13277. {
  13278.         struct drm_device *dev = crtc->dev;
  13279.         struct drm_atomic_state *state;
  13280.         struct drm_crtc_state *crtc_state;
  13281.         int ret;
  13282.  
  13283.         state = drm_atomic_state_alloc(dev);
  13284.         if (!state) {
  13285.                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
  13286.                               crtc->base.id);
  13287.                 return;
  13288.         }
  13289.  
  13290.         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  13291.  
  13292. retry:
  13293.         crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13294.         ret = PTR_ERR_OR_ZERO(crtc_state);
  13295.         if (!ret) {
  13296.                 if (!crtc_state->active)
  13297.                         goto out;
  13298.  
  13299.                 crtc_state->mode_changed = true;
  13300.                 ret = drm_atomic_commit(state);
  13301.         }
  13302.  
  13303.         if (ret == -EDEADLK) {
  13304.                 drm_atomic_state_clear(state);
  13305.                 drm_modeset_backoff(state->acquire_ctx);
  13306.                 goto retry;
  13307.         }
  13308.  
  13309.         if (ret)
  13310. out:
  13311.                 drm_atomic_state_free(state);
  13312. }
  13313.  
  13314. #undef for_each_intel_crtc_masked
  13315.  
  13316. static const struct drm_crtc_funcs intel_crtc_funcs = {
  13317.         .gamma_set = intel_crtc_gamma_set,
  13318.         .set_config = drm_atomic_helper_set_config,
  13319.         .destroy = intel_crtc_destroy,
  13320. //      .page_flip = intel_crtc_page_flip,
  13321.         .atomic_duplicate_state = intel_crtc_duplicate_state,
  13322.         .atomic_destroy_state = intel_crtc_destroy_state,
  13323. };
  13324.  
  13325. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  13326.                                       struct intel_shared_dpll *pll,
  13327.                                       struct intel_dpll_hw_state *hw_state)
  13328. {
  13329.         uint32_t val;
  13330.  
  13331.         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  13332.                 return false;
  13333.  
  13334.         val = I915_READ(PCH_DPLL(pll->id));
  13335.         hw_state->dpll = val;
  13336.         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  13337.         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  13338.  
  13339.         return val & DPLL_VCO_ENABLE;
  13340. }
  13341.  
  13342. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  13343.                                   struct intel_shared_dpll *pll)
  13344. {
  13345.         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  13346.         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  13347. }
  13348.  
  13349. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  13350.                                 struct intel_shared_dpll *pll)
  13351. {
  13352.         /* PCH refclock must be enabled first */
  13353.         ibx_assert_pch_refclk_enabled(dev_priv);
  13354.  
  13355.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13356.  
  13357.         /* Wait for the clocks to stabilize. */
  13358.         POSTING_READ(PCH_DPLL(pll->id));
  13359.         udelay(150);
  13360.  
  13361.         /* The pixel multiplier can only be updated once the
  13362.          * DPLL is enabled and the clocks are stable.
  13363.          *
  13364.          * So write it again.
  13365.          */
  13366.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13367.         POSTING_READ(PCH_DPLL(pll->id));
  13368.         udelay(200);
  13369. }
  13370.  
  13371. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  13372.                                  struct intel_shared_dpll *pll)
  13373. {
  13374.         struct drm_device *dev = dev_priv->dev;
  13375.         struct intel_crtc *crtc;
  13376.  
  13377.         /* Make sure no transcoder isn't still depending on us. */
  13378.         for_each_intel_crtc(dev, crtc) {
  13379.                 if (intel_crtc_to_shared_dpll(crtc) == pll)
  13380.                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  13381.         }
  13382.  
  13383.         I915_WRITE(PCH_DPLL(pll->id), 0);
  13384.         POSTING_READ(PCH_DPLL(pll->id));
  13385.         udelay(200);
  13386. }
  13387.  
  13388. static char *ibx_pch_dpll_names[] = {
  13389.         "PCH DPLL A",
  13390.         "PCH DPLL B",
  13391. };
  13392.  
  13393. static void ibx_pch_dpll_init(struct drm_device *dev)
  13394. {
  13395.         struct drm_i915_private *dev_priv = dev->dev_private;
  13396.         int i;
  13397.  
  13398.         dev_priv->num_shared_dpll = 2;
  13399.  
  13400.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  13401.                 dev_priv->shared_dplls[i].id = i;
  13402.                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  13403.                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  13404.                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  13405.                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  13406.                 dev_priv->shared_dplls[i].get_hw_state =
  13407.                         ibx_pch_dpll_get_hw_state;
  13408.         }
  13409. }
  13410.  
  13411. static void intel_shared_dpll_init(struct drm_device *dev)
  13412. {
  13413.         struct drm_i915_private *dev_priv = dev->dev_private;
  13414.  
  13415.         if (HAS_DDI(dev))
  13416.                 intel_ddi_pll_init(dev);
  13417.         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  13418.                 ibx_pch_dpll_init(dev);
  13419.         else
  13420.                 dev_priv->num_shared_dpll = 0;
  13421.  
  13422.         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  13423. }
  13424.  
  13425. /**
  13426.  * intel_prepare_plane_fb - Prepare fb for usage on plane
  13427.  * @plane: drm plane to prepare for
  13428.  * @fb: framebuffer to prepare for presentation
  13429.  *
  13430.  * Prepares a framebuffer for usage on a display plane.  Generally this
  13431.  * involves pinning the underlying object and updating the frontbuffer tracking
  13432.  * bits.  Some older platforms need special physical address handling for
  13433.  * cursor planes.
  13434.  *
  13435.  * Returns 0 on success, negative error code on failure.
  13436.  */
  13437. int
  13438. intel_prepare_plane_fb(struct drm_plane *plane,
  13439.                        const struct drm_plane_state *new_state)
  13440. {
  13441.         struct drm_device *dev = plane->dev;
  13442.         struct drm_framebuffer *fb = new_state->fb;
  13443.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13444.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  13445.         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
  13446.         int ret = 0;
  13447.  
  13448.         if (!obj)
  13449.                 return 0;
  13450.  
  13451.         mutex_lock(&dev->struct_mutex);
  13452.  
  13453.         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
  13454.             INTEL_INFO(dev)->cursor_needs_physical) {
  13455.                 int align = IS_I830(dev) ? 16 * 1024 : 256;
  13456.         ret = 1;
  13457.                 if (ret)
  13458.                         DRM_DEBUG_KMS("failed to attach phys object\n");
  13459.         } else {
  13460.                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
  13461.         }
  13462.  
  13463.         if (ret == 0)
  13464.                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
  13465.  
  13466.         mutex_unlock(&dev->struct_mutex);
  13467.  
  13468.         return ret;
  13469. }
  13470.  
  13471. /**
  13472.  * intel_cleanup_plane_fb - Cleans up an fb after plane use
  13473.  * @plane: drm plane to clean up for
  13474.  * @fb: old framebuffer that was on plane
  13475.  *
  13476.  * Cleans up a framebuffer that has just been removed from a plane.
  13477.  */
  13478. void
  13479. intel_cleanup_plane_fb(struct drm_plane *plane,
  13480.                        const struct drm_plane_state *old_state)
  13481. {
  13482.         struct drm_device *dev = plane->dev;
  13483.         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
  13484.  
  13485.         if (!obj)
  13486.                 return;
  13487.  
  13488.         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
  13489.             !INTEL_INFO(dev)->cursor_needs_physical) {
  13490.                 mutex_lock(&dev->struct_mutex);
  13491.                 intel_unpin_fb_obj(old_state->fb, old_state);
  13492.                 mutex_unlock(&dev->struct_mutex);
  13493.         }
  13494. }
  13495.  
  13496. int
  13497. skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
  13498. {
  13499.         int max_scale;
  13500.         struct drm_device *dev;
  13501.         struct drm_i915_private *dev_priv;
  13502.         int crtc_clock, cdclk;
  13503.  
  13504.         if (!intel_crtc || !crtc_state)
  13505.                 return DRM_PLANE_HELPER_NO_SCALING;
  13506.  
  13507.         dev = intel_crtc->base.dev;
  13508.         dev_priv = dev->dev_private;
  13509.         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
  13510.         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
  13511.  
  13512.         if (!crtc_clock || !cdclk)
  13513.                 return DRM_PLANE_HELPER_NO_SCALING;
  13514.  
  13515.         /*
  13516.          * skl max scale is lower of:
  13517.          *    close to 3 but not 3, -1 is for that purpose
  13518.          *            or
  13519.          *    cdclk/crtc_clock
  13520.          */
  13521.         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
  13522.  
  13523.         return max_scale;
  13524. }
  13525.  
  13526. static int
  13527. intel_check_primary_plane(struct drm_plane *plane,
  13528.                           struct intel_crtc_state *crtc_state,
  13529.                           struct intel_plane_state *state)
  13530. {
  13531.         struct drm_crtc *crtc = state->base.crtc;
  13532.         struct drm_framebuffer *fb = state->base.fb;
  13533.         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
  13534.         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
  13535.         bool can_position = false;
  13536.  
  13537.         /* use scaler when colorkey is not required */
  13538.         if (INTEL_INFO(plane->dev)->gen >= 9 &&
  13539.             state->ckey.flags == I915_SET_COLORKEY_NONE) {
  13540.                 min_scale = 1;
  13541.                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
  13542.                 can_position = true;
  13543.         }
  13544.  
  13545.         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  13546.                                              &state->dst, &state->clip,
  13547.                                              min_scale, max_scale,
  13548.                                              can_position, true,
  13549.                                              &state->visible);
  13550. }
  13551.  
  13552. static void
  13553. intel_commit_primary_plane(struct drm_plane *plane,
  13554.                            struct intel_plane_state *state)
  13555. {
  13556.         struct drm_crtc *crtc = state->base.crtc;
  13557.         struct drm_framebuffer *fb = state->base.fb;
  13558.         struct drm_device *dev = plane->dev;
  13559.         struct drm_i915_private *dev_priv = dev->dev_private;
  13560.         struct intel_crtc *intel_crtc;
  13561.         struct drm_rect *src = &state->src;
  13562.  
  13563.         crtc = crtc ? crtc : plane->crtc;
  13564.         intel_crtc = to_intel_crtc(crtc);
  13565.  
  13566.         plane->fb = fb;
  13567.         crtc->x = src->x1 >> 16;
  13568.         crtc->y = src->y1 >> 16;
  13569.  
  13570.         if (!crtc->state->active)
  13571.                 return;
  13572.  
  13573.         dev_priv->display.update_primary_plane(crtc, fb,
  13574.                                                state->src.x1 >> 16,
  13575.                                                state->src.y1 >> 16);
  13576. }
  13577.  
  13578. static void
  13579. intel_disable_primary_plane(struct drm_plane *plane,
  13580.                             struct drm_crtc *crtc)
  13581. {
  13582.         struct drm_device *dev = plane->dev;
  13583.         struct drm_i915_private *dev_priv = dev->dev_private;
  13584.  
  13585.         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
  13586. }
  13587.  
  13588. static void intel_begin_crtc_commit(struct drm_crtc *crtc,
  13589.                                     struct drm_crtc_state *old_crtc_state)
  13590. {
  13591.         struct drm_device *dev = crtc->dev;
  13592.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13593.         struct intel_crtc_state *old_intel_state =
  13594.                 to_intel_crtc_state(old_crtc_state);
  13595.         bool modeset = needs_modeset(crtc->state);
  13596.  
  13597.         if (intel_crtc->atomic.update_wm_pre)
  13598.                 intel_update_watermarks(crtc);
  13599.  
  13600.         /* Perform vblank evasion around commit operation */
  13601.         if (crtc->state->active)
  13602.                 intel_pipe_update_start(intel_crtc);
  13603.  
  13604.         if (modeset)
  13605.                 return;
  13606.  
  13607.         if (to_intel_crtc_state(crtc->state)->update_pipe)
  13608.                 intel_update_pipe_config(intel_crtc, old_intel_state);
  13609.         else if (INTEL_INFO(dev)->gen >= 9)
  13610.                 skl_detach_scalers(intel_crtc);
  13611. }
  13612.  
  13613. static void intel_finish_crtc_commit(struct drm_crtc *crtc,
  13614.                                      struct drm_crtc_state *old_crtc_state)
  13615. {
  13616.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13617.  
  13618.         if (crtc->state->active)
  13619.                 intel_pipe_update_end(intel_crtc);
  13620. }
  13621.  
  13622. /**
  13623.  * intel_plane_destroy - destroy a plane
  13624.  * @plane: plane to destroy
  13625.  *
  13626.  * Common destruction function for all types of planes (primary, cursor,
  13627.  * sprite).
  13628.  */
  13629. void intel_plane_destroy(struct drm_plane *plane)
  13630. {
  13631.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13632.         drm_plane_cleanup(plane);
  13633.         kfree(intel_plane);
  13634. }
  13635.  
  13636. const struct drm_plane_funcs intel_plane_funcs = {
  13637.         .update_plane = drm_atomic_helper_update_plane,
  13638.         .disable_plane = drm_atomic_helper_disable_plane,
  13639.         .destroy = intel_plane_destroy,
  13640.         .set_property = drm_atomic_helper_plane_set_property,
  13641.         .atomic_get_property = intel_plane_atomic_get_property,
  13642.         .atomic_set_property = intel_plane_atomic_set_property,
  13643.         .atomic_duplicate_state = intel_plane_duplicate_state,
  13644.         .atomic_destroy_state = intel_plane_destroy_state,
  13645.  
  13646. };
  13647.  
  13648. static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
  13649.                                                     int pipe)
  13650. {
  13651.         struct intel_plane *primary;
  13652.         struct intel_plane_state *state;
  13653.         const uint32_t *intel_primary_formats;
  13654.         unsigned int num_formats;
  13655.  
  13656.         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
  13657.         if (primary == NULL)
  13658.                 return NULL;
  13659.  
  13660.         state = intel_create_plane_state(&primary->base);
  13661.         if (!state) {
  13662.                 kfree(primary);
  13663.                 return NULL;
  13664.         }
  13665.         primary->base.state = &state->base;
  13666.  
  13667.         primary->can_scale = false;
  13668.         primary->max_downscale = 1;
  13669.         if (INTEL_INFO(dev)->gen >= 9) {
  13670.                 primary->can_scale = true;
  13671.                 state->scaler_id = -1;
  13672.         }
  13673.         primary->pipe = pipe;
  13674.         primary->plane = pipe;
  13675.         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
  13676.         primary->check_plane = intel_check_primary_plane;
  13677.         primary->commit_plane = intel_commit_primary_plane;
  13678.         primary->disable_plane = intel_disable_primary_plane;
  13679.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
  13680.                 primary->plane = !pipe;
  13681.  
  13682.         if (INTEL_INFO(dev)->gen >= 9) {
  13683.                 intel_primary_formats = skl_primary_formats;
  13684.                 num_formats = ARRAY_SIZE(skl_primary_formats);
  13685.         } else if (INTEL_INFO(dev)->gen >= 4) {
  13686.                 intel_primary_formats = i965_primary_formats;
  13687.                 num_formats = ARRAY_SIZE(i965_primary_formats);
  13688.         } else {
  13689.                 intel_primary_formats = i8xx_primary_formats;
  13690.                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
  13691.         }
  13692.  
  13693.         drm_universal_plane_init(dev, &primary->base, 0,
  13694.                                  &intel_plane_funcs,
  13695.                                  intel_primary_formats, num_formats,
  13696.                                  DRM_PLANE_TYPE_PRIMARY);
  13697.  
  13698.         if (INTEL_INFO(dev)->gen >= 4)
  13699.                 intel_create_rotation_property(dev, primary);
  13700.  
  13701.         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
  13702.  
  13703.         return &primary->base;
  13704. }
  13705.  
  13706. void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
  13707. {
  13708.         if (!dev->mode_config.rotation_property) {
  13709.                 unsigned long flags = BIT(DRM_ROTATE_0) |
  13710.                         BIT(DRM_ROTATE_180);
  13711.  
  13712.                 if (INTEL_INFO(dev)->gen >= 9)
  13713.                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
  13714.  
  13715.                 dev->mode_config.rotation_property =
  13716.                         drm_mode_create_rotation_property(dev, flags);
  13717.         }
  13718.         if (dev->mode_config.rotation_property)
  13719.                 drm_object_attach_property(&plane->base.base,
  13720.                                 dev->mode_config.rotation_property,
  13721.                                 plane->base.state->rotation);
  13722. }
  13723.  
  13724. static int
  13725. intel_check_cursor_plane(struct drm_plane *plane,
  13726.                          struct intel_crtc_state *crtc_state,
  13727.                          struct intel_plane_state *state)
  13728. {
  13729.         struct drm_crtc *crtc = crtc_state->base.crtc;
  13730.         struct drm_framebuffer *fb = state->base.fb;
  13731.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  13732.         enum pipe pipe = to_intel_plane(plane)->pipe;
  13733.         unsigned stride;
  13734.         int ret;
  13735.  
  13736.         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  13737.                                             &state->dst, &state->clip,
  13738.                                             DRM_PLANE_HELPER_NO_SCALING,
  13739.                                             DRM_PLANE_HELPER_NO_SCALING,
  13740.                                             true, true, &state->visible);
  13741.         if (ret)
  13742.                 return ret;
  13743.  
  13744.         /* if we want to turn off the cursor ignore width and height */
  13745.         if (!obj)
  13746.                 return 0;
  13747.  
  13748.         /* Check for which cursor types we support */
  13749.         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
  13750.                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
  13751.                           state->base.crtc_w, state->base.crtc_h);
  13752.                 return -EINVAL;
  13753.         }
  13754.  
  13755.         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
  13756.         if (obj->base.size < stride * state->base.crtc_h) {
  13757.                 DRM_DEBUG_KMS("buffer is too small\n");
  13758.                 return -ENOMEM;
  13759.         }
  13760.  
  13761.         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
  13762.                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
  13763.                 return -EINVAL;
  13764.         }
  13765.  
  13766.         /*
  13767.          * There's something wrong with the cursor on CHV pipe C.
  13768.          * If it straddles the left edge of the screen then
  13769.          * moving it away from the edge or disabling it often
  13770.          * results in a pipe underrun, and often that can lead to
  13771.          * dead pipe (constant underrun reported, and it scans
  13772.          * out just a solid color). To recover from that, the
  13773.          * display power well must be turned off and on again.
  13774.          * Refuse the put the cursor into that compromised position.
  13775.          */
  13776.         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
  13777.             state->visible && state->base.crtc_x < 0) {
  13778.                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
  13779.                 return -EINVAL;
  13780.         }
  13781.  
  13782.         return 0;
  13783. }
  13784.  
  13785. static void
  13786. intel_disable_cursor_plane(struct drm_plane *plane,
  13787.                            struct drm_crtc *crtc)
  13788. {
  13789.         intel_crtc_update_cursor(crtc, false);
  13790. }
  13791.  
  13792. static void
  13793. intel_commit_cursor_plane(struct drm_plane *plane,
  13794.                           struct intel_plane_state *state)
  13795. {
  13796.         struct drm_crtc *crtc = state->base.crtc;
  13797.         struct drm_device *dev = plane->dev;
  13798.         struct intel_crtc *intel_crtc;
  13799.         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
  13800.         uint32_t addr;
  13801.  
  13802.         crtc = crtc ? crtc : plane->crtc;
  13803.         intel_crtc = to_intel_crtc(crtc);
  13804.  
  13805.         if (!obj)
  13806.                 addr = 0;
  13807.         else if (!INTEL_INFO(dev)->cursor_needs_physical)
  13808.                 addr = i915_gem_obj_ggtt_offset(obj);
  13809.         else
  13810.                 addr = obj->phys_handle->busaddr;
  13811.  
  13812.         intel_crtc->cursor_addr = addr;
  13813.  
  13814.         if (crtc->state->active)
  13815.                 intel_crtc_update_cursor(crtc, state->visible);
  13816. }
  13817.  
  13818. static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
  13819.                                                    int pipe)
  13820. {
  13821.         struct intel_plane *cursor;
  13822.         struct intel_plane_state *state;
  13823.  
  13824.         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
  13825.         if (cursor == NULL)
  13826.                 return NULL;
  13827.  
  13828.         state = intel_create_plane_state(&cursor->base);
  13829.         if (!state) {
  13830.                 kfree(cursor);
  13831.                 return NULL;
  13832.         }
  13833.         cursor->base.state = &state->base;
  13834.  
  13835.         cursor->can_scale = false;
  13836.         cursor->max_downscale = 1;
  13837.         cursor->pipe = pipe;
  13838.         cursor->plane = pipe;
  13839.         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
  13840.         cursor->check_plane = intel_check_cursor_plane;
  13841.         cursor->commit_plane = intel_commit_cursor_plane;
  13842.         cursor->disable_plane = intel_disable_cursor_plane;
  13843.  
  13844.         drm_universal_plane_init(dev, &cursor->base, 0,
  13845.                                  &intel_plane_funcs,
  13846.                                  intel_cursor_formats,
  13847.                                  ARRAY_SIZE(intel_cursor_formats),
  13848.                                  DRM_PLANE_TYPE_CURSOR);
  13849.  
  13850.         if (INTEL_INFO(dev)->gen >= 4) {
  13851.                 if (!dev->mode_config.rotation_property)
  13852.                         dev->mode_config.rotation_property =
  13853.                                 drm_mode_create_rotation_property(dev,
  13854.                                                         BIT(DRM_ROTATE_0) |
  13855.                                                         BIT(DRM_ROTATE_180));
  13856.                 if (dev->mode_config.rotation_property)
  13857.                         drm_object_attach_property(&cursor->base.base,
  13858.                                 dev->mode_config.rotation_property,
  13859.                                 state->base.rotation);
  13860.         }
  13861.  
  13862.         if (INTEL_INFO(dev)->gen >=9)
  13863.                 state->scaler_id = -1;
  13864.  
  13865.         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
  13866.  
  13867.         return &cursor->base;
  13868. }
  13869.  
  13870. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  13871.         struct intel_crtc_state *crtc_state)
  13872. {
  13873.         int i;
  13874.         struct intel_scaler *intel_scaler;
  13875.         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
  13876.  
  13877.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  13878.                 intel_scaler = &scaler_state->scalers[i];
  13879.                 intel_scaler->in_use = 0;
  13880.                 intel_scaler->mode = PS_SCALER_MODE_DYN;
  13881.         }
  13882.  
  13883.         scaler_state->scaler_id = -1;
  13884. }
  13885.  
  13886. static void intel_crtc_init(struct drm_device *dev, int pipe)
  13887. {
  13888.         struct drm_i915_private *dev_priv = dev->dev_private;
  13889.         struct intel_crtc *intel_crtc;
  13890.         struct intel_crtc_state *crtc_state = NULL;
  13891.         struct drm_plane *primary = NULL;
  13892.         struct drm_plane *cursor = NULL;
  13893.         int i, ret;
  13894.  
  13895.         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  13896.         if (intel_crtc == NULL)
  13897.                 return;
  13898.  
  13899.         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
  13900.         if (!crtc_state)
  13901.                 goto fail;
  13902.         intel_crtc->config = crtc_state;
  13903.         intel_crtc->base.state = &crtc_state->base;
  13904.         crtc_state->base.crtc = &intel_crtc->base;
  13905.  
  13906.         /* initialize shared scalers */
  13907.         if (INTEL_INFO(dev)->gen >= 9) {
  13908.                 if (pipe == PIPE_C)
  13909.                         intel_crtc->num_scalers = 1;
  13910.                 else
  13911.                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
  13912.  
  13913.                 skl_init_scalers(dev, intel_crtc, crtc_state);
  13914.         }
  13915.  
  13916.         primary = intel_primary_plane_create(dev, pipe);
  13917.         if (!primary)
  13918.                 goto fail;
  13919.  
  13920.         cursor = intel_cursor_plane_create(dev, pipe);
  13921.         if (!cursor)
  13922.                 goto fail;
  13923.  
  13924.         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
  13925.                                         cursor, &intel_crtc_funcs);
  13926.         if (ret)
  13927.                 goto fail;
  13928.  
  13929.         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  13930.         for (i = 0; i < 256; i++) {
  13931.                 intel_crtc->lut_r[i] = i;
  13932.                 intel_crtc->lut_g[i] = i;
  13933.                 intel_crtc->lut_b[i] = i;
  13934.         }
  13935.  
  13936.         /*
  13937.          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
  13938.          * is hooked to pipe B. Hence we want plane A feeding pipe B.
  13939.          */
  13940.         intel_crtc->pipe = pipe;
  13941.         intel_crtc->plane = pipe;
  13942.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
  13943.                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  13944.                 intel_crtc->plane = !pipe;
  13945.         }
  13946.  
  13947.         intel_crtc->cursor_base = ~0;
  13948.         intel_crtc->cursor_cntl = ~0;
  13949.         intel_crtc->cursor_size = ~0;
  13950.  
  13951.         intel_crtc->wm.cxsr_allowed = true;
  13952.  
  13953.         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  13954.                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  13955.         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  13956.         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  13957.  
  13958.         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  13959.  
  13960.         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
  13961.         return;
  13962.  
  13963. fail:
  13964.         if (primary)
  13965.                 drm_plane_cleanup(primary);
  13966.         if (cursor)
  13967.                 drm_plane_cleanup(cursor);
  13968.         kfree(crtc_state);
  13969.         kfree(intel_crtc);
  13970. }
  13971.  
  13972. enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
  13973. {
  13974.         struct drm_encoder *encoder = connector->base.encoder;
  13975.         struct drm_device *dev = connector->base.dev;
  13976.  
  13977.         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
  13978.  
  13979.         if (!encoder || WARN_ON(!encoder->crtc))
  13980.                 return INVALID_PIPE;
  13981.  
  13982.         return to_intel_crtc(encoder->crtc)->pipe;
  13983. }
  13984.  
  13985. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  13986.                                 struct drm_file *file)
  13987. {
  13988.         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  13989.         struct drm_crtc *drmmode_crtc;
  13990.         struct intel_crtc *crtc;
  13991.  
  13992.         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
  13993.  
  13994.         if (!drmmode_crtc) {
  13995.                 DRM_ERROR("no such CRTC id\n");
  13996.                 return -ENOENT;
  13997.         }
  13998.  
  13999.         crtc = to_intel_crtc(drmmode_crtc);
  14000.         pipe_from_crtc_id->pipe = crtc->pipe;
  14001.  
  14002.         return 0;
  14003. }
  14004.  
  14005. static int intel_encoder_clones(struct intel_encoder *encoder)
  14006. {
  14007.         struct drm_device *dev = encoder->base.dev;
  14008.         struct intel_encoder *source_encoder;
  14009.         int index_mask = 0;
  14010.         int entry = 0;
  14011.  
  14012.         for_each_intel_encoder(dev, source_encoder) {
  14013.                 if (encoders_cloneable(encoder, source_encoder))
  14014.                         index_mask |= (1 << entry);
  14015.  
  14016.                 entry++;
  14017.         }
  14018.  
  14019.         return index_mask;
  14020. }
  14021.  
  14022. static bool has_edp_a(struct drm_device *dev)
  14023. {
  14024.         struct drm_i915_private *dev_priv = dev->dev_private;
  14025.  
  14026.         if (!IS_MOBILE(dev))
  14027.                 return false;
  14028.  
  14029.         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  14030.                 return false;
  14031.  
  14032.         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
  14033.                 return false;
  14034.  
  14035.         return true;
  14036. }
  14037.  
  14038. static bool intel_crt_present(struct drm_device *dev)
  14039. {
  14040.         struct drm_i915_private *dev_priv = dev->dev_private;
  14041.  
  14042.         if (INTEL_INFO(dev)->gen >= 9)
  14043.                 return false;
  14044.  
  14045.         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
  14046.                 return false;
  14047.  
  14048.         if (IS_CHERRYVIEW(dev))
  14049.                 return false;
  14050.  
  14051.         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
  14052.                 return false;
  14053.  
  14054.         return true;
  14055. }
  14056.  
  14057. static void intel_setup_outputs(struct drm_device *dev)
  14058. {
  14059.         struct drm_i915_private *dev_priv = dev->dev_private;
  14060.         struct intel_encoder *encoder;
  14061.         bool dpd_is_edp = false;
  14062.  
  14063.         intel_lvds_init(dev);
  14064.  
  14065.         if (intel_crt_present(dev))
  14066.                 intel_crt_init(dev);
  14067.  
  14068.         if (IS_BROXTON(dev)) {
  14069.                 /*
  14070.                  * FIXME: Broxton doesn't support port detection via the
  14071.                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
  14072.                  * detect the ports.
  14073.                  */
  14074.                 intel_ddi_init(dev, PORT_A);
  14075.                 intel_ddi_init(dev, PORT_B);
  14076.                 intel_ddi_init(dev, PORT_C);
  14077.         } else if (HAS_DDI(dev)) {
  14078.                 int found;
  14079.  
  14080.                 /*
  14081.                  * Haswell uses DDI functions to detect digital outputs.
  14082.                  * On SKL pre-D0 the strap isn't connected, so we assume
  14083.                  * it's there.
  14084.                  */
  14085.                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
  14086.                 /* WaIgnoreDDIAStrap: skl */
  14087.                 if (found || IS_SKYLAKE(dev))
  14088.                         intel_ddi_init(dev, PORT_A);
  14089.  
  14090.                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  14091.                  * register */
  14092.                 found = I915_READ(SFUSE_STRAP);
  14093.  
  14094.                 if (found & SFUSE_STRAP_DDIB_DETECTED)
  14095.                         intel_ddi_init(dev, PORT_B);
  14096.                 if (found & SFUSE_STRAP_DDIC_DETECTED)
  14097.                         intel_ddi_init(dev, PORT_C);
  14098.                 if (found & SFUSE_STRAP_DDID_DETECTED)
  14099.                         intel_ddi_init(dev, PORT_D);
  14100.                 /*
  14101.                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
  14102.                  */
  14103.                 if (IS_SKYLAKE(dev) &&
  14104.                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
  14105.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
  14106.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
  14107.                         intel_ddi_init(dev, PORT_E);
  14108.  
  14109.         } else if (HAS_PCH_SPLIT(dev)) {
  14110.                 int found;
  14111.                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
  14112.  
  14113.                 if (has_edp_a(dev))
  14114.                         intel_dp_init(dev, DP_A, PORT_A);
  14115.  
  14116.                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  14117.                         /* PCH SDVOB multiplex with HDMIB */
  14118.                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
  14119.                         if (!found)
  14120.                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  14121.                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  14122.                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
  14123.                 }
  14124.  
  14125.                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  14126.                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  14127.  
  14128.                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  14129.                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  14130.  
  14131.                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
  14132.                         intel_dp_init(dev, PCH_DP_C, PORT_C);
  14133.  
  14134.                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
  14135.                         intel_dp_init(dev, PCH_DP_D, PORT_D);
  14136.         } else if (IS_VALLEYVIEW(dev)) {
  14137.                 /*
  14138.                  * The DP_DETECTED bit is the latched state of the DDC
  14139.                  * SDA pin at boot. However since eDP doesn't require DDC
  14140.                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
  14141.                  * eDP ports may have been muxed to an alternate function.
  14142.                  * Thus we can't rely on the DP_DETECTED bit alone to detect
  14143.                  * eDP ports. Consult the VBT as well as DP_DETECTED to
  14144.                  * detect eDP ports.
  14145.                  */
  14146.                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
  14147.                     !intel_dp_is_edp(dev, PORT_B))
  14148.                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
  14149.                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
  14150.                     intel_dp_is_edp(dev, PORT_B))
  14151.                         intel_dp_init(dev, VLV_DP_B, PORT_B);
  14152.  
  14153.                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
  14154.                     !intel_dp_is_edp(dev, PORT_C))
  14155.                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
  14156.                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
  14157.                     intel_dp_is_edp(dev, PORT_C))
  14158.                         intel_dp_init(dev, VLV_DP_C, PORT_C);
  14159.  
  14160.                 if (IS_CHERRYVIEW(dev)) {
  14161.                         /* eDP not supported on port D, so don't check VBT */
  14162.                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
  14163.                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
  14164.                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
  14165.                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
  14166.                 }
  14167.  
  14168.                 intel_dsi_init(dev);
  14169.         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
  14170.                 bool found = false;
  14171.  
  14172.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14173.                         DRM_DEBUG_KMS("probing SDVOB\n");
  14174.                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  14175.                         if (!found && IS_G4X(dev)) {
  14176.                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  14177.                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  14178.                         }
  14179.  
  14180.                         if (!found && IS_G4X(dev))
  14181.                                 intel_dp_init(dev, DP_B, PORT_B);
  14182.                 }
  14183.  
  14184.                 /* Before G4X SDVOC doesn't have its own detect register */
  14185.  
  14186.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14187.                         DRM_DEBUG_KMS("probing SDVOC\n");
  14188.                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  14189.                 }
  14190.  
  14191.                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  14192.  
  14193.                         if (IS_G4X(dev)) {
  14194.                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  14195.                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  14196.                         }
  14197.                         if (IS_G4X(dev))
  14198.                                 intel_dp_init(dev, DP_C, PORT_C);
  14199.                 }
  14200.  
  14201.                 if (IS_G4X(dev) &&
  14202.                     (I915_READ(DP_D) & DP_DETECTED))
  14203.                         intel_dp_init(dev, DP_D, PORT_D);
  14204.         } else if (IS_GEN2(dev))
  14205.                 intel_dvo_init(dev);
  14206.  
  14207.         intel_psr_init(dev);
  14208.  
  14209.         for_each_intel_encoder(dev, encoder) {
  14210.                 encoder->base.possible_crtcs = encoder->crtc_mask;
  14211.                 encoder->base.possible_clones =
  14212.                         intel_encoder_clones(encoder);
  14213.         }
  14214.  
  14215.         intel_init_pch_refclk(dev);
  14216.  
  14217.         drm_helper_move_panel_connectors_to_head(dev);
  14218. }
  14219.  
  14220. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  14221. {
  14222.         struct drm_device *dev = fb->dev;
  14223.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14224.  
  14225.         drm_framebuffer_cleanup(fb);
  14226.         mutex_lock(&dev->struct_mutex);
  14227.         WARN_ON(!intel_fb->obj->framebuffer_references--);
  14228.         drm_gem_object_unreference(&intel_fb->obj->base);
  14229.         mutex_unlock(&dev->struct_mutex);
  14230.         kfree(intel_fb);
  14231. }
  14232.  
  14233. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  14234.                                                 struct drm_file *file,
  14235.                                                 unsigned int *handle)
  14236. {
  14237.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14238.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14239.  
  14240.         if (obj->userptr.mm) {
  14241.                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
  14242.                 return -EINVAL;
  14243.         }
  14244.  
  14245.         return drm_gem_handle_create(file, &obj->base, handle);
  14246. }
  14247.  
  14248. static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
  14249.                                         struct drm_file *file,
  14250.                                         unsigned flags, unsigned color,
  14251.                                         struct drm_clip_rect *clips,
  14252.                                         unsigned num_clips)
  14253. {
  14254.         struct drm_device *dev = fb->dev;
  14255.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14256.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14257.  
  14258.         mutex_lock(&dev->struct_mutex);
  14259.         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
  14260.         mutex_unlock(&dev->struct_mutex);
  14261.  
  14262.         return 0;
  14263. }
  14264.  
  14265. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  14266.         .destroy = intel_user_framebuffer_destroy,
  14267.         .create_handle = intel_user_framebuffer_create_handle,
  14268.         .dirty = intel_user_framebuffer_dirty,
  14269. };
  14270.  
  14271. static
  14272. u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
  14273.                          uint32_t pixel_format)
  14274. {
  14275.         u32 gen = INTEL_INFO(dev)->gen;
  14276.  
  14277.         if (gen >= 9) {
  14278.                 /* "The stride in bytes must not exceed the of the size of 8K
  14279.                  *  pixels and 32K bytes."
  14280.                  */
  14281.                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
  14282.         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
  14283.                 return 32*1024;
  14284.         } else if (gen >= 4) {
  14285.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14286.                         return 16*1024;
  14287.                 else
  14288.                         return 32*1024;
  14289.         } else if (gen >= 3) {
  14290.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14291.                         return 8*1024;
  14292.                 else
  14293.                         return 16*1024;
  14294.         } else {
  14295.                 /* XXX DSPC is limited to 4k tiled */
  14296.                 return 8*1024;
  14297.         }
  14298. }
  14299.  
  14300. static int intel_framebuffer_init(struct drm_device *dev,
  14301.                                   struct intel_framebuffer *intel_fb,
  14302.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  14303.                                   struct drm_i915_gem_object *obj)
  14304. {
  14305.         unsigned int aligned_height;
  14306.         int ret;
  14307.         u32 pitch_limit, stride_alignment;
  14308.  
  14309.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  14310.  
  14311.         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
  14312.                 /* Enforce that fb modifier and tiling mode match, but only for
  14313.                  * X-tiled. This is needed for FBC. */
  14314.                 if (!!(obj->tiling_mode == I915_TILING_X) !=
  14315.                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
  14316.                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
  14317.                         return -EINVAL;
  14318.                 }
  14319.         } else {
  14320.                 if (obj->tiling_mode == I915_TILING_X)
  14321.                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
  14322.                 else if (obj->tiling_mode == I915_TILING_Y) {
  14323.                         DRM_DEBUG("No Y tiling for legacy addfb\n");
  14324.                         return -EINVAL;
  14325.                 }
  14326.         }
  14327.  
  14328.         /* Passed in modifier sanity checking. */
  14329.         switch (mode_cmd->modifier[0]) {
  14330.         case I915_FORMAT_MOD_Y_TILED:
  14331.         case I915_FORMAT_MOD_Yf_TILED:
  14332.                 if (INTEL_INFO(dev)->gen < 9) {
  14333.                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
  14334.                                   mode_cmd->modifier[0]);
  14335.                         return -EINVAL;
  14336.                 }
  14337.         case DRM_FORMAT_MOD_NONE:
  14338.         case I915_FORMAT_MOD_X_TILED:
  14339.                 break;
  14340.         default:
  14341.                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
  14342.                           mode_cmd->modifier[0]);
  14343.                 return -EINVAL;
  14344.         }
  14345.  
  14346.         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
  14347.                                                      mode_cmd->pixel_format);
  14348.         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
  14349.                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
  14350.                           mode_cmd->pitches[0], stride_alignment);
  14351.                 return -EINVAL;
  14352.         }
  14353.  
  14354.         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
  14355.                                            mode_cmd->pixel_format);
  14356.         if (mode_cmd->pitches[0] > pitch_limit) {
  14357.                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
  14358.                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
  14359.                           "tiled" : "linear",
  14360.                           mode_cmd->pitches[0], pitch_limit);
  14361.                 return -EINVAL;
  14362.         }
  14363.  
  14364.         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
  14365.             mode_cmd->pitches[0] != obj->stride) {
  14366.                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  14367.                           mode_cmd->pitches[0], obj->stride);
  14368.                 return -EINVAL;
  14369.         }
  14370.  
  14371.         /* Reject formats not supported by any plane early. */
  14372.         switch (mode_cmd->pixel_format) {
  14373.         case DRM_FORMAT_C8:
  14374.         case DRM_FORMAT_RGB565:
  14375.         case DRM_FORMAT_XRGB8888:
  14376.         case DRM_FORMAT_ARGB8888:
  14377.                 break;
  14378.         case DRM_FORMAT_XRGB1555:
  14379.                 if (INTEL_INFO(dev)->gen > 3) {
  14380.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14381.                                   drm_get_format_name(mode_cmd->pixel_format));
  14382.                         return -EINVAL;
  14383.                 }
  14384.                 break;
  14385.         case DRM_FORMAT_ABGR8888:
  14386.                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
  14387.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14388.                                   drm_get_format_name(mode_cmd->pixel_format));
  14389.                         return -EINVAL;
  14390.                 }
  14391.                 break;
  14392.         case DRM_FORMAT_XBGR8888:
  14393.         case DRM_FORMAT_XRGB2101010:
  14394.         case DRM_FORMAT_XBGR2101010:
  14395.                 if (INTEL_INFO(dev)->gen < 4) {
  14396.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14397.                                   drm_get_format_name(mode_cmd->pixel_format));
  14398.                         return -EINVAL;
  14399.                 }
  14400.                 break;
  14401.         case DRM_FORMAT_ABGR2101010:
  14402.                 if (!IS_VALLEYVIEW(dev)) {
  14403.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14404.                                   drm_get_format_name(mode_cmd->pixel_format));
  14405.                         return -EINVAL;
  14406.                 }
  14407.                 break;
  14408.         case DRM_FORMAT_YUYV:
  14409.         case DRM_FORMAT_UYVY:
  14410.         case DRM_FORMAT_YVYU:
  14411.         case DRM_FORMAT_VYUY:
  14412.                 if (INTEL_INFO(dev)->gen < 5) {
  14413.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14414.                                   drm_get_format_name(mode_cmd->pixel_format));
  14415.                         return -EINVAL;
  14416.                 }
  14417.                 break;
  14418.         default:
  14419.                 DRM_DEBUG("unsupported pixel format: %s\n",
  14420.                           drm_get_format_name(mode_cmd->pixel_format));
  14421.                 return -EINVAL;
  14422.         }
  14423.  
  14424.         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  14425.         if (mode_cmd->offsets[0] != 0)
  14426.                 return -EINVAL;
  14427.  
  14428.         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
  14429.                                                mode_cmd->pixel_format,
  14430.                                                mode_cmd->modifier[0]);
  14431.         /* FIXME drm helper for size checks (especially planar formats)? */
  14432.         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
  14433.                 return -EINVAL;
  14434.  
  14435.         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  14436.         intel_fb->obj = obj;
  14437.         intel_fb->obj->framebuffer_references++;
  14438.  
  14439.         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  14440.         if (ret) {
  14441.                 DRM_ERROR("framebuffer init failed %d\n", ret);
  14442.                 return ret;
  14443.         }
  14444.         kolibri_framebuffer_init(intel_fb);
  14445.  
  14446.         return 0;
  14447. }
  14448.  
  14449. static struct drm_framebuffer *
  14450. intel_user_framebuffer_create(struct drm_device *dev,
  14451.                               struct drm_file *filp,
  14452.                               struct drm_mode_fb_cmd2 *user_mode_cmd)
  14453. {
  14454.         struct drm_i915_gem_object *obj;
  14455.         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
  14456.  
  14457.         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  14458.                                                 mode_cmd.handles[0]));
  14459.         if (&obj->base == NULL)
  14460.                 return ERR_PTR(-ENOENT);
  14461.  
  14462.         return intel_framebuffer_create(dev, &mode_cmd, obj);
  14463. }
  14464.  
  14465. #ifndef CONFIG_DRM_FBDEV_EMULATION
  14466. static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
  14467. {
  14468. }
  14469. #endif
  14470.  
  14471. static const struct drm_mode_config_funcs intel_mode_funcs = {
  14472.         .fb_create = intel_user_framebuffer_create,
  14473.         .output_poll_changed = intel_fbdev_output_poll_changed,
  14474.         .atomic_check = intel_atomic_check,
  14475.         .atomic_commit = intel_atomic_commit,
  14476.         .atomic_state_alloc = intel_atomic_state_alloc,
  14477.         .atomic_state_clear = intel_atomic_state_clear,
  14478. };
  14479.  
  14480. /* Set up chip specific display functions */
  14481. static void intel_init_display(struct drm_device *dev)
  14482. {
  14483.         struct drm_i915_private *dev_priv = dev->dev_private;
  14484.  
  14485.         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  14486.                 dev_priv->display.find_dpll = g4x_find_best_dpll;
  14487.         else if (IS_CHERRYVIEW(dev))
  14488.                 dev_priv->display.find_dpll = chv_find_best_dpll;
  14489.         else if (IS_VALLEYVIEW(dev))
  14490.                 dev_priv->display.find_dpll = vlv_find_best_dpll;
  14491.         else if (IS_PINEVIEW(dev))
  14492.                 dev_priv->display.find_dpll = pnv_find_best_dpll;
  14493.         else
  14494.                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
  14495.  
  14496.         if (INTEL_INFO(dev)->gen >= 9) {
  14497.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14498.                 dev_priv->display.get_initial_plane_config =
  14499.                         skylake_get_initial_plane_config;
  14500.                 dev_priv->display.crtc_compute_clock =
  14501.                         haswell_crtc_compute_clock;
  14502.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14503.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14504.                 dev_priv->display.update_primary_plane =
  14505.                         skylake_update_primary_plane;
  14506.         } else if (HAS_DDI(dev)) {
  14507.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14508.                 dev_priv->display.get_initial_plane_config =
  14509.                         ironlake_get_initial_plane_config;
  14510.                 dev_priv->display.crtc_compute_clock =
  14511.                         haswell_crtc_compute_clock;
  14512.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14513.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14514.                 dev_priv->display.update_primary_plane =
  14515.                         ironlake_update_primary_plane;
  14516.         } else if (HAS_PCH_SPLIT(dev)) {
  14517.                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  14518.                 dev_priv->display.get_initial_plane_config =
  14519.                         ironlake_get_initial_plane_config;
  14520.                 dev_priv->display.crtc_compute_clock =
  14521.                         ironlake_crtc_compute_clock;
  14522.                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
  14523.                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
  14524.                 dev_priv->display.update_primary_plane =
  14525.                         ironlake_update_primary_plane;
  14526.         } else if (IS_VALLEYVIEW(dev)) {
  14527.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14528.                 dev_priv->display.get_initial_plane_config =
  14529.                         i9xx_get_initial_plane_config;
  14530.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14531.                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
  14532.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14533.                 dev_priv->display.update_primary_plane =
  14534.                         i9xx_update_primary_plane;
  14535.         } else {
  14536.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14537.                 dev_priv->display.get_initial_plane_config =
  14538.                         i9xx_get_initial_plane_config;
  14539.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14540.                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
  14541.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14542.                 dev_priv->display.update_primary_plane =
  14543.                         i9xx_update_primary_plane;
  14544.         }
  14545.  
  14546.         /* Returns the core display clock speed */
  14547.         if (IS_SKYLAKE(dev))
  14548.                 dev_priv->display.get_display_clock_speed =
  14549.                         skylake_get_display_clock_speed;
  14550.         else if (IS_BROXTON(dev))
  14551.                 dev_priv->display.get_display_clock_speed =
  14552.                         broxton_get_display_clock_speed;
  14553.         else if (IS_BROADWELL(dev))
  14554.                 dev_priv->display.get_display_clock_speed =
  14555.                         broadwell_get_display_clock_speed;
  14556.         else if (IS_HASWELL(dev))
  14557.                 dev_priv->display.get_display_clock_speed =
  14558.                         haswell_get_display_clock_speed;
  14559.         else if (IS_VALLEYVIEW(dev))
  14560.                 dev_priv->display.get_display_clock_speed =
  14561.                         valleyview_get_display_clock_speed;
  14562.         else if (IS_GEN5(dev))
  14563.                 dev_priv->display.get_display_clock_speed =
  14564.                         ilk_get_display_clock_speed;
  14565.         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
  14566.                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
  14567.                 dev_priv->display.get_display_clock_speed =
  14568.                         i945_get_display_clock_speed;
  14569.         else if (IS_GM45(dev))
  14570.                 dev_priv->display.get_display_clock_speed =
  14571.                         gm45_get_display_clock_speed;
  14572.         else if (IS_CRESTLINE(dev))
  14573.                 dev_priv->display.get_display_clock_speed =
  14574.                         i965gm_get_display_clock_speed;
  14575.         else if (IS_PINEVIEW(dev))
  14576.                 dev_priv->display.get_display_clock_speed =
  14577.                         pnv_get_display_clock_speed;
  14578.         else if (IS_G33(dev) || IS_G4X(dev))
  14579.                 dev_priv->display.get_display_clock_speed =
  14580.                         g33_get_display_clock_speed;
  14581.         else if (IS_I915G(dev))
  14582.                 dev_priv->display.get_display_clock_speed =
  14583.                         i915_get_display_clock_speed;
  14584.         else if (IS_I945GM(dev) || IS_845G(dev))
  14585.                 dev_priv->display.get_display_clock_speed =
  14586.                         i9xx_misc_get_display_clock_speed;
  14587.         else if (IS_PINEVIEW(dev))
  14588.                 dev_priv->display.get_display_clock_speed =
  14589.                         pnv_get_display_clock_speed;
  14590.         else if (IS_I915GM(dev))
  14591.                 dev_priv->display.get_display_clock_speed =
  14592.                         i915gm_get_display_clock_speed;
  14593.         else if (IS_I865G(dev))
  14594.                 dev_priv->display.get_display_clock_speed =
  14595.                         i865_get_display_clock_speed;
  14596.         else if (IS_I85X(dev))
  14597.                 dev_priv->display.get_display_clock_speed =
  14598.                         i85x_get_display_clock_speed;
  14599.         else { /* 830 */
  14600.                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
  14601.                 dev_priv->display.get_display_clock_speed =
  14602.                         i830_get_display_clock_speed;
  14603.         }
  14604.  
  14605.         if (IS_GEN5(dev)) {
  14606.                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  14607.         } else if (IS_GEN6(dev)) {
  14608.                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  14609.         } else if (IS_IVYBRIDGE(dev)) {
  14610.                 /* FIXME: detect B0+ stepping and use auto training */
  14611.                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  14612.         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  14613.                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  14614.                 if (IS_BROADWELL(dev)) {
  14615.                         dev_priv->display.modeset_commit_cdclk =
  14616.                                 broadwell_modeset_commit_cdclk;
  14617.                         dev_priv->display.modeset_calc_cdclk =
  14618.                                 broadwell_modeset_calc_cdclk;
  14619.                 }
  14620.         } else if (IS_VALLEYVIEW(dev)) {
  14621.                 dev_priv->display.modeset_commit_cdclk =
  14622.                         valleyview_modeset_commit_cdclk;
  14623.                 dev_priv->display.modeset_calc_cdclk =
  14624.                         valleyview_modeset_calc_cdclk;
  14625.         } else if (IS_BROXTON(dev)) {
  14626.                 dev_priv->display.modeset_commit_cdclk =
  14627.                         broxton_modeset_commit_cdclk;
  14628.                 dev_priv->display.modeset_calc_cdclk =
  14629.                         broxton_modeset_calc_cdclk;
  14630.         }
  14631.  
  14632.  
  14633.  
  14634.  
  14635.  
  14636.  
  14637.         mutex_init(&dev_priv->pps_mutex);
  14638. }
  14639.  
  14640. /*
  14641.  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  14642.  * resume, or other times.  This quirk makes sure that's the case for
  14643.  * affected systems.
  14644.  */
  14645. static void quirk_pipea_force(struct drm_device *dev)
  14646. {
  14647.         struct drm_i915_private *dev_priv = dev->dev_private;
  14648.  
  14649.         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  14650.         DRM_INFO("applying pipe a force quirk\n");
  14651. }
  14652.  
  14653. static void quirk_pipeb_force(struct drm_device *dev)
  14654. {
  14655.         struct drm_i915_private *dev_priv = dev->dev_private;
  14656.  
  14657.         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
  14658.         DRM_INFO("applying pipe b force quirk\n");
  14659. }
  14660.  
  14661. /*
  14662.  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  14663.  */
  14664. static void quirk_ssc_force_disable(struct drm_device *dev)
  14665. {
  14666.         struct drm_i915_private *dev_priv = dev->dev_private;
  14667.         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  14668.         DRM_INFO("applying lvds SSC disable quirk\n");
  14669. }
  14670.  
  14671. /*
  14672.  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  14673.  * brightness value
  14674.  */
  14675. static void quirk_invert_brightness(struct drm_device *dev)
  14676. {
  14677.         struct drm_i915_private *dev_priv = dev->dev_private;
  14678.         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  14679.         DRM_INFO("applying inverted panel brightness quirk\n");
  14680. }
  14681.  
  14682. /* Some VBT's incorrectly indicate no backlight is present */
  14683. static void quirk_backlight_present(struct drm_device *dev)
  14684. {
  14685.         struct drm_i915_private *dev_priv = dev->dev_private;
  14686.         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
  14687.         DRM_INFO("applying backlight present quirk\n");
  14688. }
  14689.  
  14690. struct intel_quirk {
  14691.         int device;
  14692.         int subsystem_vendor;
  14693.         int subsystem_device;
  14694.         void (*hook)(struct drm_device *dev);
  14695. };
  14696.  
  14697. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  14698. struct intel_dmi_quirk {
  14699.         void (*hook)(struct drm_device *dev);
  14700.         const struct dmi_system_id (*dmi_id_list)[];
  14701. };
  14702.  
  14703. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  14704. {
  14705.         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  14706.         return 1;
  14707. }
  14708.  
  14709. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  14710.         {
  14711.                 .dmi_id_list = &(const struct dmi_system_id[]) {
  14712.                         {
  14713.                                 .callback = intel_dmi_reverse_brightness,
  14714.                                 .ident = "NCR Corporation",
  14715.                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  14716.                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
  14717.                                 },
  14718.                         },
  14719.                         { }  /* terminating entry */
  14720.                 },
  14721.                 .hook = quirk_invert_brightness,
  14722.         },
  14723. };
  14724.  
  14725. static struct intel_quirk intel_quirks[] = {
  14726.         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  14727.         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  14728.  
  14729.         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  14730.         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  14731.  
  14732.         /* 830 needs to leave pipe A & dpll A up */
  14733.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  14734.  
  14735.         /* 830 needs to leave pipe B & dpll B up */
  14736.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
  14737.  
  14738.         /* Lenovo U160 cannot use SSC on LVDS */
  14739.         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  14740.  
  14741.         /* Sony Vaio Y cannot use SSC on LVDS */
  14742.         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  14743.  
  14744.         /* Acer Aspire 5734Z must invert backlight brightness */
  14745.         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  14746.  
  14747.         /* Acer/eMachines G725 */
  14748.         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  14749.  
  14750.         /* Acer/eMachines e725 */
  14751.         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  14752.  
  14753.         /* Acer/Packard Bell NCL20 */
  14754.         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  14755.  
  14756.         /* Acer Aspire 4736Z */
  14757.         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  14758.  
  14759.         /* Acer Aspire 5336 */
  14760.         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
  14761.  
  14762.         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
  14763.         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
  14764.  
  14765.         /* Acer C720 Chromebook (Core i3 4005U) */
  14766.         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
  14767.  
  14768.         /* Apple Macbook 2,1 (Core 2 T7400) */
  14769.         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
  14770.  
  14771.         /* Apple Macbook 4,1 */
  14772.         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
  14773.  
  14774.         /* Toshiba CB35 Chromebook (Celeron 2955U) */
  14775.         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
  14776.  
  14777.         /* HP Chromebook 14 (Celeron 2955U) */
  14778.         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
  14779.  
  14780.         /* Dell Chromebook 11 */
  14781.         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
  14782.  
  14783.         /* Dell Chromebook 11 (2015 version) */
  14784.         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
  14785. };
  14786.  
  14787. static void intel_init_quirks(struct drm_device *dev)
  14788. {
  14789.         struct pci_dev *d = dev->pdev;
  14790.         int i;
  14791.  
  14792.         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  14793.                 struct intel_quirk *q = &intel_quirks[i];
  14794.  
  14795.                 if (d->device == q->device &&
  14796.                     (d->subsystem_vendor == q->subsystem_vendor ||
  14797.                      q->subsystem_vendor == PCI_ANY_ID) &&
  14798.                     (d->subsystem_device == q->subsystem_device ||
  14799.                      q->subsystem_device == PCI_ANY_ID))
  14800.                         q->hook(dev);
  14801.         }
  14802.         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  14803.                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  14804.                         intel_dmi_quirks[i].hook(dev);
  14805.         }
  14806. }
  14807.  
  14808. /* Disable the VGA plane that we never use */
  14809. static void i915_disable_vga(struct drm_device *dev)
  14810. {
  14811.         struct drm_i915_private *dev_priv = dev->dev_private;
  14812.         u8 sr1;
  14813.         u32 vga_reg = i915_vgacntrl_reg(dev);
  14814.  
  14815.         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
  14816. //      vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  14817.         outb(SR01, VGA_SR_INDEX);
  14818.         sr1 = inb(VGA_SR_DATA);
  14819.         outb(sr1 | 1<<5, VGA_SR_DATA);
  14820. //      vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  14821.         udelay(300);
  14822.  
  14823.         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  14824.         POSTING_READ(vga_reg);
  14825. }
  14826.  
  14827. void intel_modeset_init_hw(struct drm_device *dev)
  14828. {
  14829.         intel_update_cdclk(dev);
  14830.         intel_prepare_ddi(dev);
  14831.         intel_init_clock_gating(dev);
  14832.         intel_enable_gt_powersave(dev);
  14833. }
  14834.  
  14835. void intel_modeset_init(struct drm_device *dev)
  14836. {
  14837.         struct drm_i915_private *dev_priv = dev->dev_private;
  14838.         int sprite, ret;
  14839.         enum pipe pipe;
  14840.         struct intel_crtc *crtc;
  14841.  
  14842.         drm_mode_config_init(dev);
  14843.  
  14844.         dev->mode_config.min_width = 0;
  14845.         dev->mode_config.min_height = 0;
  14846.  
  14847.         dev->mode_config.preferred_depth = 24;
  14848.         dev->mode_config.prefer_shadow = 1;
  14849.  
  14850.         dev->mode_config.allow_fb_modifiers = true;
  14851.  
  14852.         dev->mode_config.funcs = &intel_mode_funcs;
  14853.  
  14854.         intel_init_quirks(dev);
  14855.  
  14856.         intel_init_pm(dev);
  14857.  
  14858.         if (INTEL_INFO(dev)->num_pipes == 0)
  14859.                 return;
  14860.  
  14861.         /*
  14862.          * There may be no VBT; and if the BIOS enabled SSC we can
  14863.          * just keep using it to avoid unnecessary flicker.  Whereas if the
  14864.          * BIOS isn't using it, don't assume it will work even if the VBT
  14865.          * indicates as much.
  14866.          */
  14867.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  14868.                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
  14869.                                             DREF_SSC1_ENABLE);
  14870.  
  14871.                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
  14872.                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
  14873.                                      bios_lvds_use_ssc ? "en" : "dis",
  14874.                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
  14875.                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
  14876.                 }
  14877.         }
  14878.  
  14879.         intel_init_display(dev);
  14880.  
  14881.         if (IS_GEN2(dev)) {
  14882.                 dev->mode_config.max_width = 2048;
  14883.                 dev->mode_config.max_height = 2048;
  14884.         } else if (IS_GEN3(dev)) {
  14885.                 dev->mode_config.max_width = 4096;
  14886.                 dev->mode_config.max_height = 4096;
  14887.         } else {
  14888.                 dev->mode_config.max_width = 8192;
  14889.                 dev->mode_config.max_height = 8192;
  14890.         }
  14891.  
  14892.         if (IS_GEN2(dev)) {
  14893.                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
  14894.                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
  14895.         } else {
  14896.                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
  14897.                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
  14898.         }
  14899.  
  14900.         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  14901.  
  14902.         DRM_DEBUG_KMS("%d display pipe%s available.\n",
  14903.                       INTEL_INFO(dev)->num_pipes,
  14904.                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  14905.  
  14906.         for_each_pipe(dev_priv, pipe) {
  14907.                 intel_crtc_init(dev, pipe);
  14908.                 for_each_sprite(dev_priv, pipe, sprite) {
  14909.                         ret = intel_plane_init(dev, pipe, sprite);
  14910.                         if (ret)
  14911.                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  14912.                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
  14913.                 }
  14914.         }
  14915.  
  14916.         intel_update_czclk(dev_priv);
  14917.         intel_update_cdclk(dev);
  14918.  
  14919.         intel_shared_dpll_init(dev);
  14920.  
  14921.         /* Just disable it once at startup */
  14922.         i915_disable_vga(dev);
  14923.         intel_setup_outputs(dev);
  14924.  
  14925.         /* Just in case the BIOS is doing something questionable. */
  14926.         intel_fbc_disable(dev_priv);
  14927.  
  14928.         drm_modeset_lock_all(dev);
  14929.         intel_modeset_setup_hw_state(dev);
  14930.         drm_modeset_unlock_all(dev);
  14931.  
  14932.         for_each_intel_crtc(dev, crtc) {
  14933.                 struct intel_initial_plane_config plane_config = {};
  14934.  
  14935.                 if (!crtc->active)
  14936.                         continue;
  14937.  
  14938.                 /*
  14939.                  * Note that reserving the BIOS fb up front prevents us
  14940.                  * from stuffing other stolen allocations like the ring
  14941.                  * on top.  This prevents some ugliness at boot time, and
  14942.                  * can even allow for smooth boot transitions if the BIOS
  14943.                  * fb is large enough for the active pipe configuration.
  14944.                  */
  14945.                 dev_priv->display.get_initial_plane_config(crtc,
  14946.                                                            &plane_config);
  14947.  
  14948.                 /*
  14949.                  * If the fb is shared between multiple heads, we'll
  14950.                  * just get the first one.
  14951.                  */
  14952.                 intel_find_initial_plane_obj(crtc, &plane_config);
  14953.         }
  14954. }
  14955.  
  14956. static void intel_enable_pipe_a(struct drm_device *dev)
  14957. {
  14958.         struct intel_connector *connector;
  14959.         struct drm_connector *crt = NULL;
  14960.         struct intel_load_detect_pipe load_detect_temp;
  14961.         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
  14962.  
  14963.         /* We can't just switch on the pipe A, we need to set things up with a
  14964.          * proper mode and output configuration. As a gross hack, enable pipe A
  14965.          * by enabling the load detect pipe once. */
  14966.         for_each_intel_connector(dev, connector) {
  14967.                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  14968.                         crt = &connector->base;
  14969.                         break;
  14970.                 }
  14971.         }
  14972.  
  14973.         if (!crt)
  14974.                 return;
  14975.  
  14976.         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
  14977.                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
  14978. }
  14979.  
  14980. static bool
  14981. intel_check_plane_mapping(struct intel_crtc *crtc)
  14982. {
  14983.         struct drm_device *dev = crtc->base.dev;
  14984.         struct drm_i915_private *dev_priv = dev->dev_private;
  14985.         u32 val;
  14986.  
  14987.         if (INTEL_INFO(dev)->num_pipes == 1)
  14988.                 return true;
  14989.  
  14990.         val = I915_READ(DSPCNTR(!crtc->plane));
  14991.  
  14992.         if ((val & DISPLAY_PLANE_ENABLE) &&
  14993.             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  14994.                 return false;
  14995.  
  14996.         return true;
  14997. }
  14998.  
  14999. static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
  15000. {
  15001.         struct drm_device *dev = crtc->base.dev;
  15002.         struct intel_encoder *encoder;
  15003.  
  15004.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15005.                 return true;
  15006.  
  15007.         return false;
  15008. }
  15009.  
  15010. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  15011. {
  15012.         struct drm_device *dev = crtc->base.dev;
  15013.         struct drm_i915_private *dev_priv = dev->dev_private;
  15014.         u32 reg;
  15015.  
  15016.         /* Clear any frame start delays used for debugging left by the BIOS */
  15017.         reg = PIPECONF(crtc->config->cpu_transcoder);
  15018.         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  15019.  
  15020.         /* restore vblank interrupts to correct state */
  15021.         drm_crtc_vblank_reset(&crtc->base);
  15022.         if (crtc->active) {
  15023.                 struct intel_plane *plane;
  15024.  
  15025.                 drm_crtc_vblank_on(&crtc->base);
  15026.  
  15027.                 /* Disable everything but the primary plane */
  15028.                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
  15029.                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  15030.                                 continue;
  15031.  
  15032.                         plane->disable_plane(&plane->base, &crtc->base);
  15033.                 }
  15034.         }
  15035.  
  15036.         /* We need to sanitize the plane -> pipe mapping first because this will
  15037.          * disable the crtc (and hence change the state) if it is wrong. Note
  15038.          * that gen4+ has a fixed plane -> pipe mapping.  */
  15039.         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  15040.                 bool plane;
  15041.  
  15042.                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  15043.                               crtc->base.base.id);
  15044.  
  15045.                 /* Pipe has the wrong plane attached and the plane is active.
  15046.                  * Temporarily change the plane mapping and disable everything
  15047.                  * ...  */
  15048.                 plane = crtc->plane;
  15049.                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
  15050.                 crtc->plane = !plane;
  15051.                 intel_crtc_disable_noatomic(&crtc->base);
  15052.                 crtc->plane = plane;
  15053.         }
  15054.  
  15055.         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  15056.             crtc->pipe == PIPE_A && !crtc->active) {
  15057.                 /* BIOS forgot to enable pipe A, this mostly happens after
  15058.                  * resume. Force-enable the pipe to fix this, the update_dpms
  15059.                  * call below we restore the pipe to the right state, but leave
  15060.                  * the required bits on. */
  15061.                 intel_enable_pipe_a(dev);
  15062.         }
  15063.  
  15064.         /* Adjust the state of the output pipe according to whether we
  15065.          * have active connectors/encoders. */
  15066.         if (!intel_crtc_has_encoders(crtc))
  15067.                 intel_crtc_disable_noatomic(&crtc->base);
  15068.  
  15069.         if (crtc->active != crtc->base.state->active) {
  15070.                 struct intel_encoder *encoder;
  15071.  
  15072.                 /* This can happen either due to bugs in the get_hw_state
  15073.                  * functions or because of calls to intel_crtc_disable_noatomic,
  15074.                  * or because the pipe is force-enabled due to the
  15075.                  * pipe A quirk. */
  15076.                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  15077.                               crtc->base.base.id,
  15078.                               crtc->base.state->enable ? "enabled" : "disabled",
  15079.                               crtc->active ? "enabled" : "disabled");
  15080.  
  15081.                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
  15082.                 crtc->base.state->active = crtc->active;
  15083.                 crtc->base.enabled = crtc->active;
  15084.  
  15085.                 /* Because we only establish the connector -> encoder ->
  15086.                  * crtc links if something is active, this means the
  15087.                  * crtc is now deactivated. Break the links. connector
  15088.                  * -> encoder links are only establish when things are
  15089.                  *  actually up, hence no need to break them. */
  15090.                 WARN_ON(crtc->active);
  15091.  
  15092.                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15093.                         encoder->base.crtc = NULL;
  15094.         }
  15095.  
  15096.         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
  15097.                 /*
  15098.                  * We start out with underrun reporting disabled to avoid races.
  15099.                  * For correct bookkeeping mark this on active crtcs.
  15100.                  *
  15101.                  * Also on gmch platforms we dont have any hardware bits to
  15102.                  * disable the underrun reporting. Which means we need to start
  15103.                  * out with underrun reporting disabled also on inactive pipes,
  15104.                  * since otherwise we'll complain about the garbage we read when
  15105.                  * e.g. coming up after runtime pm.
  15106.                  *
  15107.                  * No protection against concurrent access is required - at
  15108.                  * worst a fifo underrun happens which also sets this to false.
  15109.                  */
  15110.                 crtc->cpu_fifo_underrun_disabled = true;
  15111.                 crtc->pch_fifo_underrun_disabled = true;
  15112.         }
  15113. }
  15114.  
  15115. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  15116. {
  15117.         struct intel_connector *connector;
  15118.         struct drm_device *dev = encoder->base.dev;
  15119.         bool active = false;
  15120.  
  15121.         /* We need to check both for a crtc link (meaning that the
  15122.          * encoder is active and trying to read from a pipe) and the
  15123.          * pipe itself being active. */
  15124.         bool has_active_crtc = encoder->base.crtc &&
  15125.                 to_intel_crtc(encoder->base.crtc)->active;
  15126.  
  15127.         for_each_intel_connector(dev, connector) {
  15128.                 if (connector->base.encoder != &encoder->base)
  15129.                         continue;
  15130.  
  15131.                 active = true;
  15132.                 break;
  15133.         }
  15134.  
  15135.         if (active && !has_active_crtc) {
  15136.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  15137.                               encoder->base.base.id,
  15138.                               encoder->base.name);
  15139.  
  15140.                 /* Connector is active, but has no active pipe. This is
  15141.                  * fallout from our resume register restoring. Disable
  15142.                  * the encoder manually again. */
  15143.                 if (encoder->base.crtc) {
  15144.                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  15145.                                       encoder->base.base.id,
  15146.                                       encoder->base.name);
  15147.                         encoder->disable(encoder);
  15148.                         if (encoder->post_disable)
  15149.                                 encoder->post_disable(encoder);
  15150.                 }
  15151.                 encoder->base.crtc = NULL;
  15152.  
  15153.                 /* Inconsistent output/port/pipe state happens presumably due to
  15154.                  * a bug in one of the get_hw_state functions. Or someplace else
  15155.                  * in our code, like the register restore mess on resume. Clamp
  15156.                  * things to off as a safer default. */
  15157.                 for_each_intel_connector(dev, connector) {
  15158.                         if (connector->encoder != encoder)
  15159.                                 continue;
  15160.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15161.                         connector->base.encoder = NULL;
  15162.                 }
  15163.         }
  15164.         /* Enabled encoders without active connectors will be fixed in
  15165.          * the crtc fixup. */
  15166. }
  15167.  
  15168. void i915_redisable_vga_power_on(struct drm_device *dev)
  15169. {
  15170.         struct drm_i915_private *dev_priv = dev->dev_private;
  15171.         u32 vga_reg = i915_vgacntrl_reg(dev);
  15172.  
  15173.         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  15174.                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  15175.                 i915_disable_vga(dev);
  15176.         }
  15177. }
  15178.  
  15179. void i915_redisable_vga(struct drm_device *dev)
  15180. {
  15181.         struct drm_i915_private *dev_priv = dev->dev_private;
  15182.  
  15183.         /* This function can be called both from intel_modeset_setup_hw_state or
  15184.          * at a very early point in our resume sequence, where the power well
  15185.          * structures are not yet restored. Since this function is at a very
  15186.          * paranoid "someone might have enabled VGA while we were not looking"
  15187.          * level, just check if the power well is enabled instead of trying to
  15188.          * follow the "don't touch the power well if we don't need it" policy
  15189.          * the rest of the driver uses. */
  15190.         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
  15191.                 return;
  15192.  
  15193.         i915_redisable_vga_power_on(dev);
  15194. }
  15195.  
  15196. static bool primary_get_hw_state(struct intel_plane *plane)
  15197. {
  15198.         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  15199.  
  15200.         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
  15201. }
  15202.  
  15203. /* FIXME read out full plane state for all planes */
  15204. static void readout_plane_state(struct intel_crtc *crtc)
  15205. {
  15206.         struct drm_plane *primary = crtc->base.primary;
  15207.         struct intel_plane_state *plane_state =
  15208.                 to_intel_plane_state(primary->state);
  15209.  
  15210.         plane_state->visible =
  15211.                 primary_get_hw_state(to_intel_plane(primary));
  15212.  
  15213.         if (plane_state->visible)
  15214.                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
  15215. }
  15216.  
  15217. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  15218. {
  15219.         struct drm_i915_private *dev_priv = dev->dev_private;
  15220.         enum pipe pipe;
  15221.         struct intel_crtc *crtc;
  15222.         struct intel_encoder *encoder;
  15223.         struct intel_connector *connector;
  15224.         int i;
  15225.  
  15226.         for_each_intel_crtc(dev, crtc) {
  15227.                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
  15228.                 memset(crtc->config, 0, sizeof(*crtc->config));
  15229.                 crtc->config->base.crtc = &crtc->base;
  15230.  
  15231.                 crtc->active = dev_priv->display.get_pipe_config(crtc,
  15232.                                                                  crtc->config);
  15233.  
  15234.                 crtc->base.state->active = crtc->active;
  15235.                 crtc->base.enabled = crtc->active;
  15236.  
  15237.                 readout_plane_state(crtc);
  15238.  
  15239.                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  15240.                               crtc->base.base.id,
  15241.                               crtc->active ? "enabled" : "disabled");
  15242.         }
  15243.  
  15244.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15245.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15246.  
  15247.                 pll->on = pll->get_hw_state(dev_priv, pll,
  15248.                                             &pll->config.hw_state);
  15249.                 pll->active = 0;
  15250.                 pll->config.crtc_mask = 0;
  15251.                 for_each_intel_crtc(dev, crtc) {
  15252.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
  15253.                                 pll->active++;
  15254.                                 pll->config.crtc_mask |= 1 << crtc->pipe;
  15255.                         }
  15256.                 }
  15257.  
  15258.                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
  15259.                               pll->name, pll->config.crtc_mask, pll->on);
  15260.  
  15261.                 if (pll->config.crtc_mask)
  15262.                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  15263.         }
  15264.  
  15265.         for_each_intel_encoder(dev, encoder) {
  15266.                 pipe = 0;
  15267.  
  15268.                 if (encoder->get_hw_state(encoder, &pipe)) {
  15269.                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15270.                         encoder->base.crtc = &crtc->base;
  15271.                         encoder->get_config(encoder, crtc->config);
  15272.                 } else {
  15273.                         encoder->base.crtc = NULL;
  15274.                 }
  15275.  
  15276.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
  15277.                               encoder->base.base.id,
  15278.                               encoder->base.name,
  15279.                               encoder->base.crtc ? "enabled" : "disabled",
  15280.                               pipe_name(pipe));
  15281.         }
  15282.  
  15283.         for_each_intel_connector(dev, connector) {
  15284.                 if (connector->get_hw_state(connector)) {
  15285.                         connector->base.dpms = DRM_MODE_DPMS_ON;
  15286.                         connector->base.encoder = &connector->encoder->base;
  15287.                 } else {
  15288.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15289.                         connector->base.encoder = NULL;
  15290.                 }
  15291.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  15292.                               connector->base.base.id,
  15293.                               connector->base.name,
  15294.                               connector->base.encoder ? "enabled" : "disabled");
  15295.         }
  15296.  
  15297.         for_each_intel_crtc(dev, crtc) {
  15298.                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
  15299.  
  15300.                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
  15301.                 if (crtc->base.state->active) {
  15302.                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
  15303.                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
  15304.                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
  15305.  
  15306.                         /*
  15307.                          * The initial mode needs to be set in order to keep
  15308.                          * the atomic core happy. It wants a valid mode if the
  15309.                          * crtc's enabled, so we do the above call.
  15310.                          *
  15311.                          * At this point some state updated by the connectors
  15312.                          * in their ->detect() callback has not run yet, so
  15313.                          * no recalculation can be done yet.
  15314.                          *
  15315.                          * Even if we could do a recalculation and modeset
  15316.                          * right now it would cause a double modeset if
  15317.                          * fbdev or userspace chooses a different initial mode.
  15318.                          *
  15319.                          * If that happens, someone indicated they wanted a
  15320.                          * mode change, which means it's safe to do a full
  15321.                          * recalculation.
  15322.                          */
  15323.                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
  15324.  
  15325.                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
  15326.                         update_scanline_offset(crtc);
  15327.                 }
  15328.         }
  15329. }
  15330.  
  15331. /* Scan out the current hw modeset state,
  15332.  * and sanitizes it to the current state
  15333.  */
  15334. static void
  15335. intel_modeset_setup_hw_state(struct drm_device *dev)
  15336. {
  15337.         struct drm_i915_private *dev_priv = dev->dev_private;
  15338.         enum pipe pipe;
  15339.         struct intel_crtc *crtc;
  15340.         struct intel_encoder *encoder;
  15341.         int i;
  15342.  
  15343.         intel_modeset_readout_hw_state(dev);
  15344.  
  15345.         /* HW state is read out, now we need to sanitize this mess. */
  15346.         for_each_intel_encoder(dev, encoder) {
  15347.                 intel_sanitize_encoder(encoder);
  15348.         }
  15349.  
  15350.         for_each_pipe(dev_priv, pipe) {
  15351.                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15352.                 intel_sanitize_crtc(crtc);
  15353.                 intel_dump_pipe_config(crtc, crtc->config,
  15354.                                        "[setup_hw_state]");
  15355.         }
  15356.  
  15357.         intel_modeset_update_connector_atomic_state(dev);
  15358.  
  15359.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15360.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15361.  
  15362.                 if (!pll->on || pll->active)
  15363.                         continue;
  15364.  
  15365.                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  15366.  
  15367.                 pll->disable(dev_priv, pll);
  15368.                 pll->on = false;
  15369.         }
  15370.  
  15371.         if (IS_VALLEYVIEW(dev))
  15372.                 vlv_wm_get_hw_state(dev);
  15373.         else if (IS_GEN9(dev))
  15374.                 skl_wm_get_hw_state(dev);
  15375.         else if (HAS_PCH_SPLIT(dev))
  15376.                 ilk_wm_get_hw_state(dev);
  15377.  
  15378.         for_each_intel_crtc(dev, crtc) {
  15379.                 unsigned long put_domains;
  15380.  
  15381.                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
  15382.                 if (WARN_ON(put_domains))
  15383.                         modeset_put_power_domains(dev_priv, put_domains);
  15384.         }
  15385.         intel_display_set_init_power(dev_priv, false);
  15386. }
  15387.  
  15388. void intel_display_resume(struct drm_device *dev)
  15389. {
  15390.         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
  15391.         struct intel_connector *conn;
  15392.         struct intel_plane *plane;
  15393.         struct drm_crtc *crtc;
  15394.         int ret;
  15395.  
  15396.         if (!state)
  15397.                 return;
  15398.  
  15399.         state->acquire_ctx = dev->mode_config.acquire_ctx;
  15400.  
  15401.         /* preserve complete old state, including dpll */
  15402.         intel_atomic_get_shared_dpll_state(state);
  15403.  
  15404.         for_each_crtc(dev, crtc) {
  15405.                 struct drm_crtc_state *crtc_state =
  15406.                         drm_atomic_get_crtc_state(state, crtc);
  15407.  
  15408.                 ret = PTR_ERR_OR_ZERO(crtc_state);
  15409.                 if (ret)
  15410.                         goto err;
  15411.  
  15412.                 /* force a restore */
  15413.                 crtc_state->mode_changed = true;
  15414.         }
  15415.  
  15416.         for_each_intel_plane(dev, plane) {
  15417.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
  15418.                 if (ret)
  15419.                         goto err;
  15420.         }
  15421.  
  15422.         for_each_intel_connector(dev, conn) {
  15423.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
  15424.                 if (ret)
  15425.                         goto err;
  15426.         }
  15427.  
  15428.         intel_modeset_setup_hw_state(dev);
  15429.  
  15430.         i915_redisable_vga(dev);
  15431.         ret = drm_atomic_commit(state);
  15432.         if (!ret)
  15433.                 return;
  15434.  
  15435. err:
  15436.         DRM_ERROR("Restoring old state failed with %i\n", ret);
  15437.         drm_atomic_state_free(state);
  15438. }
  15439.  
  15440. void intel_modeset_gem_init(struct drm_device *dev)
  15441. {
  15442.         struct drm_crtc *c;
  15443.         struct drm_i915_gem_object *obj;
  15444.         int ret;
  15445.  
  15446.         mutex_lock(&dev->struct_mutex);
  15447.         intel_init_gt_powersave(dev);
  15448.         mutex_unlock(&dev->struct_mutex);
  15449.  
  15450.         intel_modeset_init_hw(dev);
  15451.  
  15452. //   intel_setup_overlay(dev);
  15453.  
  15454.         /*
  15455.          * Make sure any fbs we allocated at startup are properly
  15456.          * pinned & fenced.  When we do the allocation it's too early
  15457.          * for this.
  15458.          */
  15459.         for_each_crtc(dev, c) {
  15460.                 obj = intel_fb_obj(c->primary->fb);
  15461.                 if (obj == NULL)
  15462.                         continue;
  15463.  
  15464.                 mutex_lock(&dev->struct_mutex);
  15465.                 ret = intel_pin_and_fence_fb_obj(c->primary,
  15466.                                                  c->primary->fb,
  15467.                                                  c->primary->state,
  15468.                                                  NULL, NULL);
  15469.                 mutex_unlock(&dev->struct_mutex);
  15470.                 if (ret) {
  15471.                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
  15472.                                   to_intel_crtc(c)->pipe);
  15473.                         drm_framebuffer_unreference(c->primary->fb);
  15474.                         c->primary->fb = NULL;
  15475.                         c->primary->crtc = c->primary->state->crtc = NULL;
  15476.                         update_state_fb(c->primary);
  15477.                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
  15478.                 }
  15479.         }
  15480.  
  15481.         intel_backlight_register(dev);
  15482. }
  15483.  
  15484. void intel_connector_unregister(struct intel_connector *intel_connector)
  15485. {
  15486.         struct drm_connector *connector = &intel_connector->base;
  15487.  
  15488.         intel_panel_destroy_backlight(connector);
  15489.         drm_connector_unregister(connector);
  15490. }
  15491.  
  15492. void intel_modeset_cleanup(struct drm_device *dev)
  15493. {
  15494. #if 0
  15495.         struct drm_i915_private *dev_priv = dev->dev_private;
  15496.         struct drm_connector *connector;
  15497.  
  15498.         intel_disable_gt_powersave(dev);
  15499.  
  15500.         intel_backlight_unregister(dev);
  15501.  
  15502.         /*
  15503.          * Interrupts and polling as the first thing to avoid creating havoc.
  15504.          * Too much stuff here (turning of connectors, ...) would
  15505.          * experience fancy races otherwise.
  15506.          */
  15507.         intel_irq_uninstall(dev_priv);
  15508.  
  15509.         /*
  15510.          * Due to the hpd irq storm handling the hotplug work can re-arm the
  15511.          * poll handlers. Hence disable polling after hpd handling is shut down.
  15512.          */
  15513.         drm_kms_helper_poll_fini(dev);
  15514.  
  15515.         intel_unregister_dsm_handler();
  15516.  
  15517.         intel_fbc_disable(dev_priv);
  15518.  
  15519.         /* flush any delayed tasks or pending work */
  15520.         flush_scheduled_work();
  15521.  
  15522.         /* destroy the backlight and sysfs files before encoders/connectors */
  15523.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  15524.                 struct intel_connector *intel_connector;
  15525.  
  15526.                 intel_connector = to_intel_connector(connector);
  15527.                 intel_connector->unregister(intel_connector);
  15528.         }
  15529.  
  15530.         drm_mode_config_cleanup(dev);
  15531.  
  15532.         intel_cleanup_overlay(dev);
  15533.  
  15534.         mutex_lock(&dev->struct_mutex);
  15535.         intel_cleanup_gt_powersave(dev);
  15536.         mutex_unlock(&dev->struct_mutex);
  15537. #endif
  15538. }
  15539.  
  15540. /*
  15541.  * Return which encoder is currently attached for connector.
  15542.  */
  15543. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  15544. {
  15545.         return &intel_attached_encoder(connector)->base;
  15546. }
  15547.  
  15548. void intel_connector_attach_encoder(struct intel_connector *connector,
  15549.                                     struct intel_encoder *encoder)
  15550. {
  15551.         connector->encoder = encoder;
  15552.         drm_mode_connector_attach_encoder(&connector->base,
  15553.                                           &encoder->base);
  15554. }
  15555.  
  15556. /*
  15557.  * set vga decode state - true == enable VGA decode
  15558.  */
  15559. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  15560. {
  15561.         struct drm_i915_private *dev_priv = dev->dev_private;
  15562.         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
  15563.         u16 gmch_ctrl;
  15564.  
  15565.         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
  15566.                 DRM_ERROR("failed to read control word\n");
  15567.                 return -EIO;
  15568.         }
  15569.  
  15570.         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
  15571.                 return 0;
  15572.  
  15573.         if (state)
  15574.                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  15575.         else
  15576.                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  15577.  
  15578.         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
  15579.                 DRM_ERROR("failed to write control word\n");
  15580.                 return -EIO;
  15581.         }
  15582.  
  15583.         return 0;
  15584. }
  15585.  
  15586. #ifdef CONFIG_DEBUG_FS
  15587.  
  15588. struct intel_display_error_state {
  15589.  
  15590.         u32 power_well_driver;
  15591.  
  15592.         int num_transcoders;
  15593.  
  15594.         struct intel_cursor_error_state {
  15595.                 u32 control;
  15596.                 u32 position;
  15597.                 u32 base;
  15598.                 u32 size;
  15599.         } cursor[I915_MAX_PIPES];
  15600.  
  15601.         struct intel_pipe_error_state {
  15602.                 bool power_domain_on;
  15603.                 u32 source;
  15604.                 u32 stat;
  15605.         } pipe[I915_MAX_PIPES];
  15606.  
  15607.         struct intel_plane_error_state {
  15608.                 u32 control;
  15609.                 u32 stride;
  15610.                 u32 size;
  15611.                 u32 pos;
  15612.                 u32 addr;
  15613.                 u32 surface;
  15614.                 u32 tile_offset;
  15615.         } plane[I915_MAX_PIPES];
  15616.  
  15617.         struct intel_transcoder_error_state {
  15618.                 bool power_domain_on;
  15619.                 enum transcoder cpu_transcoder;
  15620.  
  15621.                 u32 conf;
  15622.  
  15623.                 u32 htotal;
  15624.                 u32 hblank;
  15625.                 u32 hsync;
  15626.                 u32 vtotal;
  15627.                 u32 vblank;
  15628.                 u32 vsync;
  15629.         } transcoder[4];
  15630. };
  15631.  
  15632. struct intel_display_error_state *
  15633. intel_display_capture_error_state(struct drm_device *dev)
  15634. {
  15635.         struct drm_i915_private *dev_priv = dev->dev_private;
  15636.         struct intel_display_error_state *error;
  15637.         int transcoders[] = {
  15638.                 TRANSCODER_A,
  15639.                 TRANSCODER_B,
  15640.                 TRANSCODER_C,
  15641.                 TRANSCODER_EDP,
  15642.         };
  15643.         int i;
  15644.  
  15645.         if (INTEL_INFO(dev)->num_pipes == 0)
  15646.                 return NULL;
  15647.  
  15648.         error = kzalloc(sizeof(*error), GFP_ATOMIC);
  15649.         if (error == NULL)
  15650.                 return NULL;
  15651.  
  15652.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  15653.                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  15654.  
  15655.         for_each_pipe(dev_priv, i) {
  15656.                 error->pipe[i].power_domain_on =
  15657.                         __intel_display_power_is_enabled(dev_priv,
  15658.                                                          POWER_DOMAIN_PIPE(i));
  15659.                 if (!error->pipe[i].power_domain_on)
  15660.                         continue;
  15661.  
  15662.                 error->cursor[i].control = I915_READ(CURCNTR(i));
  15663.                 error->cursor[i].position = I915_READ(CURPOS(i));
  15664.                 error->cursor[i].base = I915_READ(CURBASE(i));
  15665.  
  15666.                 error->plane[i].control = I915_READ(DSPCNTR(i));
  15667.                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  15668.                 if (INTEL_INFO(dev)->gen <= 3) {
  15669.                         error->plane[i].size = I915_READ(DSPSIZE(i));
  15670.                         error->plane[i].pos = I915_READ(DSPPOS(i));
  15671.                 }
  15672.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  15673.                         error->plane[i].addr = I915_READ(DSPADDR(i));
  15674.                 if (INTEL_INFO(dev)->gen >= 4) {
  15675.                         error->plane[i].surface = I915_READ(DSPSURF(i));
  15676.                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  15677.                 }
  15678.  
  15679.                 error->pipe[i].source = I915_READ(PIPESRC(i));
  15680.  
  15681.                 if (HAS_GMCH_DISPLAY(dev))
  15682.                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
  15683.         }
  15684.  
  15685.         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  15686.         if (HAS_DDI(dev_priv->dev))
  15687.                 error->num_transcoders++; /* Account for eDP. */
  15688.  
  15689.         for (i = 0; i < error->num_transcoders; i++) {
  15690.                 enum transcoder cpu_transcoder = transcoders[i];
  15691.  
  15692.                 error->transcoder[i].power_domain_on =
  15693.                         __intel_display_power_is_enabled(dev_priv,
  15694.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
  15695.                 if (!error->transcoder[i].power_domain_on)
  15696.                         continue;
  15697.  
  15698.                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
  15699.  
  15700.                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  15701.                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  15702.                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  15703.                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  15704.                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  15705.                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  15706.                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  15707.         }
  15708.  
  15709.         return error;
  15710. }
  15711.  
  15712. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  15713.  
  15714. void
  15715. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  15716.                                 struct drm_device *dev,
  15717.                                 struct intel_display_error_state *error)
  15718. {
  15719.         struct drm_i915_private *dev_priv = dev->dev_private;
  15720.         int i;
  15721.  
  15722.         if (!error)
  15723.                 return;
  15724.  
  15725.         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  15726.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  15727.                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
  15728.                            error->power_well_driver);
  15729.         for_each_pipe(dev_priv, i) {
  15730.                 err_printf(m, "Pipe [%d]:\n", i);
  15731.                 err_printf(m, "  Power: %s\n",
  15732.                            error->pipe[i].power_domain_on ? "on" : "off");
  15733.                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
  15734.                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
  15735.  
  15736.                 err_printf(m, "Plane [%d]:\n", i);
  15737.                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
  15738.                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
  15739.                 if (INTEL_INFO(dev)->gen <= 3) {
  15740.                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
  15741.                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
  15742.                 }
  15743.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  15744.                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
  15745.                 if (INTEL_INFO(dev)->gen >= 4) {
  15746.                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
  15747.                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
  15748.                 }
  15749.  
  15750.                 err_printf(m, "Cursor [%d]:\n", i);
  15751.                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
  15752.                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
  15753.                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
  15754.         }
  15755.  
  15756.         for (i = 0; i < error->num_transcoders; i++) {
  15757.                 err_printf(m, "CPU transcoder: %c\n",
  15758.                            transcoder_name(error->transcoder[i].cpu_transcoder));
  15759.                 err_printf(m, "  Power: %s\n",
  15760.                            error->transcoder[i].power_domain_on ? "on" : "off");
  15761.                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
  15762.                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
  15763.                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
  15764.                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
  15765.                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
  15766.                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
  15767.                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
  15768.         }
  15769. }
  15770. #endif
  15771.  
  15772. void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
  15773. {
  15774.         struct intel_crtc *crtc;
  15775.  
  15776.         for_each_intel_crtc(dev, crtc) {
  15777.                 struct intel_unpin_work *work;
  15778.  
  15779.                 spin_lock_irq(&dev->event_lock);
  15780.  
  15781.                 work = crtc->unpin_work;
  15782.  
  15783.                 if (work && work->event &&
  15784.                     work->event->base.file_priv == file) {
  15785.                         kfree(work->event);
  15786.                         work->event = NULL;
  15787.                 }
  15788.  
  15789.                 spin_unlock_irq(&dev->event_lock);
  15790.         }
  15791. }
  15792.