Subversion Repositories Kolibri OS

Rev

Rev 4539 | Rev 4560 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2006-2007 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *  Eric Anholt <eric@anholt.net>
  25.  */
  26.  
  27. //#include <linux/dmi.h>
  28. #include <linux/module.h>
  29. //#include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/math64.h>
  34. #include <drm/drm_edid.h>
  35. #include <drm/drmP.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include <drm/drm_dp_helper.h>
  41. #include <drm/drm_crtc_helper.h>
  42. //#include <linux/dma_remapping.h>
  43.  
  44. #define MAX_ERRNO       4095
  45. phys_addr_t get_bus_addr(void);
  46.  
  47. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  48. static void intel_increase_pllclock(struct drm_crtc *crtc);
  49. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  50.  
  51. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  52.                                 struct intel_crtc_config *pipe_config);
  53. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  54.                                     struct intel_crtc_config *pipe_config);
  55.  
  56. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  57.                           int x, int y, struct drm_framebuffer *old_fb);
  58.  
  59.  
  60. typedef struct {
  61.     int min, max;
  62. } intel_range_t;
  63.  
  64. typedef struct {
  65.     int dot_limit;
  66.     int p2_slow, p2_fast;
  67. } intel_p2_t;
  68.  
  69. typedef struct intel_limit intel_limit_t;
  70. struct intel_limit {
  71.     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  72.     intel_p2_t      p2;
  73. };
  74.  
  75. /* FDI */
  76. #define IRONLAKE_FDI_FREQ       2700000 /* in kHz for mode->clock */
  77.  
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81.         struct drm_i915_private *dev_priv = dev->dev_private;
  82.  
  83.         WARN_ON(!HAS_PCH_SPLIT(dev));
  84.  
  85.         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  86. }
  87.  
  88. static inline u32 /* units of 100MHz */
  89. intel_fdi_link_freq(struct drm_device *dev)
  90. {
  91.         if (IS_GEN5(dev)) {
  92.                 struct drm_i915_private *dev_priv = dev->dev_private;
  93.                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  94.         } else
  95.                 return 27;
  96. }
  97.  
  98. static const intel_limit_t intel_limits_i8xx_dac = {
  99.         .dot = { .min = 25000, .max = 350000 },
  100.         .vco = { .min = 930000, .max = 1400000 },
  101.         .n = { .min = 3, .max = 16 },
  102.         .m = { .min = 96, .max = 140 },
  103.         .m1 = { .min = 18, .max = 26 },
  104.         .m2 = { .min = 6, .max = 16 },
  105.         .p = { .min = 4, .max = 128 },
  106.         .p1 = { .min = 2, .max = 33 },
  107.         .p2 = { .dot_limit = 165000,
  108.                 .p2_slow = 4, .p2_fast = 2 },
  109. };
  110.  
  111. static const intel_limit_t intel_limits_i8xx_dvo = {
  112.         .dot = { .min = 25000, .max = 350000 },
  113.         .vco = { .min = 930000, .max = 1400000 },
  114.         .n = { .min = 3, .max = 16 },
  115.         .m = { .min = 96, .max = 140 },
  116.         .m1 = { .min = 18, .max = 26 },
  117.         .m2 = { .min = 6, .max = 16 },
  118.         .p = { .min = 4, .max = 128 },
  119.         .p1 = { .min = 2, .max = 33 },
  120.         .p2 = { .dot_limit = 165000,
  121.                 .p2_slow = 4, .p2_fast = 4 },
  122. };
  123.  
  124. static const intel_limit_t intel_limits_i8xx_lvds = {
  125.         .dot = { .min = 25000, .max = 350000 },
  126.         .vco = { .min = 930000, .max = 1400000 },
  127.         .n = { .min = 3, .max = 16 },
  128.         .m = { .min = 96, .max = 140 },
  129.         .m1 = { .min = 18, .max = 26 },
  130.         .m2 = { .min = 6, .max = 16 },
  131.         .p = { .min = 4, .max = 128 },
  132.         .p1 = { .min = 1, .max = 6 },
  133.         .p2 = { .dot_limit = 165000,
  134.                 .p2_slow = 14, .p2_fast = 7 },
  135. };
  136.  
  137. static const intel_limit_t intel_limits_i9xx_sdvo = {
  138.         .dot = { .min = 20000, .max = 400000 },
  139.         .vco = { .min = 1400000, .max = 2800000 },
  140.         .n = { .min = 1, .max = 6 },
  141.         .m = { .min = 70, .max = 120 },
  142.         .m1 = { .min = 8, .max = 18 },
  143.         .m2 = { .min = 3, .max = 7 },
  144.         .p = { .min = 5, .max = 80 },
  145.         .p1 = { .min = 1, .max = 8 },
  146.         .p2 = { .dot_limit = 200000,
  147.                 .p2_slow = 10, .p2_fast = 5 },
  148. };
  149.  
  150. static const intel_limit_t intel_limits_i9xx_lvds = {
  151.         .dot = { .min = 20000, .max = 400000 },
  152.         .vco = { .min = 1400000, .max = 2800000 },
  153.         .n = { .min = 1, .max = 6 },
  154.         .m = { .min = 70, .max = 120 },
  155.         .m1 = { .min = 8, .max = 18 },
  156.         .m2 = { .min = 3, .max = 7 },
  157.         .p = { .min = 7, .max = 98 },
  158.         .p1 = { .min = 1, .max = 8 },
  159.         .p2 = { .dot_limit = 112000,
  160.                 .p2_slow = 14, .p2_fast = 7 },
  161. };
  162.  
  163.  
  164. static const intel_limit_t intel_limits_g4x_sdvo = {
  165.         .dot = { .min = 25000, .max = 270000 },
  166.         .vco = { .min = 1750000, .max = 3500000},
  167.         .n = { .min = 1, .max = 4 },
  168.         .m = { .min = 104, .max = 138 },
  169.         .m1 = { .min = 17, .max = 23 },
  170.         .m2 = { .min = 5, .max = 11 },
  171.         .p = { .min = 10, .max = 30 },
  172.         .p1 = { .min = 1, .max = 3},
  173.         .p2 = { .dot_limit = 270000,
  174.                 .p2_slow = 10,
  175.                 .p2_fast = 10
  176.         },
  177. };
  178.  
  179. static const intel_limit_t intel_limits_g4x_hdmi = {
  180.         .dot = { .min = 22000, .max = 400000 },
  181.         .vco = { .min = 1750000, .max = 3500000},
  182.         .n = { .min = 1, .max = 4 },
  183.         .m = { .min = 104, .max = 138 },
  184.         .m1 = { .min = 16, .max = 23 },
  185.         .m2 = { .min = 5, .max = 11 },
  186.         .p = { .min = 5, .max = 80 },
  187.         .p1 = { .min = 1, .max = 8},
  188.         .p2 = { .dot_limit = 165000,
  189.                 .p2_slow = 10, .p2_fast = 5 },
  190. };
  191.  
  192. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  193.         .dot = { .min = 20000, .max = 115000 },
  194.         .vco = { .min = 1750000, .max = 3500000 },
  195.         .n = { .min = 1, .max = 3 },
  196.         .m = { .min = 104, .max = 138 },
  197.         .m1 = { .min = 17, .max = 23 },
  198.         .m2 = { .min = 5, .max = 11 },
  199.         .p = { .min = 28, .max = 112 },
  200.         .p1 = { .min = 2, .max = 8 },
  201.         .p2 = { .dot_limit = 0,
  202.                 .p2_slow = 14, .p2_fast = 14
  203.         },
  204. };
  205.  
  206. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  207.         .dot = { .min = 80000, .max = 224000 },
  208.         .vco = { .min = 1750000, .max = 3500000 },
  209.         .n = { .min = 1, .max = 3 },
  210.         .m = { .min = 104, .max = 138 },
  211.         .m1 = { .min = 17, .max = 23 },
  212.         .m2 = { .min = 5, .max = 11 },
  213.         .p = { .min = 14, .max = 42 },
  214.         .p1 = { .min = 2, .max = 6 },
  215.         .p2 = { .dot_limit = 0,
  216.                 .p2_slow = 7, .p2_fast = 7
  217.         },
  218. };
  219.  
  220. static const intel_limit_t intel_limits_pineview_sdvo = {
  221.         .dot = { .min = 20000, .max = 400000},
  222.         .vco = { .min = 1700000, .max = 3500000 },
  223.         /* Pineview's Ncounter is a ring counter */
  224.         .n = { .min = 3, .max = 6 },
  225.         .m = { .min = 2, .max = 256 },
  226.         /* Pineview only has one combined m divider, which we treat as m2. */
  227.         .m1 = { .min = 0, .max = 0 },
  228.         .m2 = { .min = 0, .max = 254 },
  229.         .p = { .min = 5, .max = 80 },
  230.         .p1 = { .min = 1, .max = 8 },
  231.         .p2 = { .dot_limit = 200000,
  232.                 .p2_slow = 10, .p2_fast = 5 },
  233. };
  234.  
  235. static const intel_limit_t intel_limits_pineview_lvds = {
  236.         .dot = { .min = 20000, .max = 400000 },
  237.         .vco = { .min = 1700000, .max = 3500000 },
  238.         .n = { .min = 3, .max = 6 },
  239.         .m = { .min = 2, .max = 256 },
  240.         .m1 = { .min = 0, .max = 0 },
  241.         .m2 = { .min = 0, .max = 254 },
  242.         .p = { .min = 7, .max = 112 },
  243.         .p1 = { .min = 1, .max = 8 },
  244.         .p2 = { .dot_limit = 112000,
  245.                 .p2_slow = 14, .p2_fast = 14 },
  246. };
  247.  
  248. /* Ironlake / Sandybridge
  249.  *
  250.  * We calculate clock using (register_value + 2) for N/M1/M2, so here
  251.  * the range value for them is (actual_value - 2).
  252.  */
  253. static const intel_limit_t intel_limits_ironlake_dac = {
  254.         .dot = { .min = 25000, .max = 350000 },
  255.         .vco = { .min = 1760000, .max = 3510000 },
  256.         .n = { .min = 1, .max = 5 },
  257.         .m = { .min = 79, .max = 127 },
  258.         .m1 = { .min = 12, .max = 22 },
  259.         .m2 = { .min = 5, .max = 9 },
  260.         .p = { .min = 5, .max = 80 },
  261.         .p1 = { .min = 1, .max = 8 },
  262.         .p2 = { .dot_limit = 225000,
  263.                 .p2_slow = 10, .p2_fast = 5 },
  264. };
  265.  
  266. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  267.         .dot = { .min = 25000, .max = 350000 },
  268.         .vco = { .min = 1760000, .max = 3510000 },
  269.         .n = { .min = 1, .max = 3 },
  270.         .m = { .min = 79, .max = 118 },
  271.         .m1 = { .min = 12, .max = 22 },
  272.         .m2 = { .min = 5, .max = 9 },
  273.         .p = { .min = 28, .max = 112 },
  274.         .p1 = { .min = 2, .max = 8 },
  275.         .p2 = { .dot_limit = 225000,
  276.                 .p2_slow = 14, .p2_fast = 14 },
  277. };
  278.  
  279. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  280.         .dot = { .min = 25000, .max = 350000 },
  281.         .vco = { .min = 1760000, .max = 3510000 },
  282.         .n = { .min = 1, .max = 3 },
  283.         .m = { .min = 79, .max = 127 },
  284.         .m1 = { .min = 12, .max = 22 },
  285.         .m2 = { .min = 5, .max = 9 },
  286.         .p = { .min = 14, .max = 56 },
  287.         .p1 = { .min = 2, .max = 8 },
  288.         .p2 = { .dot_limit = 225000,
  289.                 .p2_slow = 7, .p2_fast = 7 },
  290. };
  291.  
  292. /* LVDS 100mhz refclk limits. */
  293. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  294.         .dot = { .min = 25000, .max = 350000 },
  295.         .vco = { .min = 1760000, .max = 3510000 },
  296.         .n = { .min = 1, .max = 2 },
  297.         .m = { .min = 79, .max = 126 },
  298.         .m1 = { .min = 12, .max = 22 },
  299.         .m2 = { .min = 5, .max = 9 },
  300.         .p = { .min = 28, .max = 112 },
  301.         .p1 = { .min = 2, .max = 8 },
  302.         .p2 = { .dot_limit = 225000,
  303.                 .p2_slow = 14, .p2_fast = 14 },
  304. };
  305.  
  306. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  307.         .dot = { .min = 25000, .max = 350000 },
  308.         .vco = { .min = 1760000, .max = 3510000 },
  309.         .n = { .min = 1, .max = 3 },
  310.         .m = { .min = 79, .max = 126 },
  311.         .m1 = { .min = 12, .max = 22 },
  312.         .m2 = { .min = 5, .max = 9 },
  313.         .p = { .min = 14, .max = 42 },
  314.         .p1 = { .min = 2, .max = 6 },
  315.         .p2 = { .dot_limit = 225000,
  316.                 .p2_slow = 7, .p2_fast = 7 },
  317. };
  318.  
  319. static const intel_limit_t intel_limits_vlv_dac = {
  320.         .dot = { .min = 25000, .max = 270000 },
  321.         .vco = { .min = 4000000, .max = 6000000 },
  322.         .n = { .min = 1, .max = 7 },
  323.         .m = { .min = 22, .max = 450 }, /* guess */
  324.         .m1 = { .min = 2, .max = 3 },
  325.         .m2 = { .min = 11, .max = 156 },
  326.         .p = { .min = 10, .max = 30 },
  327.         .p1 = { .min = 1, .max = 3 },
  328.         .p2 = { .dot_limit = 270000,
  329.                 .p2_slow = 2, .p2_fast = 20 },
  330. };
  331.  
  332. static const intel_limit_t intel_limits_vlv_hdmi = {
  333.         .dot = { .min = 25000, .max = 270000 },
  334.         .vco = { .min = 4000000, .max = 6000000 },
  335.         .n = { .min = 1, .max = 7 },
  336.         .m = { .min = 60, .max = 300 }, /* guess */
  337.         .m1 = { .min = 2, .max = 3 },
  338.         .m2 = { .min = 11, .max = 156 },
  339.         .p = { .min = 10, .max = 30 },
  340.         .p1 = { .min = 2, .max = 3 },
  341.         .p2 = { .dot_limit = 270000,
  342.                 .p2_slow = 2, .p2_fast = 20 },
  343. };
  344.  
  345. static const intel_limit_t intel_limits_vlv_dp = {
  346.         .dot = { .min = 25000, .max = 270000 },
  347.         .vco = { .min = 4000000, .max = 6000000 },
  348.         .n = { .min = 1, .max = 7 },
  349.         .m = { .min = 22, .max = 450 },
  350.         .m1 = { .min = 2, .max = 3 },
  351.         .m2 = { .min = 11, .max = 156 },
  352.         .p = { .min = 10, .max = 30 },
  353.         .p1 = { .min = 1, .max = 3 },
  354.         .p2 = { .dot_limit = 270000,
  355.                 .p2_slow = 2, .p2_fast = 20 },
  356. };
  357.  
  358. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  359.                                                 int refclk)
  360. {
  361.         struct drm_device *dev = crtc->dev;
  362.         const intel_limit_t *limit;
  363.  
  364.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  365.                 if (intel_is_dual_link_lvds(dev)) {
  366.                         if (refclk == 100000)
  367.                                 limit = &intel_limits_ironlake_dual_lvds_100m;
  368.                         else
  369.                                 limit = &intel_limits_ironlake_dual_lvds;
  370.                 } else {
  371.                         if (refclk == 100000)
  372.                                 limit = &intel_limits_ironlake_single_lvds_100m;
  373.                         else
  374.                                 limit = &intel_limits_ironlake_single_lvds;
  375.                 }
  376.         } else
  377.                 limit = &intel_limits_ironlake_dac;
  378.  
  379.         return limit;
  380. }
  381.  
  382. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  383. {
  384.         struct drm_device *dev = crtc->dev;
  385.         const intel_limit_t *limit;
  386.  
  387.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  388.                 if (intel_is_dual_link_lvds(dev))
  389.                         limit = &intel_limits_g4x_dual_channel_lvds;
  390.                 else
  391.                         limit = &intel_limits_g4x_single_channel_lvds;
  392.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  393.                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  394.                 limit = &intel_limits_g4x_hdmi;
  395.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  396.                 limit = &intel_limits_g4x_sdvo;
  397.         } else /* The option is for other outputs */
  398.                 limit = &intel_limits_i9xx_sdvo;
  399.  
  400.         return limit;
  401. }
  402.  
  403. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  404. {
  405.         struct drm_device *dev = crtc->dev;
  406.         const intel_limit_t *limit;
  407.  
  408.         if (HAS_PCH_SPLIT(dev))
  409.                 limit = intel_ironlake_limit(crtc, refclk);
  410.         else if (IS_G4X(dev)) {
  411.                 limit = intel_g4x_limit(crtc);
  412.         } else if (IS_PINEVIEW(dev)) {
  413.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  414.                         limit = &intel_limits_pineview_lvds;
  415.                 else
  416.                         limit = &intel_limits_pineview_sdvo;
  417.         } else if (IS_VALLEYVIEW(dev)) {
  418.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  419.                         limit = &intel_limits_vlv_dac;
  420.                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  421.                         limit = &intel_limits_vlv_hdmi;
  422.                 else
  423.                         limit = &intel_limits_vlv_dp;
  424.         } else if (!IS_GEN2(dev)) {
  425.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  426.                         limit = &intel_limits_i9xx_lvds;
  427.                 else
  428.                         limit = &intel_limits_i9xx_sdvo;
  429.         } else {
  430.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  431.                         limit = &intel_limits_i8xx_lvds;
  432.                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  433.                         limit = &intel_limits_i8xx_dvo;
  434.                 else
  435.                         limit = &intel_limits_i8xx_dac;
  436.         }
  437.         return limit;
  438. }
  439.  
  440. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  441. static void pineview_clock(int refclk, intel_clock_t *clock)
  442. {
  443.         clock->m = clock->m2 + 2;
  444.         clock->p = clock->p1 * clock->p2;
  445.         clock->vco = refclk * clock->m / clock->n;
  446.         clock->dot = clock->vco / clock->p;
  447. }
  448.  
  449. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  450. {
  451.         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  452. }
  453.  
  454. static void i9xx_clock(int refclk, intel_clock_t *clock)
  455. {
  456.         clock->m = i9xx_dpll_compute_m(clock);
  457.         clock->p = clock->p1 * clock->p2;
  458.         clock->vco = refclk * clock->m / (clock->n + 2);
  459.         clock->dot = clock->vco / clock->p;
  460. }
  461.  
  462. /**
  463.  * Returns whether any output on the specified pipe is of the specified type
  464.  */
  465. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  466. {
  467.         struct drm_device *dev = crtc->dev;
  468.         struct intel_encoder *encoder;
  469.  
  470.         for_each_encoder_on_crtc(dev, crtc, encoder)
  471.                 if (encoder->type == type)
  472.                         return true;
  473.  
  474.         return false;
  475. }
  476.  
  477. #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
  478. /**
  479.  * Returns whether the given set of divisors are valid for a given refclk with
  480.  * the given connectors.
  481.  */
  482.  
  483. static bool intel_PLL_is_valid(struct drm_device *dev,
  484.                                const intel_limit_t *limit,
  485.                                const intel_clock_t *clock)
  486. {
  487.         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
  488.                 INTELPllInvalid("p1 out of range\n");
  489.         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
  490.                 INTELPllInvalid("p out of range\n");
  491.         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
  492.                 INTELPllInvalid("m2 out of range\n");
  493.         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
  494.                 INTELPllInvalid("m1 out of range\n");
  495.         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  496.                 INTELPllInvalid("m1 <= m2\n");
  497.         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
  498.                 INTELPllInvalid("m out of range\n");
  499.         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
  500.                 INTELPllInvalid("n out of range\n");
  501.         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  502.                 INTELPllInvalid("vco out of range\n");
  503.         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  504.          * connector, etc., rather than just a single range.
  505.          */
  506.         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  507.                 INTELPllInvalid("dot out of range\n");
  508.  
  509.         return true;
  510. }
  511.  
  512. static bool
  513. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  514.                     int target, int refclk, intel_clock_t *match_clock,
  515.                     intel_clock_t *best_clock)
  516. {
  517.         struct drm_device *dev = crtc->dev;
  518.         intel_clock_t clock;
  519.         int err = target;
  520.  
  521.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  522.                 /*
  523.                  * For LVDS just rely on its current settings for dual-channel.
  524.                  * We haven't figured out how to reliably set up different
  525.                  * single/dual channel state, if we even can.
  526.                  */
  527.                 if (intel_is_dual_link_lvds(dev))
  528.                         clock.p2 = limit->p2.p2_fast;
  529.                 else
  530.                         clock.p2 = limit->p2.p2_slow;
  531.         } else {
  532.                 if (target < limit->p2.dot_limit)
  533.                         clock.p2 = limit->p2.p2_slow;
  534.                 else
  535.                         clock.p2 = limit->p2.p2_fast;
  536.         }
  537.  
  538.         memset(best_clock, 0, sizeof(*best_clock));
  539.  
  540.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  541.              clock.m1++) {
  542.                 for (clock.m2 = limit->m2.min;
  543.                      clock.m2 <= limit->m2.max; clock.m2++) {
  544.                         if (clock.m2 >= clock.m1)
  545.                                 break;
  546.                         for (clock.n = limit->n.min;
  547.                              clock.n <= limit->n.max; clock.n++) {
  548.                                 for (clock.p1 = limit->p1.min;
  549.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  550.                                         int this_err;
  551.  
  552.                                         i9xx_clock(refclk, &clock);
  553.                                         if (!intel_PLL_is_valid(dev, limit,
  554.                                                                 &clock))
  555.                                                 continue;
  556.                                         if (match_clock &&
  557.                                             clock.p != match_clock->p)
  558.                                                 continue;
  559.  
  560.                                         this_err = abs(clock.dot - target);
  561.                                         if (this_err < err) {
  562.                                                 *best_clock = clock;
  563.                                                 err = this_err;
  564.                                         }
  565.                                 }
  566.                         }
  567.                 }
  568.         }
  569.  
  570.         return (err != target);
  571. }
  572.  
  573. static bool
  574. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  575.                    int target, int refclk, intel_clock_t *match_clock,
  576.                    intel_clock_t *best_clock)
  577. {
  578.         struct drm_device *dev = crtc->dev;
  579.         intel_clock_t clock;
  580.         int err = target;
  581.  
  582.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  583.                 /*
  584.                  * For LVDS just rely on its current settings for dual-channel.
  585.                  * We haven't figured out how to reliably set up different
  586.                  * single/dual channel state, if we even can.
  587.                  */
  588.                 if (intel_is_dual_link_lvds(dev))
  589.                         clock.p2 = limit->p2.p2_fast;
  590.                 else
  591.                         clock.p2 = limit->p2.p2_slow;
  592.         } else {
  593.                 if (target < limit->p2.dot_limit)
  594.                         clock.p2 = limit->p2.p2_slow;
  595.                 else
  596.                         clock.p2 = limit->p2.p2_fast;
  597.         }
  598.  
  599.         memset(best_clock, 0, sizeof(*best_clock));
  600.  
  601.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  602.              clock.m1++) {
  603.                 for (clock.m2 = limit->m2.min;
  604.                      clock.m2 <= limit->m2.max; clock.m2++) {
  605.                         for (clock.n = limit->n.min;
  606.                              clock.n <= limit->n.max; clock.n++) {
  607.                                 for (clock.p1 = limit->p1.min;
  608.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  609.                                         int this_err;
  610.  
  611.                                         pineview_clock(refclk, &clock);
  612.                                         if (!intel_PLL_is_valid(dev, limit,
  613.                                                                 &clock))
  614.                                                 continue;
  615.                                         if (match_clock &&
  616.                                             clock.p != match_clock->p)
  617.                                                 continue;
  618.  
  619.                                         this_err = abs(clock.dot - target);
  620.                                         if (this_err < err) {
  621.                                                 *best_clock = clock;
  622.                                                 err = this_err;
  623.                                         }
  624.                                 }
  625.                         }
  626.                 }
  627.         }
  628.  
  629.         return (err != target);
  630. }
  631.  
  632. static bool
  633. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  634.                         int target, int refclk, intel_clock_t *match_clock,
  635.                         intel_clock_t *best_clock)
  636. {
  637.         struct drm_device *dev = crtc->dev;
  638.         intel_clock_t clock;
  639.         int max_n;
  640.         bool found;
  641.         /* approximately equals target * 0.00585 */
  642.         int err_most = (target >> 8) + (target >> 9);
  643.         found = false;
  644.  
  645.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  646.                 if (intel_is_dual_link_lvds(dev))
  647.                         clock.p2 = limit->p2.p2_fast;
  648.                 else
  649.                         clock.p2 = limit->p2.p2_slow;
  650.         } else {
  651.                 if (target < limit->p2.dot_limit)
  652.                         clock.p2 = limit->p2.p2_slow;
  653.                 else
  654.                         clock.p2 = limit->p2.p2_fast;
  655.         }
  656.  
  657.         memset(best_clock, 0, sizeof(*best_clock));
  658.         max_n = limit->n.max;
  659.         /* based on hardware requirement, prefer smaller n to precision */
  660.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  661.                 /* based on hardware requirement, prefere larger m1,m2 */
  662.                 for (clock.m1 = limit->m1.max;
  663.                      clock.m1 >= limit->m1.min; clock.m1--) {
  664.                         for (clock.m2 = limit->m2.max;
  665.                              clock.m2 >= limit->m2.min; clock.m2--) {
  666.                                 for (clock.p1 = limit->p1.max;
  667.                                      clock.p1 >= limit->p1.min; clock.p1--) {
  668.                                         int this_err;
  669.  
  670.                                         i9xx_clock(refclk, &clock);
  671.                                         if (!intel_PLL_is_valid(dev, limit,
  672.                                                                 &clock))
  673.                                                 continue;
  674.  
  675.                                         this_err = abs(clock.dot - target);
  676.                                         if (this_err < err_most) {
  677.                                                 *best_clock = clock;
  678.                                                 err_most = this_err;
  679.                                                 max_n = clock.n;
  680.                                                 found = true;
  681.                                         }
  682.                                 }
  683.                         }
  684.                 }
  685.         }
  686.         return found;
  687. }
  688.  
  689. static bool
  690. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  691.                         int target, int refclk, intel_clock_t *match_clock,
  692.                         intel_clock_t *best_clock)
  693. {
  694.         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  695.         u32 m, n, fastclk;
  696.         u32 updrate, minupdate, p;
  697.         unsigned long bestppm, ppm, absppm;
  698.         int dotclk, flag;
  699.  
  700.         flag = 0;
  701.         dotclk = target * 1000;
  702.         bestppm = 1000000;
  703.         ppm = absppm = 0;
  704.         fastclk = dotclk / (2*100);
  705.         updrate = 0;
  706.         minupdate = 19200;
  707.         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  708.         bestm1 = bestm2 = bestp1 = bestp2 = 0;
  709.  
  710.         /* based on hardware requirement, prefer smaller n to precision */
  711.         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  712.                 updrate = refclk / n;
  713.                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  714.                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  715.                                 if (p2 > 10)
  716.                                         p2 = p2 - 1;
  717.                                 p = p1 * p2;
  718.                                 /* based on hardware requirement, prefer bigger m1,m2 values */
  719.                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  720.                                         m2 = (((2*(fastclk * p * n / m1 )) +
  721.                                                refclk) / (2*refclk));
  722.                                         m = m1 * m2;
  723.                                         vco = updrate * m;
  724.                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
  725.                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  726.                                                 absppm = (ppm > 0) ? ppm : (-ppm);
  727.                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  728.                                                         bestppm = 0;
  729.                                                         flag = 1;
  730.                                                 }
  731.                                                 if (absppm < bestppm - 10) {
  732.                                                         bestppm = absppm;
  733.                                                         flag = 1;
  734.                                                 }
  735.                                                 if (flag) {
  736.                                                         bestn = n;
  737.                                                         bestm1 = m1;
  738.                                                         bestm2 = m2;
  739.                                                         bestp1 = p1;
  740.                                                         bestp2 = p2;
  741.                                                         flag = 0;
  742.                                                 }
  743.                                         }
  744.                                 }
  745.                         }
  746.                 }
  747.         }
  748.         best_clock->n = bestn;
  749.         best_clock->m1 = bestm1;
  750.         best_clock->m2 = bestm2;
  751.         best_clock->p1 = bestp1;
  752.         best_clock->p2 = bestp2;
  753.  
  754.         return true;
  755. }
  756.  
  757. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  758.                                              enum pipe pipe)
  759. {
  760.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  761.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  762.  
  763.         return intel_crtc->config.cpu_transcoder;
  764. }
  765.  
  766. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  767. {
  768.         struct drm_i915_private *dev_priv = dev->dev_private;
  769.         u32 frame, frame_reg = PIPEFRAME(pipe);
  770.  
  771.         frame = I915_READ(frame_reg);
  772.  
  773.         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  774.                 DRM_DEBUG_KMS("vblank wait timed out\n");
  775. }
  776.  
  777. /**
  778.  * intel_wait_for_vblank - wait for vblank on a given pipe
  779.  * @dev: drm device
  780.  * @pipe: pipe to wait for
  781.  *
  782.  * Wait for vblank to occur on a given pipe.  Needed for various bits of
  783.  * mode setting code.
  784.  */
  785. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  786. {
  787.         struct drm_i915_private *dev_priv = dev->dev_private;
  788.         int pipestat_reg = PIPESTAT(pipe);
  789.  
  790.         if (INTEL_INFO(dev)->gen >= 5) {
  791.                 ironlake_wait_for_vblank(dev, pipe);
  792.                 return;
  793.         }
  794.  
  795.         /* Clear existing vblank status. Note this will clear any other
  796.          * sticky status fields as well.
  797.          *
  798.          * This races with i915_driver_irq_handler() with the result
  799.          * that either function could miss a vblank event.  Here it is not
  800.          * fatal, as we will either wait upon the next vblank interrupt or
  801.          * timeout.  Generally speaking intel_wait_for_vblank() is only
  802.          * called during modeset at which time the GPU should be idle and
  803.          * should *not* be performing page flips and thus not waiting on
  804.          * vblanks...
  805.          * Currently, the result of us stealing a vblank from the irq
  806.          * handler is that a single frame will be skipped during swapbuffers.
  807.          */
  808.         I915_WRITE(pipestat_reg,
  809.                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  810.  
  811.         /* Wait for vblank interrupt bit to set */
  812.         if (wait_for(I915_READ(pipestat_reg) &
  813.                      PIPE_VBLANK_INTERRUPT_STATUS,
  814.                      50))
  815.                 DRM_DEBUG_KMS("vblank wait timed out\n");
  816. }
  817.  
  818. /*
  819.  * intel_wait_for_pipe_off - wait for pipe to turn off
  820.  * @dev: drm device
  821.  * @pipe: pipe to wait for
  822.  *
  823.  * After disabling a pipe, we can't wait for vblank in the usual way,
  824.  * spinning on the vblank interrupt status bit, since we won't actually
  825.  * see an interrupt when the pipe is disabled.
  826.  *
  827.  * On Gen4 and above:
  828.  *   wait for the pipe register state bit to turn off
  829.  *
  830.  * Otherwise:
  831.  *   wait for the display line value to settle (it usually
  832.  *   ends up stopping at the start of the next frame).
  833.  *
  834.  */
  835. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  836. {
  837.         struct drm_i915_private *dev_priv = dev->dev_private;
  838.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  839.                                                                       pipe);
  840.  
  841.         if (INTEL_INFO(dev)->gen >= 4) {
  842.                 int reg = PIPECONF(cpu_transcoder);
  843.  
  844.                 /* Wait for the Pipe State to go off */
  845.                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  846.                              100))
  847.                         WARN(1, "pipe_off wait timed out\n");
  848.         } else {
  849.                 u32 last_line, line_mask;
  850.                 int reg = PIPEDSL(pipe);
  851.                 unsigned long timeout = GetTimerTicks() + msecs_to_jiffies(100);
  852.  
  853.                 if (IS_GEN2(dev))
  854.                         line_mask = DSL_LINEMASK_GEN2;
  855.                 else
  856.                         line_mask = DSL_LINEMASK_GEN3;
  857.  
  858.                 /* Wait for the display line to settle */
  859.                 do {
  860.                         last_line = I915_READ(reg) & line_mask;
  861.                         mdelay(5);
  862.                 } while (((I915_READ(reg) & line_mask) != last_line) &&
  863.                          time_after(timeout, GetTimerTicks()));
  864.                 if (time_after(GetTimerTicks(), timeout))
  865.                         WARN(1, "pipe_off wait timed out\n");
  866.         }
  867. }
  868.  
  869. /*
  870.  * ibx_digital_port_connected - is the specified port connected?
  871.  * @dev_priv: i915 private structure
  872.  * @port: the port to test
  873.  *
  874.  * Returns true if @port is connected, false otherwise.
  875.  */
  876. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  877.                                 struct intel_digital_port *port)
  878. {
  879.         u32 bit;
  880.  
  881.         if (HAS_PCH_IBX(dev_priv->dev)) {
  882.                 switch(port->port) {
  883.                 case PORT_B:
  884.                         bit = SDE_PORTB_HOTPLUG;
  885.                         break;
  886.                 case PORT_C:
  887.                         bit = SDE_PORTC_HOTPLUG;
  888.                         break;
  889.                 case PORT_D:
  890.                         bit = SDE_PORTD_HOTPLUG;
  891.                         break;
  892.                 default:
  893.                         return true;
  894.                 }
  895.         } else {
  896.                 switch(port->port) {
  897.                 case PORT_B:
  898.                         bit = SDE_PORTB_HOTPLUG_CPT;
  899.                         break;
  900.                 case PORT_C:
  901.                         bit = SDE_PORTC_HOTPLUG_CPT;
  902.                         break;
  903.                 case PORT_D:
  904.                         bit = SDE_PORTD_HOTPLUG_CPT;
  905.                         break;
  906.                 default:
  907.                         return true;
  908.                 }
  909.         }
  910.  
  911.         return I915_READ(SDEISR) & bit;
  912. }
  913.  
  914. static const char *state_string(bool enabled)
  915. {
  916.         return enabled ? "on" : "off";
  917. }
  918.  
  919. /* Only for pre-ILK configs */
  920. void assert_pll(struct drm_i915_private *dev_priv,
  921.                        enum pipe pipe, bool state)
  922. {
  923.         int reg;
  924.         u32 val;
  925.         bool cur_state;
  926.  
  927.         reg = DPLL(pipe);
  928.         val = I915_READ(reg);
  929.         cur_state = !!(val & DPLL_VCO_ENABLE);
  930.         WARN(cur_state != state,
  931.              "PLL state assertion failure (expected %s, current %s)\n",
  932.              state_string(state), state_string(cur_state));
  933. }
  934.  
  935. struct intel_shared_dpll *
  936. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  937. {
  938.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  939.  
  940.         if (crtc->config.shared_dpll < 0)
  941.                 return NULL;
  942.  
  943.         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  944. }
  945.  
  946. /* For ILK+ */
  947. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  948.                                struct intel_shared_dpll *pll,
  949.                            bool state)
  950. {
  951.         bool cur_state;
  952.         struct intel_dpll_hw_state hw_state;
  953.  
  954.         if (HAS_PCH_LPT(dev_priv->dev)) {
  955.                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  956.                 return;
  957.         }
  958.  
  959.         if (WARN (!pll,
  960.                   "asserting DPLL %s with no DPLL\n", state_string(state)))
  961.                 return;
  962.  
  963.         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  964.         WARN(cur_state != state,
  965.              "%s assertion failure (expected %s, current %s)\n",
  966.              pll->name, state_string(state), state_string(cur_state));
  967. }
  968.  
  969. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  970.                           enum pipe pipe, bool state)
  971. {
  972.         int reg;
  973.         u32 val;
  974.         bool cur_state;
  975.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  976.                                                                       pipe);
  977.  
  978.         if (HAS_DDI(dev_priv->dev)) {
  979.                 /* DDI does not have a specific FDI_TX register */
  980.                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  981.                 val = I915_READ(reg);
  982.                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  983.         } else {
  984.         reg = FDI_TX_CTL(pipe);
  985.         val = I915_READ(reg);
  986.         cur_state = !!(val & FDI_TX_ENABLE);
  987.         }
  988.         WARN(cur_state != state,
  989.              "FDI TX state assertion failure (expected %s, current %s)\n",
  990.              state_string(state), state_string(cur_state));
  991. }
  992. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  993. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  994.  
  995. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  996.                           enum pipe pipe, bool state)
  997. {
  998.         int reg;
  999.         u32 val;
  1000.         bool cur_state;
  1001.  
  1002.         reg = FDI_RX_CTL(pipe);
  1003.         val = I915_READ(reg);
  1004.         cur_state = !!(val & FDI_RX_ENABLE);
  1005.         WARN(cur_state != state,
  1006.              "FDI RX state assertion failure (expected %s, current %s)\n",
  1007.              state_string(state), state_string(cur_state));
  1008. }
  1009. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1010. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1011.  
  1012. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1013.                                       enum pipe pipe)
  1014. {
  1015.         int reg;
  1016.         u32 val;
  1017.  
  1018.         /* ILK FDI PLL is always enabled */
  1019.         if (dev_priv->info->gen == 5)
  1020.                 return;
  1021.  
  1022.         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1023.         if (HAS_DDI(dev_priv->dev))
  1024.                 return;
  1025.  
  1026.         reg = FDI_TX_CTL(pipe);
  1027.         val = I915_READ(reg);
  1028.         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1029. }
  1030.  
  1031. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  1032.                        enum pipe pipe, bool state)
  1033. {
  1034.         int reg;
  1035.         u32 val;
  1036.         bool cur_state;
  1037.  
  1038.         reg = FDI_RX_CTL(pipe);
  1039.         val = I915_READ(reg);
  1040.         cur_state = !!(val & FDI_RX_PLL_ENABLE);
  1041.         WARN(cur_state != state,
  1042.              "FDI RX PLL assertion failure (expected %s, current %s)\n",
  1043.              state_string(state), state_string(cur_state));
  1044. }
  1045.  
  1046. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1047.                                   enum pipe pipe)
  1048. {
  1049.         int pp_reg, lvds_reg;
  1050.         u32 val;
  1051.         enum pipe panel_pipe = PIPE_A;
  1052.         bool locked = true;
  1053.  
  1054.         if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1055.                 pp_reg = PCH_PP_CONTROL;
  1056.                 lvds_reg = PCH_LVDS;
  1057.         } else {
  1058.                 pp_reg = PP_CONTROL;
  1059.                 lvds_reg = LVDS;
  1060.         }
  1061.  
  1062.         val = I915_READ(pp_reg);
  1063.         if (!(val & PANEL_POWER_ON) ||
  1064.             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1065.                 locked = false;
  1066.  
  1067.         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1068.                 panel_pipe = PIPE_B;
  1069.  
  1070.         WARN(panel_pipe == pipe && locked,
  1071.              "panel assertion failure, pipe %c regs locked\n",
  1072.              pipe_name(pipe));
  1073. }
  1074.  
  1075. void assert_pipe(struct drm_i915_private *dev_priv,
  1076.                         enum pipe pipe, bool state)
  1077. {
  1078.         int reg;
  1079.         u32 val;
  1080.         bool cur_state;
  1081.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1082.                                                                       pipe);
  1083.  
  1084.         /* if we need the pipe A quirk it must be always on */
  1085.         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1086.                 state = true;
  1087.  
  1088.         if (!intel_display_power_enabled(dev_priv->dev,
  1089.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  1090.                 cur_state = false;
  1091.         } else {
  1092.         reg = PIPECONF(cpu_transcoder);
  1093.         val = I915_READ(reg);
  1094.         cur_state = !!(val & PIPECONF_ENABLE);
  1095.         }
  1096.  
  1097.         WARN(cur_state != state,
  1098.              "pipe %c assertion failure (expected %s, current %s)\n",
  1099.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1100. }
  1101.  
  1102. static void assert_plane(struct drm_i915_private *dev_priv,
  1103.                          enum plane plane, bool state)
  1104. {
  1105.         int reg;
  1106.         u32 val;
  1107.         bool cur_state;
  1108.  
  1109.         reg = DSPCNTR(plane);
  1110.         val = I915_READ(reg);
  1111.         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1112.         WARN(cur_state != state,
  1113.              "plane %c assertion failure (expected %s, current %s)\n",
  1114.              plane_name(plane), state_string(state), state_string(cur_state));
  1115. }
  1116.  
  1117. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1118. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1119.  
  1120. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1121.                                    enum pipe pipe)
  1122. {
  1123.         struct drm_device *dev = dev_priv->dev;
  1124.         int reg, i;
  1125.         u32 val;
  1126.         int cur_pipe;
  1127.  
  1128.         /* Primary planes are fixed to pipes on gen4+ */
  1129.         if (INTEL_INFO(dev)->gen >= 4) {
  1130.                 reg = DSPCNTR(pipe);
  1131.                 val = I915_READ(reg);
  1132.                 WARN((val & DISPLAY_PLANE_ENABLE),
  1133.                      "plane %c assertion failure, should be disabled but not\n",
  1134.                      plane_name(pipe));
  1135.                 return;
  1136.         }
  1137.  
  1138.         /* Need to check both planes against the pipe */
  1139.         for_each_pipe(i) {
  1140.                 reg = DSPCNTR(i);
  1141.                 val = I915_READ(reg);
  1142.                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1143.                         DISPPLANE_SEL_PIPE_SHIFT;
  1144.                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1145.                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1146.                      plane_name(i), pipe_name(pipe));
  1147.         }
  1148. }
  1149.  
  1150. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1151.                                     enum pipe pipe)
  1152. {
  1153.         struct drm_device *dev = dev_priv->dev;
  1154.         int reg, i;
  1155.         u32 val;
  1156.  
  1157.         if (IS_VALLEYVIEW(dev)) {
  1158.         for (i = 0; i < dev_priv->num_plane; i++) {
  1159.                 reg = SPCNTR(pipe, i);
  1160.                 val = I915_READ(reg);
  1161.                 WARN((val & SP_ENABLE),
  1162.                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1163.                              sprite_name(pipe, i), pipe_name(pipe));
  1164.                 }
  1165.         } else if (INTEL_INFO(dev)->gen >= 7) {
  1166.                 reg = SPRCTL(pipe);
  1167.                 val = I915_READ(reg);
  1168.                 WARN((val & SPRITE_ENABLE),
  1169.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1170.                      plane_name(pipe), pipe_name(pipe));
  1171.         } else if (INTEL_INFO(dev)->gen >= 5) {
  1172.                 reg = DVSCNTR(pipe);
  1173.                 val = I915_READ(reg);
  1174.                 WARN((val & DVS_ENABLE),
  1175.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1176.                      plane_name(pipe), pipe_name(pipe));
  1177.         }
  1178. }
  1179.  
  1180. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1181. {
  1182.         u32 val;
  1183.         bool enabled;
  1184.  
  1185.         if (HAS_PCH_LPT(dev_priv->dev)) {
  1186.                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1187.                 return;
  1188.         }
  1189.  
  1190.         val = I915_READ(PCH_DREF_CONTROL);
  1191.         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1192.                             DREF_SUPERSPREAD_SOURCE_MASK));
  1193.         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1194. }
  1195.  
  1196. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1197.                                        enum pipe pipe)
  1198. {
  1199.         int reg;
  1200.         u32 val;
  1201.         bool enabled;
  1202.  
  1203.         reg = PCH_TRANSCONF(pipe);
  1204.         val = I915_READ(reg);
  1205.         enabled = !!(val & TRANS_ENABLE);
  1206.         WARN(enabled,
  1207.              "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1208.              pipe_name(pipe));
  1209. }
  1210.  
  1211. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1212.                             enum pipe pipe, u32 port_sel, u32 val)
  1213. {
  1214.         if ((val & DP_PORT_EN) == 0)
  1215.                 return false;
  1216.  
  1217.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1218.                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1219.                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1220.                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1221.                         return false;
  1222.         } else {
  1223.                 if ((val & DP_PIPE_MASK) != (pipe << 30))
  1224.                         return false;
  1225.         }
  1226.         return true;
  1227. }
  1228.  
  1229. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1230.                               enum pipe pipe, u32 val)
  1231. {
  1232.         if ((val & SDVO_ENABLE) == 0)
  1233.                 return false;
  1234.  
  1235.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1236.                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1237.                         return false;
  1238.         } else {
  1239.                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1240.                         return false;
  1241.         }
  1242.         return true;
  1243. }
  1244.  
  1245. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1246.                               enum pipe pipe, u32 val)
  1247. {
  1248.         if ((val & LVDS_PORT_EN) == 0)
  1249.                 return false;
  1250.  
  1251.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1252.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1253.                         return false;
  1254.         } else {
  1255.                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1256.                         return false;
  1257.         }
  1258.         return true;
  1259. }
  1260.  
  1261. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1262.                               enum pipe pipe, u32 val)
  1263. {
  1264.         if ((val & ADPA_DAC_ENABLE) == 0)
  1265.                 return false;
  1266.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1267.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1268.                         return false;
  1269.         } else {
  1270.                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1271.                         return false;
  1272.         }
  1273.         return true;
  1274. }
  1275.  
  1276. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1277.                                    enum pipe pipe, int reg, u32 port_sel)
  1278. {
  1279.         u32 val = I915_READ(reg);
  1280.         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1281.              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1282.              reg, pipe_name(pipe));
  1283.  
  1284.         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1285.              && (val & DP_PIPEB_SELECT),
  1286.              "IBX PCH dp port still using transcoder B\n");
  1287. }
  1288.  
  1289. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1290.                                      enum pipe pipe, int reg)
  1291. {
  1292.         u32 val = I915_READ(reg);
  1293.         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1294.              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1295.              reg, pipe_name(pipe));
  1296.  
  1297.         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1298.              && (val & SDVO_PIPE_B_SELECT),
  1299.              "IBX PCH hdmi port still using transcoder B\n");
  1300. }
  1301.  
  1302. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1303.                                       enum pipe pipe)
  1304. {
  1305.         int reg;
  1306.         u32 val;
  1307.  
  1308.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1309.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1310.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1311.  
  1312.         reg = PCH_ADPA;
  1313.         val = I915_READ(reg);
  1314.         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1315.              "PCH VGA enabled on transcoder %c, should be disabled\n",
  1316.              pipe_name(pipe));
  1317.  
  1318.         reg = PCH_LVDS;
  1319.         val = I915_READ(reg);
  1320.         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1321.              "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1322.              pipe_name(pipe));
  1323.  
  1324.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1325.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1326.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1327. }
  1328.  
  1329. static void vlv_enable_pll(struct intel_crtc *crtc)
  1330. {
  1331.         struct drm_device *dev = crtc->base.dev;
  1332.         struct drm_i915_private *dev_priv = dev->dev_private;
  1333.         int reg = DPLL(crtc->pipe);
  1334.         u32 dpll = crtc->config.dpll_hw_state.dpll;
  1335.  
  1336.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1337.  
  1338.     /* No really, not for ILK+ */
  1339.         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1340.  
  1341.     /* PLL is protected by panel, make sure we can write it */
  1342.     if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1343.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1344.  
  1345.         I915_WRITE(reg, dpll);
  1346.         POSTING_READ(reg);
  1347.         udelay(150);
  1348.  
  1349.         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1350.                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1351.  
  1352.         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1353.         POSTING_READ(DPLL_MD(crtc->pipe));
  1354.  
  1355.         /* We do this three times for luck */
  1356.         I915_WRITE(reg, dpll);
  1357.         POSTING_READ(reg);
  1358.         udelay(150); /* wait for warmup */
  1359.         I915_WRITE(reg, dpll);
  1360.         POSTING_READ(reg);
  1361.         udelay(150); /* wait for warmup */
  1362.         I915_WRITE(reg, dpll);
  1363.         POSTING_READ(reg);
  1364.         udelay(150); /* wait for warmup */
  1365. }
  1366.  
  1367. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1368. {
  1369.         struct drm_device *dev = crtc->base.dev;
  1370.         struct drm_i915_private *dev_priv = dev->dev_private;
  1371.         int reg = DPLL(crtc->pipe);
  1372.         u32 dpll = crtc->config.dpll_hw_state.dpll;
  1373.  
  1374.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1375.  
  1376.         /* No really, not for ILK+ */
  1377.         BUG_ON(dev_priv->info->gen >= 5);
  1378.  
  1379.         /* PLL is protected by panel, make sure we can write it */
  1380.         if (IS_MOBILE(dev) && !IS_I830(dev))
  1381.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1382.  
  1383.         I915_WRITE(reg, dpll);
  1384.  
  1385.         /* Wait for the clocks to stabilize. */
  1386.         POSTING_READ(reg);
  1387.         udelay(150);
  1388.  
  1389.         if (INTEL_INFO(dev)->gen >= 4) {
  1390.                 I915_WRITE(DPLL_MD(crtc->pipe),
  1391.                            crtc->config.dpll_hw_state.dpll_md);
  1392.         } else {
  1393.                 /* The pixel multiplier can only be updated once the
  1394.                  * DPLL is enabled and the clocks are stable.
  1395.                  *
  1396.                  * So write it again.
  1397.                  */
  1398.                 I915_WRITE(reg, dpll);
  1399.         }
  1400.  
  1401.     /* We do this three times for luck */
  1402.         I915_WRITE(reg, dpll);
  1403.     POSTING_READ(reg);
  1404.     udelay(150); /* wait for warmup */
  1405.         I915_WRITE(reg, dpll);
  1406.     POSTING_READ(reg);
  1407.     udelay(150); /* wait for warmup */
  1408.         I915_WRITE(reg, dpll);
  1409.     POSTING_READ(reg);
  1410.     udelay(150); /* wait for warmup */
  1411. }
  1412.  
  1413. /**
  1414.  * i9xx_disable_pll - disable a PLL
  1415.  * @dev_priv: i915 private structure
  1416.  * @pipe: pipe PLL to disable
  1417.  *
  1418.  * Disable the PLL for @pipe, making sure the pipe is off first.
  1419.  *
  1420.  * Note!  This is for pre-ILK only.
  1421.  */
  1422. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1423. {
  1424.         /* Don't disable pipe A or pipe A PLLs if needed */
  1425.         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1426.                 return;
  1427.  
  1428.         /* Make sure the pipe isn't still relying on us */
  1429.         assert_pipe_disabled(dev_priv, pipe);
  1430.  
  1431.         I915_WRITE(DPLL(pipe), 0);
  1432.         POSTING_READ(DPLL(pipe));
  1433. }
  1434.  
  1435. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1436. {
  1437.         u32 val = 0;
  1438.  
  1439.         /* Make sure the pipe isn't still relying on us */
  1440.         assert_pipe_disabled(dev_priv, pipe);
  1441.  
  1442.         /* Leave integrated clock source enabled */
  1443.         if (pipe == PIPE_B)
  1444.                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
  1445.         I915_WRITE(DPLL(pipe), val);
  1446.         POSTING_READ(DPLL(pipe));
  1447. }
  1448.  
  1449. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1450. {
  1451.         u32 port_mask;
  1452.  
  1453.         if (!port)
  1454.                 port_mask = DPLL_PORTB_READY_MASK;
  1455.         else
  1456.                 port_mask = DPLL_PORTC_READY_MASK;
  1457.  
  1458.         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1459.                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1460.                      'B' + port, I915_READ(DPLL(0)));
  1461. }
  1462.  
  1463. /**
  1464.  * ironlake_enable_shared_dpll - enable PCH PLL
  1465.  * @dev_priv: i915 private structure
  1466.  * @pipe: pipe PLL to enable
  1467.  *
  1468.  * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1469.  * drives the transcoder clock.
  1470.  */
  1471. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1472. {
  1473.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1474.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1475.  
  1476.         /* PCH PLLs only available on ILK, SNB and IVB */
  1477.         BUG_ON(dev_priv->info->gen < 5);
  1478.         if (WARN_ON(pll == NULL))
  1479.                 return;
  1480.  
  1481.         if (WARN_ON(pll->refcount == 0))
  1482.                 return;
  1483.  
  1484.         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1485.                       pll->name, pll->active, pll->on,
  1486.                       crtc->base.base.id);
  1487.  
  1488.         if (pll->active++) {
  1489.                 WARN_ON(!pll->on);
  1490.                 assert_shared_dpll_enabled(dev_priv, pll);
  1491.                 return;
  1492.         }
  1493.         WARN_ON(pll->on);
  1494.  
  1495.         DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1496.         pll->enable(dev_priv, pll);
  1497.         pll->on = true;
  1498. }
  1499.  
  1500. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1501. {
  1502.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1503.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1504.  
  1505.         /* PCH only available on ILK+ */
  1506.         BUG_ON(dev_priv->info->gen < 5);
  1507.         if (WARN_ON(pll == NULL))
  1508.                return;
  1509.  
  1510.         if (WARN_ON(pll->refcount == 0))
  1511.                 return;
  1512.  
  1513.         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1514.                       pll->name, pll->active, pll->on,
  1515.                       crtc->base.base.id);
  1516.  
  1517.         if (WARN_ON(pll->active == 0)) {
  1518.                 assert_shared_dpll_disabled(dev_priv, pll);
  1519.                 return;
  1520.         }
  1521.  
  1522.         assert_shared_dpll_enabled(dev_priv, pll);
  1523.         WARN_ON(!pll->on);
  1524.         if (--pll->active)
  1525.                 return;
  1526.  
  1527.         DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1528.         pll->disable(dev_priv, pll);
  1529.         pll->on = false;
  1530. }
  1531.  
  1532. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1533.                                     enum pipe pipe)
  1534. {
  1535.         struct drm_device *dev = dev_priv->dev;
  1536.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1537.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1538.         uint32_t reg, val, pipeconf_val;
  1539.  
  1540.         /* PCH only available on ILK+ */
  1541.         BUG_ON(dev_priv->info->gen < 5);
  1542.  
  1543.         /* Make sure PCH DPLL is enabled */
  1544.         assert_shared_dpll_enabled(dev_priv,
  1545.                                    intel_crtc_to_shared_dpll(intel_crtc));
  1546.  
  1547.         /* FDI must be feeding us bits for PCH ports */
  1548.         assert_fdi_tx_enabled(dev_priv, pipe);
  1549.         assert_fdi_rx_enabled(dev_priv, pipe);
  1550.  
  1551.         if (HAS_PCH_CPT(dev)) {
  1552.                 /* Workaround: Set the timing override bit before enabling the
  1553.                  * pch transcoder. */
  1554.                 reg = TRANS_CHICKEN2(pipe);
  1555.                 val = I915_READ(reg);
  1556.                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1557.                 I915_WRITE(reg, val);
  1558.         }
  1559.  
  1560.         reg = PCH_TRANSCONF(pipe);
  1561.         val = I915_READ(reg);
  1562.         pipeconf_val = I915_READ(PIPECONF(pipe));
  1563.  
  1564.         if (HAS_PCH_IBX(dev_priv->dev)) {
  1565.                 /*
  1566.                  * make the BPC in transcoder be consistent with
  1567.                  * that in pipeconf reg.
  1568.                  */
  1569.                 val &= ~PIPECONF_BPC_MASK;
  1570.                 val |= pipeconf_val & PIPECONF_BPC_MASK;
  1571.         }
  1572.  
  1573.         val &= ~TRANS_INTERLACE_MASK;
  1574.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1575.                 if (HAS_PCH_IBX(dev_priv->dev) &&
  1576.                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1577.                         val |= TRANS_LEGACY_INTERLACED_ILK;
  1578.                 else
  1579.                         val |= TRANS_INTERLACED;
  1580.         else
  1581.                 val |= TRANS_PROGRESSIVE;
  1582.  
  1583.         I915_WRITE(reg, val | TRANS_ENABLE);
  1584.         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1585.                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1586. }
  1587.  
  1588. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1589.                                       enum transcoder cpu_transcoder)
  1590. {
  1591.         u32 val, pipeconf_val;
  1592.  
  1593.         /* PCH only available on ILK+ */
  1594.         BUG_ON(dev_priv->info->gen < 5);
  1595.  
  1596.         /* FDI must be feeding us bits for PCH ports */
  1597.         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1598.         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1599.  
  1600.         /* Workaround: set timing override bit. */
  1601.         val = I915_READ(_TRANSA_CHICKEN2);
  1602.         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1603.         I915_WRITE(_TRANSA_CHICKEN2, val);
  1604.  
  1605.         val = TRANS_ENABLE;
  1606.         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1607.  
  1608.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1609.             PIPECONF_INTERLACED_ILK)
  1610.                 val |= TRANS_INTERLACED;
  1611.         else
  1612.                 val |= TRANS_PROGRESSIVE;
  1613.  
  1614.         I915_WRITE(LPT_TRANSCONF, val);
  1615.         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1616.                 DRM_ERROR("Failed to enable PCH transcoder\n");
  1617. }
  1618.  
  1619. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1620.                                      enum pipe pipe)
  1621. {
  1622.         struct drm_device *dev = dev_priv->dev;
  1623.         uint32_t reg, val;
  1624.  
  1625.         /* FDI relies on the transcoder */
  1626.         assert_fdi_tx_disabled(dev_priv, pipe);
  1627.         assert_fdi_rx_disabled(dev_priv, pipe);
  1628.  
  1629.         /* Ports must be off as well */
  1630.         assert_pch_ports_disabled(dev_priv, pipe);
  1631.  
  1632.         reg = PCH_TRANSCONF(pipe);
  1633.         val = I915_READ(reg);
  1634.         val &= ~TRANS_ENABLE;
  1635.         I915_WRITE(reg, val);
  1636.         /* wait for PCH transcoder off, transcoder state */
  1637.         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1638.                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1639.  
  1640.         if (!HAS_PCH_IBX(dev)) {
  1641.                 /* Workaround: Clear the timing override chicken bit again. */
  1642.                 reg = TRANS_CHICKEN2(pipe);
  1643.                 val = I915_READ(reg);
  1644.                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1645.                 I915_WRITE(reg, val);
  1646.         }
  1647. }
  1648.  
  1649. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1650. {
  1651.         u32 val;
  1652.  
  1653.         val = I915_READ(LPT_TRANSCONF);
  1654.         val &= ~TRANS_ENABLE;
  1655.         I915_WRITE(LPT_TRANSCONF, val);
  1656.         /* wait for PCH transcoder off, transcoder state */
  1657.         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1658.                 DRM_ERROR("Failed to disable PCH transcoder\n");
  1659.  
  1660.         /* Workaround: clear timing override bit. */
  1661.         val = I915_READ(_TRANSA_CHICKEN2);
  1662.         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1663.         I915_WRITE(_TRANSA_CHICKEN2, val);
  1664. }
  1665.  
  1666. /**
  1667.  * intel_enable_pipe - enable a pipe, asserting requirements
  1668.  * @dev_priv: i915 private structure
  1669.  * @pipe: pipe to enable
  1670.  * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1671.  *
  1672.  * Enable @pipe, making sure that various hardware specific requirements
  1673.  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1674.  *
  1675.  * @pipe should be %PIPE_A or %PIPE_B.
  1676.  *
  1677.  * Will wait until the pipe is actually running (i.e. first vblank) before
  1678.  * returning.
  1679.  */
  1680. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1681.                               bool pch_port)
  1682. {
  1683.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1684.                                                                       pipe);
  1685.         enum pipe pch_transcoder;
  1686.         int reg;
  1687.         u32 val;
  1688.  
  1689.         assert_planes_disabled(dev_priv, pipe);
  1690.         assert_sprites_disabled(dev_priv, pipe);
  1691.  
  1692.         if (HAS_PCH_LPT(dev_priv->dev))
  1693.                 pch_transcoder = TRANSCODER_A;
  1694.         else
  1695.                 pch_transcoder = pipe;
  1696.  
  1697.         /*
  1698.          * A pipe without a PLL won't actually be able to drive bits from
  1699.          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
  1700.          * need the check.
  1701.          */
  1702.         if (!HAS_PCH_SPLIT(dev_priv->dev))
  1703.                 assert_pll_enabled(dev_priv, pipe);
  1704.         else {
  1705.                 if (pch_port) {
  1706.                         /* if driving the PCH, we need FDI enabled */
  1707.                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1708.                         assert_fdi_tx_pll_enabled(dev_priv,
  1709.                                                   (enum pipe) cpu_transcoder);
  1710.                 }
  1711.                 /* FIXME: assert CPU port conditions for SNB+ */
  1712.         }
  1713.  
  1714.         reg = PIPECONF(cpu_transcoder);
  1715.         val = I915_READ(reg);
  1716.         if (val & PIPECONF_ENABLE)
  1717.                 return;
  1718.  
  1719.         I915_WRITE(reg, val | PIPECONF_ENABLE);
  1720.         intel_wait_for_vblank(dev_priv->dev, pipe);
  1721. }
  1722.  
  1723. /**
  1724.  * intel_disable_pipe - disable a pipe, asserting requirements
  1725.  * @dev_priv: i915 private structure
  1726.  * @pipe: pipe to disable
  1727.  *
  1728.  * Disable @pipe, making sure that various hardware specific requirements
  1729.  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1730.  *
  1731.  * @pipe should be %PIPE_A or %PIPE_B.
  1732.  *
  1733.  * Will wait until the pipe has shut down before returning.
  1734.  */
  1735. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1736.                                enum pipe pipe)
  1737. {
  1738.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1739.                                                                       pipe);
  1740.         int reg;
  1741.         u32 val;
  1742.  
  1743.     /*
  1744.          * Make sure planes won't keep trying to pump pixels to us,
  1745.          * or we might hang the display.
  1746.          */
  1747.         assert_planes_disabled(dev_priv, pipe);
  1748.         assert_sprites_disabled(dev_priv, pipe);
  1749.  
  1750.         /* Don't disable pipe A or pipe A PLLs if needed */
  1751.         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1752.                 return;
  1753.  
  1754.         reg = PIPECONF(cpu_transcoder);
  1755.         val = I915_READ(reg);
  1756.         if ((val & PIPECONF_ENABLE) == 0)
  1757.                 return;
  1758.  
  1759.         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1760.         intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1761. }
  1762.  
  1763. /*
  1764.  * Plane regs are double buffered, going from enabled->disabled needs a
  1765.  * trigger in order to latch.  The display address reg provides this.
  1766.  */
  1767. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1768.                                       enum plane plane)
  1769. {
  1770.         if (dev_priv->info->gen >= 4)
  1771.                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1772.         else
  1773.         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1774. }
  1775.  
  1776. /**
  1777.  * intel_enable_plane - enable a display plane on a given pipe
  1778.  * @dev_priv: i915 private structure
  1779.  * @plane: plane to enable
  1780.  * @pipe: pipe being fed
  1781.  *
  1782.  * Enable @plane on @pipe, making sure that @pipe is running first.
  1783.  */
  1784. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1785.                                enum plane plane, enum pipe pipe)
  1786. {
  1787.         int reg;
  1788.         u32 val;
  1789.  
  1790.         /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1791.         assert_pipe_enabled(dev_priv, pipe);
  1792.  
  1793.         reg = DSPCNTR(plane);
  1794.         val = I915_READ(reg);
  1795.         if (val & DISPLAY_PLANE_ENABLE)
  1796.                 return;
  1797.  
  1798.         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1799.         intel_flush_display_plane(dev_priv, plane);
  1800.         intel_wait_for_vblank(dev_priv->dev, pipe);
  1801. }
  1802.  
  1803. /**
  1804.  * intel_disable_plane - disable a display plane
  1805.  * @dev_priv: i915 private structure
  1806.  * @plane: plane to disable
  1807.  * @pipe: pipe consuming the data
  1808.  *
  1809.  * Disable @plane; should be an independent operation.
  1810.  */
  1811. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1812.                                 enum plane plane, enum pipe pipe)
  1813. {
  1814.         int reg;
  1815.         u32 val;
  1816.  
  1817.         reg = DSPCNTR(plane);
  1818.         val = I915_READ(reg);
  1819.         if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1820.                 return;
  1821.  
  1822.         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1823.         intel_flush_display_plane(dev_priv, plane);
  1824.     intel_wait_for_vblank(dev_priv->dev, pipe);
  1825. }
  1826.  
  1827. static bool need_vtd_wa(struct drm_device *dev)
  1828. {
  1829. #ifdef CONFIG_INTEL_IOMMU
  1830.         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1831.                 return true;
  1832. #endif
  1833.         return false;
  1834. }
  1835.  
  1836. int
  1837. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1838.                            struct drm_i915_gem_object *obj,
  1839.                            struct intel_ring_buffer *pipelined)
  1840. {
  1841.         struct drm_i915_private *dev_priv = dev->dev_private;
  1842.         u32 alignment;
  1843.         int ret;
  1844.  
  1845.         switch (obj->tiling_mode) {
  1846.         case I915_TILING_NONE:
  1847.                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1848.                         alignment = 128 * 1024;
  1849.                 else if (INTEL_INFO(dev)->gen >= 4)
  1850.                         alignment = 4 * 1024;
  1851.                 else
  1852.                         alignment = 64 * 1024;
  1853.                 break;
  1854.         case I915_TILING_X:
  1855.                 /* pin() will align the object as required by fence */
  1856.                 alignment = 0;
  1857.                 break;
  1858.         case I915_TILING_Y:
  1859.                 /* Despite that we check this in framebuffer_init userspace can
  1860.                  * screw us over and change the tiling after the fact. Only
  1861.                  * pinned buffers can't change their tiling. */
  1862.                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1863.                 return -EINVAL;
  1864.         default:
  1865.                 BUG();
  1866.         }
  1867.  
  1868.         /* Note that the w/a also requires 64 PTE of padding following the
  1869.          * bo. We currently fill all unused PTE with the shadow page and so
  1870.          * we should always have valid PTE following the scanout preventing
  1871.          * the VT-d warning.
  1872.          */
  1873.         if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1874.                 alignment = 256 * 1024;
  1875.  
  1876.         dev_priv->mm.interruptible = false;
  1877.         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1878.         if (ret)
  1879.                 goto err_interruptible;
  1880.  
  1881.         /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1882.          * fence, whereas 965+ only requires a fence if using
  1883.          * framebuffer compression.  For simplicity, we always install
  1884.          * a fence as the cost is not that onerous.
  1885.          */
  1886.         ret = i915_gem_object_get_fence(obj);
  1887.         if (ret)
  1888.                 goto err_unpin;
  1889.  
  1890.         i915_gem_object_pin_fence(obj);
  1891.  
  1892.         dev_priv->mm.interruptible = true;
  1893.         return 0;
  1894.  
  1895. err_unpin:
  1896.         i915_gem_object_unpin_from_display_plane(obj);
  1897. err_interruptible:
  1898.         dev_priv->mm.interruptible = true;
  1899.         return ret;
  1900. }
  1901.  
  1902. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1903. {
  1904. //      i915_gem_object_unpin_fence(obj);
  1905. //      i915_gem_object_unpin(obj);
  1906. }
  1907.  
  1908. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1909.  * is assumed to be a power-of-two. */
  1910. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1911.                                              unsigned int tiling_mode,
  1912.                                              unsigned int cpp,
  1913.                                                         unsigned int pitch)
  1914. {
  1915.         if (tiling_mode != I915_TILING_NONE) {
  1916.                 unsigned int tile_rows, tiles;
  1917.  
  1918.         tile_rows = *y / 8;
  1919.         *y %= 8;
  1920.  
  1921.                 tiles = *x / (512/cpp);
  1922.                 *x %= 512/cpp;
  1923.  
  1924.         return tile_rows * pitch * 8 + tiles * 4096;
  1925.         } else {
  1926.                 unsigned int offset;
  1927.  
  1928.                 offset = *y * pitch + *x * cpp;
  1929.                 *y = 0;
  1930.                 *x = (offset & 4095) / cpp;
  1931.                 return offset & -4096;
  1932.         }
  1933. }
  1934.  
  1935. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1936.                  int x, int y)
  1937. {
  1938.     struct drm_device *dev = crtc->dev;
  1939.     struct drm_i915_private *dev_priv = dev->dev_private;
  1940.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1941.     struct intel_framebuffer *intel_fb;
  1942.     struct drm_i915_gem_object *obj;
  1943.     int plane = intel_crtc->plane;
  1944.         unsigned long linear_offset;
  1945.     u32 dspcntr;
  1946.     u32 reg;
  1947.  
  1948.     switch (plane) {
  1949.     case 0:
  1950.     case 1:
  1951.         break;
  1952.     default:
  1953.                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1954.         return -EINVAL;
  1955.     }
  1956.  
  1957.     intel_fb = to_intel_framebuffer(fb);
  1958.     obj = intel_fb->obj;
  1959.  
  1960.     reg = DSPCNTR(plane);
  1961.     dspcntr = I915_READ(reg);
  1962.     /* Mask out pixel format bits in case we change it */
  1963.     dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1964.         switch (fb->pixel_format) {
  1965.         case DRM_FORMAT_C8:
  1966.         dspcntr |= DISPPLANE_8BPP;
  1967.         break;
  1968.         case DRM_FORMAT_XRGB1555:
  1969.         case DRM_FORMAT_ARGB1555:
  1970.                 dspcntr |= DISPPLANE_BGRX555;
  1971.                 break;
  1972.         case DRM_FORMAT_RGB565:
  1973.                 dspcntr |= DISPPLANE_BGRX565;
  1974.                 break;
  1975.         case DRM_FORMAT_XRGB8888:
  1976.         case DRM_FORMAT_ARGB8888:
  1977.                 dspcntr |= DISPPLANE_BGRX888;
  1978.                 break;
  1979.         case DRM_FORMAT_XBGR8888:
  1980.         case DRM_FORMAT_ABGR8888:
  1981.                 dspcntr |= DISPPLANE_RGBX888;
  1982.                 break;
  1983.         case DRM_FORMAT_XRGB2101010:
  1984.         case DRM_FORMAT_ARGB2101010:
  1985.                 dspcntr |= DISPPLANE_BGRX101010;
  1986.         break;
  1987.         case DRM_FORMAT_XBGR2101010:
  1988.         case DRM_FORMAT_ABGR2101010:
  1989.                 dspcntr |= DISPPLANE_RGBX101010;
  1990.         break;
  1991.     default:
  1992.                 BUG();
  1993.     }
  1994.  
  1995.     if (INTEL_INFO(dev)->gen >= 4) {
  1996.         if (obj->tiling_mode != I915_TILING_NONE)
  1997.             dspcntr |= DISPPLANE_TILED;
  1998.         else
  1999.             dspcntr &= ~DISPPLANE_TILED;
  2000.     }
  2001.  
  2002.         if (IS_G4X(dev))
  2003.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2004.  
  2005.     I915_WRITE(reg, dspcntr);
  2006.  
  2007.         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  2008.  
  2009.         if (INTEL_INFO(dev)->gen >= 4) {
  2010.                 intel_crtc->dspaddr_offset =
  2011.                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  2012.                                                            fb->bits_per_pixel / 8,
  2013.                                                            fb->pitches[0]);
  2014.                 linear_offset -= intel_crtc->dspaddr_offset;
  2015.         } else {
  2016.                 intel_crtc->dspaddr_offset = linear_offset;
  2017.         }
  2018.  
  2019.         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  2020.                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  2021.                       fb->pitches[0]);
  2022.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2023.     if (INTEL_INFO(dev)->gen >= 4) {
  2024.                 I915_MODIFY_DISPBASE(DSPSURF(plane),
  2025.                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2026.         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2027.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2028.     } else
  2029.                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  2030.     POSTING_READ(reg);
  2031.  
  2032.     return 0;
  2033. }
  2034.  
  2035. static int ironlake_update_plane(struct drm_crtc *crtc,
  2036.                  struct drm_framebuffer *fb, int x, int y)
  2037. {
  2038.     struct drm_device *dev = crtc->dev;
  2039.     struct drm_i915_private *dev_priv = dev->dev_private;
  2040.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2041.     struct intel_framebuffer *intel_fb;
  2042.     struct drm_i915_gem_object *obj;
  2043.     int plane = intel_crtc->plane;
  2044.         unsigned long linear_offset;
  2045.     u32 dspcntr;
  2046.     u32 reg;
  2047.  
  2048.     switch (plane) {
  2049.     case 0:
  2050.     case 1:
  2051.         case 2:
  2052.         break;
  2053.     default:
  2054.                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  2055.         return -EINVAL;
  2056.     }
  2057.  
  2058.     intel_fb = to_intel_framebuffer(fb);
  2059.     obj = intel_fb->obj;
  2060.  
  2061.     reg = DSPCNTR(plane);
  2062.     dspcntr = I915_READ(reg);
  2063.     /* Mask out pixel format bits in case we change it */
  2064.     dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  2065.         switch (fb->pixel_format) {
  2066.         case DRM_FORMAT_C8:
  2067.         dspcntr |= DISPPLANE_8BPP;
  2068.         break;
  2069.         case DRM_FORMAT_RGB565:
  2070.                 dspcntr |= DISPPLANE_BGRX565;
  2071.         break;
  2072.         case DRM_FORMAT_XRGB8888:
  2073.         case DRM_FORMAT_ARGB8888:
  2074.                 dspcntr |= DISPPLANE_BGRX888;
  2075.                 break;
  2076.         case DRM_FORMAT_XBGR8888:
  2077.         case DRM_FORMAT_ABGR8888:
  2078.                 dspcntr |= DISPPLANE_RGBX888;
  2079.                 break;
  2080.         case DRM_FORMAT_XRGB2101010:
  2081.         case DRM_FORMAT_ARGB2101010:
  2082.                 dspcntr |= DISPPLANE_BGRX101010;
  2083.                 break;
  2084.         case DRM_FORMAT_XBGR2101010:
  2085.         case DRM_FORMAT_ABGR2101010:
  2086.                 dspcntr |= DISPPLANE_RGBX101010;
  2087.         break;
  2088.     default:
  2089.                 BUG();
  2090.     }
  2091.  
  2092.         if (obj->tiling_mode != I915_TILING_NONE)
  2093.                 dspcntr |= DISPPLANE_TILED;
  2094.         else
  2095.         dspcntr &= ~DISPPLANE_TILED;
  2096.  
  2097.         if (IS_HASWELL(dev))
  2098.                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  2099.         else
  2100.     dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2101.  
  2102.     I915_WRITE(reg, dspcntr);
  2103.  
  2104.         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  2105.         intel_crtc->dspaddr_offset =
  2106.                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  2107.                                                    fb->bits_per_pixel / 8,
  2108.                                                    fb->pitches[0]);
  2109.         linear_offset -= intel_crtc->dspaddr_offset;
  2110.  
  2111.         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  2112.                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  2113.                       fb->pitches[0]);
  2114.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2115.         I915_MODIFY_DISPBASE(DSPSURF(plane),
  2116.                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2117.         if (IS_HASWELL(dev)) {
  2118.                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  2119.         } else {
  2120.         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2121.         I915_WRITE(DSPLINOFF(plane), linear_offset);
  2122.         }
  2123.         POSTING_READ(reg);
  2124.  
  2125.     return 0;
  2126. }
  2127.  
  2128. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  2129. static int
  2130. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  2131.                            int x, int y, enum mode_set_atomic state)
  2132. {
  2133.         struct drm_device *dev = crtc->dev;
  2134.         struct drm_i915_private *dev_priv = dev->dev_private;
  2135.  
  2136.         if (dev_priv->display.disable_fbc)
  2137.                 dev_priv->display.disable_fbc(dev);
  2138.         intel_increase_pllclock(crtc);
  2139.  
  2140.         return dev_priv->display.update_plane(crtc, fb, x, y);
  2141. }
  2142.  
  2143. #if 0
  2144. void intel_display_handle_reset(struct drm_device *dev)
  2145. {
  2146.         struct drm_i915_private *dev_priv = dev->dev_private;
  2147.         struct drm_crtc *crtc;
  2148.  
  2149.         /*
  2150.          * Flips in the rings have been nuked by the reset,
  2151.          * so complete all pending flips so that user space
  2152.          * will get its events and not get stuck.
  2153.          *
  2154.          * Also update the base address of all primary
  2155.          * planes to the the last fb to make sure we're
  2156.          * showing the correct fb after a reset.
  2157.          *
  2158.          * Need to make two loops over the crtcs so that we
  2159.          * don't try to grab a crtc mutex before the
  2160.          * pending_flip_queue really got woken up.
  2161.          */
  2162.  
  2163.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2164.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2165.                 enum plane plane = intel_crtc->plane;
  2166.  
  2167.                 intel_prepare_page_flip(dev, plane);
  2168.                 intel_finish_page_flip_plane(dev, plane);
  2169.         }
  2170.  
  2171.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2172.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2173.  
  2174.                 mutex_lock(&crtc->mutex);
  2175.                 if (intel_crtc->active)
  2176.                         dev_priv->display.update_plane(crtc, crtc->fb,
  2177.                                                        crtc->x, crtc->y);
  2178.                 mutex_unlock(&crtc->mutex);
  2179.         }
  2180. }
  2181.  
  2182. static int
  2183. intel_finish_fb(struct drm_framebuffer *old_fb)
  2184. {
  2185.         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  2186.         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2187.         bool was_interruptible = dev_priv->mm.interruptible;
  2188.         int ret;
  2189.  
  2190.         /* Big Hammer, we also need to ensure that any pending
  2191.          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  2192.          * current scanout is retired before unpinning the old
  2193.          * framebuffer.
  2194.          *
  2195.          * This should only fail upon a hung GPU, in which case we
  2196.          * can safely continue.
  2197.          */
  2198.         dev_priv->mm.interruptible = false;
  2199.         ret = i915_gem_object_finish_gpu(obj);
  2200.         dev_priv->mm.interruptible = was_interruptible;
  2201.  
  2202.         return ret;
  2203. }
  2204.  
  2205. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  2206. {
  2207.         struct drm_device *dev = crtc->dev;
  2208.         struct drm_i915_master_private *master_priv;
  2209.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2210.  
  2211.         if (!dev->primary->master)
  2212.                 return;
  2213.  
  2214.         master_priv = dev->primary->master->driver_priv;
  2215.         if (!master_priv->sarea_priv)
  2216.                 return;
  2217.  
  2218.         switch (intel_crtc->pipe) {
  2219.         case 0:
  2220.                 master_priv->sarea_priv->pipeA_x = x;
  2221.                 master_priv->sarea_priv->pipeA_y = y;
  2222.                 break;
  2223.         case 1:
  2224.                 master_priv->sarea_priv->pipeB_x = x;
  2225.                 master_priv->sarea_priv->pipeB_y = y;
  2226.                 break;
  2227.         default:
  2228.                 break;
  2229.         }
  2230. }
  2231. #endif
  2232.  
  2233. static int
  2234. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2235.                     struct drm_framebuffer *fb)
  2236. {
  2237.         struct drm_device *dev = crtc->dev;
  2238.         struct drm_i915_private *dev_priv = dev->dev_private;
  2239.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2240.         struct drm_framebuffer *old_fb;
  2241.         int ret;
  2242.  
  2243.         /* no fb bound */
  2244.         if (!fb) {
  2245.                 DRM_ERROR("No FB bound\n");
  2246.                 return 0;
  2247.         }
  2248.  
  2249.         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2250.                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2251.                           plane_name(intel_crtc->plane),
  2252.                                 INTEL_INFO(dev)->num_pipes);
  2253.                 return -EINVAL;
  2254.         }
  2255.  
  2256.         mutex_lock(&dev->struct_mutex);
  2257.     ret = intel_pin_and_fence_fb_obj(dev,
  2258.                     to_intel_framebuffer(fb)->obj,
  2259.                     NULL);
  2260.     if (ret != 0) {
  2261.        mutex_unlock(&dev->struct_mutex);
  2262.        DRM_ERROR("pin & fence failed\n");
  2263.        return ret;
  2264.     }
  2265.  
  2266.         /* Update pipe size and adjust fitter if needed */
  2267.         if (i915_fastboot) {
  2268.                 I915_WRITE(PIPESRC(intel_crtc->pipe),
  2269.                            ((crtc->mode.hdisplay - 1) << 16) |
  2270.                            (crtc->mode.vdisplay - 1));
  2271.                 if (!intel_crtc->config.pch_pfit.enabled &&
  2272.                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2273.                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2274.                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2275.                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2276.                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2277.                 }
  2278.         }
  2279.  
  2280.         ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2281.         if (ret) {
  2282.                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2283.                 mutex_unlock(&dev->struct_mutex);
  2284.                 DRM_ERROR("failed to update base address\n");
  2285.         return ret;
  2286.         }
  2287.  
  2288.         old_fb = crtc->fb;
  2289.         crtc->fb = fb;
  2290.         crtc->x = x;
  2291.         crtc->y = y;
  2292.  
  2293.         if (old_fb) {
  2294.                 if (intel_crtc->active && old_fb != fb)
  2295.                 intel_wait_for_vblank(dev, intel_crtc->pipe);
  2296.                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2297.         }
  2298.  
  2299.         intel_update_fbc(dev);
  2300.         intel_edp_psr_update(dev);
  2301.         mutex_unlock(&dev->struct_mutex);
  2302.  
  2303.     return 0;
  2304. }
  2305.  
  2306. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2307. {
  2308.         struct drm_device *dev = crtc->dev;
  2309.         struct drm_i915_private *dev_priv = dev->dev_private;
  2310.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2311.         int pipe = intel_crtc->pipe;
  2312.         u32 reg, temp;
  2313.  
  2314.         /* enable normal train */
  2315.         reg = FDI_TX_CTL(pipe);
  2316.         temp = I915_READ(reg);
  2317.         if (IS_IVYBRIDGE(dev)) {
  2318.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2319.                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2320.         } else {
  2321.                 temp &= ~FDI_LINK_TRAIN_NONE;
  2322.                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2323.         }
  2324.         I915_WRITE(reg, temp);
  2325.  
  2326.         reg = FDI_RX_CTL(pipe);
  2327.         temp = I915_READ(reg);
  2328.         if (HAS_PCH_CPT(dev)) {
  2329.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2330.                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2331.         } else {
  2332.                 temp &= ~FDI_LINK_TRAIN_NONE;
  2333.                 temp |= FDI_LINK_TRAIN_NONE;
  2334.         }
  2335.         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2336.  
  2337.         /* wait one idle pattern time */
  2338.         POSTING_READ(reg);
  2339.         udelay(1000);
  2340.  
  2341.         /* IVB wants error correction enabled */
  2342.         if (IS_IVYBRIDGE(dev))
  2343.                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2344.                            FDI_FE_ERRC_ENABLE);
  2345. }
  2346.  
  2347. static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
  2348. {
  2349.         return crtc->base.enabled && crtc->active &&
  2350.                 crtc->config.has_pch_encoder;
  2351. }
  2352.  
  2353. static void ivb_modeset_global_resources(struct drm_device *dev)
  2354. {
  2355.         struct drm_i915_private *dev_priv = dev->dev_private;
  2356.         struct intel_crtc *pipe_B_crtc =
  2357.                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2358.         struct intel_crtc *pipe_C_crtc =
  2359.                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2360.         uint32_t temp;
  2361.  
  2362.         /*
  2363.          * When everything is off disable fdi C so that we could enable fdi B
  2364.          * with all lanes. Note that we don't care about enabled pipes without
  2365.          * an enabled pch encoder.
  2366.          */
  2367.         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2368.             !pipe_has_enabled_pch(pipe_C_crtc)) {
  2369.                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2370.                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2371.  
  2372.                 temp = I915_READ(SOUTH_CHICKEN1);
  2373.                 temp &= ~FDI_BC_BIFURCATION_SELECT;
  2374.                 DRM_DEBUG_KMS("disabling fdi C rx\n");
  2375.                 I915_WRITE(SOUTH_CHICKEN1, temp);
  2376.         }
  2377. }
  2378.  
  2379. /* The FDI link training functions for ILK/Ibexpeak. */
  2380. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2381. {
  2382.     struct drm_device *dev = crtc->dev;
  2383.     struct drm_i915_private *dev_priv = dev->dev_private;
  2384.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2385.     int pipe = intel_crtc->pipe;
  2386.     int plane = intel_crtc->plane;
  2387.     u32 reg, temp, tries;
  2388.  
  2389.     /* FDI needs bits from pipe & plane first */
  2390.     assert_pipe_enabled(dev_priv, pipe);
  2391.     assert_plane_enabled(dev_priv, plane);
  2392.  
  2393.     /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2394.        for train result */
  2395.     reg = FDI_RX_IMR(pipe);
  2396.     temp = I915_READ(reg);
  2397.     temp &= ~FDI_RX_SYMBOL_LOCK;
  2398.     temp &= ~FDI_RX_BIT_LOCK;
  2399.     I915_WRITE(reg, temp);
  2400.     I915_READ(reg);
  2401.     udelay(150);
  2402.  
  2403.     /* enable CPU FDI TX and PCH FDI RX */
  2404.     reg = FDI_TX_CTL(pipe);
  2405.     temp = I915_READ(reg);
  2406.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2407.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2408.     temp &= ~FDI_LINK_TRAIN_NONE;
  2409.     temp |= FDI_LINK_TRAIN_PATTERN_1;
  2410.     I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2411.  
  2412.     reg = FDI_RX_CTL(pipe);
  2413.     temp = I915_READ(reg);
  2414.     temp &= ~FDI_LINK_TRAIN_NONE;
  2415.     temp |= FDI_LINK_TRAIN_PATTERN_1;
  2416.     I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2417.  
  2418.     POSTING_READ(reg);
  2419.     udelay(150);
  2420.  
  2421.     /* Ironlake workaround, enable clock pointer after FDI enable*/
  2422.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2423.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2424.                FDI_RX_PHASE_SYNC_POINTER_EN);
  2425.  
  2426.     reg = FDI_RX_IIR(pipe);
  2427.     for (tries = 0; tries < 5; tries++) {
  2428.         temp = I915_READ(reg);
  2429.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2430.  
  2431.         if ((temp & FDI_RX_BIT_LOCK)) {
  2432.             DRM_DEBUG_KMS("FDI train 1 done.\n");
  2433.             I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2434.             break;
  2435.         }
  2436.     }
  2437.     if (tries == 5)
  2438.         DRM_ERROR("FDI train 1 fail!\n");
  2439.  
  2440.     /* Train 2 */
  2441.     reg = FDI_TX_CTL(pipe);
  2442.     temp = I915_READ(reg);
  2443.     temp &= ~FDI_LINK_TRAIN_NONE;
  2444.     temp |= FDI_LINK_TRAIN_PATTERN_2;
  2445.     I915_WRITE(reg, temp);
  2446.  
  2447.     reg = FDI_RX_CTL(pipe);
  2448.     temp = I915_READ(reg);
  2449.     temp &= ~FDI_LINK_TRAIN_NONE;
  2450.     temp |= FDI_LINK_TRAIN_PATTERN_2;
  2451.     I915_WRITE(reg, temp);
  2452.  
  2453.     POSTING_READ(reg);
  2454.     udelay(150);
  2455.  
  2456.     reg = FDI_RX_IIR(pipe);
  2457.     for (tries = 0; tries < 5; tries++) {
  2458.         temp = I915_READ(reg);
  2459.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2460.  
  2461.         if (temp & FDI_RX_SYMBOL_LOCK) {
  2462.             I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2463.             DRM_DEBUG_KMS("FDI train 2 done.\n");
  2464.             break;
  2465.         }
  2466.     }
  2467.     if (tries == 5)
  2468.         DRM_ERROR("FDI train 2 fail!\n");
  2469.  
  2470.     DRM_DEBUG_KMS("FDI train done\n");
  2471.  
  2472. }
  2473.  
  2474. static const int snb_b_fdi_train_param[] = {
  2475.     FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2476.     FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2477.     FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2478.     FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2479. };
  2480.  
  2481. /* The FDI link training functions for SNB/Cougarpoint. */
  2482. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2483. {
  2484.     struct drm_device *dev = crtc->dev;
  2485.     struct drm_i915_private *dev_priv = dev->dev_private;
  2486.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2487.     int pipe = intel_crtc->pipe;
  2488.         u32 reg, temp, i, retry;
  2489.  
  2490.     /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2491.        for train result */
  2492.     reg = FDI_RX_IMR(pipe);
  2493.     temp = I915_READ(reg);
  2494.     temp &= ~FDI_RX_SYMBOL_LOCK;
  2495.     temp &= ~FDI_RX_BIT_LOCK;
  2496.     I915_WRITE(reg, temp);
  2497.  
  2498.     POSTING_READ(reg);
  2499.     udelay(150);
  2500.  
  2501.     /* enable CPU FDI TX and PCH FDI RX */
  2502.     reg = FDI_TX_CTL(pipe);
  2503.     temp = I915_READ(reg);
  2504.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2505.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2506.     temp &= ~FDI_LINK_TRAIN_NONE;
  2507.     temp |= FDI_LINK_TRAIN_PATTERN_1;
  2508.     temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2509.     /* SNB-B */
  2510.     temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2511.     I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2512.  
  2513.         I915_WRITE(FDI_RX_MISC(pipe),
  2514.                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2515.  
  2516.     reg = FDI_RX_CTL(pipe);
  2517.     temp = I915_READ(reg);
  2518.     if (HAS_PCH_CPT(dev)) {
  2519.         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2520.         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2521.     } else {
  2522.         temp &= ~FDI_LINK_TRAIN_NONE;
  2523.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  2524.     }
  2525.     I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2526.  
  2527.     POSTING_READ(reg);
  2528.     udelay(150);
  2529.  
  2530.         for (i = 0; i < 4; i++) {
  2531.         reg = FDI_TX_CTL(pipe);
  2532.         temp = I915_READ(reg);
  2533.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2534.         temp |= snb_b_fdi_train_param[i];
  2535.         I915_WRITE(reg, temp);
  2536.  
  2537.         POSTING_READ(reg);
  2538.         udelay(500);
  2539.  
  2540.                 for (retry = 0; retry < 5; retry++) {
  2541.         reg = FDI_RX_IIR(pipe);
  2542.         temp = I915_READ(reg);
  2543.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2544.         if (temp & FDI_RX_BIT_LOCK) {
  2545.             I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2546.             DRM_DEBUG_KMS("FDI train 1 done.\n");
  2547.             break;
  2548.         }
  2549.                         udelay(50);
  2550.                 }
  2551.                 if (retry < 5)
  2552.                         break;
  2553.     }
  2554.     if (i == 4)
  2555.         DRM_ERROR("FDI train 1 fail!\n");
  2556.  
  2557.     /* Train 2 */
  2558.     reg = FDI_TX_CTL(pipe);
  2559.     temp = I915_READ(reg);
  2560.     temp &= ~FDI_LINK_TRAIN_NONE;
  2561.     temp |= FDI_LINK_TRAIN_PATTERN_2;
  2562.     if (IS_GEN6(dev)) {
  2563.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2564.         /* SNB-B */
  2565.         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2566.     }
  2567.     I915_WRITE(reg, temp);
  2568.  
  2569.     reg = FDI_RX_CTL(pipe);
  2570.     temp = I915_READ(reg);
  2571.     if (HAS_PCH_CPT(dev)) {
  2572.         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2573.         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2574.     } else {
  2575.         temp &= ~FDI_LINK_TRAIN_NONE;
  2576.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  2577.     }
  2578.     I915_WRITE(reg, temp);
  2579.  
  2580.     POSTING_READ(reg);
  2581.     udelay(150);
  2582.  
  2583.         for (i = 0; i < 4; i++) {
  2584.         reg = FDI_TX_CTL(pipe);
  2585.         temp = I915_READ(reg);
  2586.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2587.         temp |= snb_b_fdi_train_param[i];
  2588.         I915_WRITE(reg, temp);
  2589.  
  2590.         POSTING_READ(reg);
  2591.         udelay(500);
  2592.  
  2593.                 for (retry = 0; retry < 5; retry++) {
  2594.         reg = FDI_RX_IIR(pipe);
  2595.         temp = I915_READ(reg);
  2596.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2597.         if (temp & FDI_RX_SYMBOL_LOCK) {
  2598.             I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2599.             DRM_DEBUG_KMS("FDI train 2 done.\n");
  2600.             break;
  2601.         }
  2602.                         udelay(50);
  2603.                 }
  2604.                 if (retry < 5)
  2605.                         break;
  2606.     }
  2607.     if (i == 4)
  2608.         DRM_ERROR("FDI train 2 fail!\n");
  2609.  
  2610.     DRM_DEBUG_KMS("FDI train done.\n");
  2611. }
  2612.  
  2613. /* Manual link training for Ivy Bridge A0 parts */
  2614. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2615. {
  2616.     struct drm_device *dev = crtc->dev;
  2617.     struct drm_i915_private *dev_priv = dev->dev_private;
  2618.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2619.     int pipe = intel_crtc->pipe;
  2620.         u32 reg, temp, i, j;
  2621.  
  2622.     /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2623.        for train result */
  2624.     reg = FDI_RX_IMR(pipe);
  2625.     temp = I915_READ(reg);
  2626.     temp &= ~FDI_RX_SYMBOL_LOCK;
  2627.     temp &= ~FDI_RX_BIT_LOCK;
  2628.     I915_WRITE(reg, temp);
  2629.  
  2630.     POSTING_READ(reg);
  2631.     udelay(150);
  2632.  
  2633.         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2634.                       I915_READ(FDI_RX_IIR(pipe)));
  2635.  
  2636.         /* Try each vswing and preemphasis setting twice before moving on */
  2637.         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2638.                 /* disable first in case we need to retry */
  2639.                 reg = FDI_TX_CTL(pipe);
  2640.                 temp = I915_READ(reg);
  2641.                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2642.                 temp &= ~FDI_TX_ENABLE;
  2643.                 I915_WRITE(reg, temp);
  2644.  
  2645.                 reg = FDI_RX_CTL(pipe);
  2646.                 temp = I915_READ(reg);
  2647.                 temp &= ~FDI_LINK_TRAIN_AUTO;
  2648.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2649.                 temp &= ~FDI_RX_ENABLE;
  2650.                 I915_WRITE(reg, temp);
  2651.  
  2652.     /* enable CPU FDI TX and PCH FDI RX */
  2653.     reg = FDI_TX_CTL(pipe);
  2654.     temp = I915_READ(reg);
  2655.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2656.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2657.     temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2658.     temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2659.                 temp |= snb_b_fdi_train_param[j/2];
  2660.         temp |= FDI_COMPOSITE_SYNC;
  2661.     I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2662.  
  2663.         I915_WRITE(FDI_RX_MISC(pipe),
  2664.                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2665.  
  2666.     reg = FDI_RX_CTL(pipe);
  2667.     temp = I915_READ(reg);
  2668.     temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2669.         temp |= FDI_COMPOSITE_SYNC;
  2670.     I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2671.  
  2672.     POSTING_READ(reg);
  2673.                 udelay(1); /* should be 0.5us */
  2674.  
  2675.         for (i = 0; i < 4; i++) {
  2676.         reg = FDI_RX_IIR(pipe);
  2677.         temp = I915_READ(reg);
  2678.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2679.  
  2680.         if (temp & FDI_RX_BIT_LOCK ||
  2681.             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2682.             I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2683.                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2684.                                               i);
  2685.             break;
  2686.         }
  2687.                         udelay(1); /* should be 0.5us */
  2688.                 }
  2689.                 if (i == 4) {
  2690.                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2691.                         continue;
  2692.     }
  2693.  
  2694.     /* Train 2 */
  2695.     reg = FDI_TX_CTL(pipe);
  2696.     temp = I915_READ(reg);
  2697.     temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2698.     temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2699.     I915_WRITE(reg, temp);
  2700.  
  2701.     reg = FDI_RX_CTL(pipe);
  2702.     temp = I915_READ(reg);
  2703.     temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2704.     temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2705.     I915_WRITE(reg, temp);
  2706.  
  2707.     POSTING_READ(reg);
  2708.                 udelay(2); /* should be 1.5us */
  2709.  
  2710.         for (i = 0; i < 4; i++) {
  2711.         reg = FDI_RX_IIR(pipe);
  2712.         temp = I915_READ(reg);
  2713.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2714.  
  2715.                         if (temp & FDI_RX_SYMBOL_LOCK ||
  2716.                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2717.             I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2718.                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2719.                                               i);
  2720.                                 goto train_done;
  2721.         }
  2722.                         udelay(2); /* should be 1.5us */
  2723.     }
  2724.     if (i == 4)
  2725.                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2726.         }
  2727.  
  2728. train_done:
  2729.     DRM_DEBUG_KMS("FDI train done.\n");
  2730. }
  2731.  
  2732. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2733. {
  2734.         struct drm_device *dev = intel_crtc->base.dev;
  2735.         struct drm_i915_private *dev_priv = dev->dev_private;
  2736.         int pipe = intel_crtc->pipe;
  2737.         u32 reg, temp;
  2738.  
  2739.  
  2740.         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2741.         reg = FDI_RX_CTL(pipe);
  2742.         temp = I915_READ(reg);
  2743.         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2744.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2745.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2746.         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2747.  
  2748.         POSTING_READ(reg);
  2749.         udelay(200);
  2750.  
  2751.         /* Switch from Rawclk to PCDclk */
  2752.         temp = I915_READ(reg);
  2753.         I915_WRITE(reg, temp | FDI_PCDCLK);
  2754.  
  2755.         POSTING_READ(reg);
  2756.         udelay(200);
  2757.  
  2758.         /* Enable CPU FDI TX PLL, always on for Ironlake */
  2759.         reg = FDI_TX_CTL(pipe);
  2760.         temp = I915_READ(reg);
  2761.         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2762.                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2763.  
  2764.                 POSTING_READ(reg);
  2765.                 udelay(100);
  2766.         }
  2767. }
  2768.  
  2769. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2770. {
  2771.         struct drm_device *dev = intel_crtc->base.dev;
  2772.         struct drm_i915_private *dev_priv = dev->dev_private;
  2773.         int pipe = intel_crtc->pipe;
  2774.         u32 reg, temp;
  2775.  
  2776.         /* Switch from PCDclk to Rawclk */
  2777.         reg = FDI_RX_CTL(pipe);
  2778.         temp = I915_READ(reg);
  2779.         I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2780.  
  2781.         /* Disable CPU FDI TX PLL */
  2782.         reg = FDI_TX_CTL(pipe);
  2783.         temp = I915_READ(reg);
  2784.         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2785.  
  2786.         POSTING_READ(reg);
  2787.         udelay(100);
  2788.  
  2789.         reg = FDI_RX_CTL(pipe);
  2790.         temp = I915_READ(reg);
  2791.         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2792.  
  2793.         /* Wait for the clocks to turn off. */
  2794.         POSTING_READ(reg);
  2795.         udelay(100);
  2796. }
  2797.  
  2798. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2799. {
  2800.         struct drm_device *dev = crtc->dev;
  2801.         struct drm_i915_private *dev_priv = dev->dev_private;
  2802.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2803.         int pipe = intel_crtc->pipe;
  2804.         u32 reg, temp;
  2805.  
  2806.         /* disable CPU FDI tx and PCH FDI rx */
  2807.         reg = FDI_TX_CTL(pipe);
  2808.         temp = I915_READ(reg);
  2809.         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2810.         POSTING_READ(reg);
  2811.  
  2812.         reg = FDI_RX_CTL(pipe);
  2813.         temp = I915_READ(reg);
  2814.         temp &= ~(0x7 << 16);
  2815.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2816.         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2817.  
  2818.         POSTING_READ(reg);
  2819.         udelay(100);
  2820.  
  2821.         /* Ironlake workaround, disable clock pointer after downing FDI */
  2822.         if (HAS_PCH_IBX(dev)) {
  2823.                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2824.         }
  2825.  
  2826.         /* still set train pattern 1 */
  2827.         reg = FDI_TX_CTL(pipe);
  2828.         temp = I915_READ(reg);
  2829.         temp &= ~FDI_LINK_TRAIN_NONE;
  2830.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  2831.         I915_WRITE(reg, temp);
  2832.  
  2833.         reg = FDI_RX_CTL(pipe);
  2834.         temp = I915_READ(reg);
  2835.         if (HAS_PCH_CPT(dev)) {
  2836.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2837.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2838.         } else {
  2839.                 temp &= ~FDI_LINK_TRAIN_NONE;
  2840.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  2841.         }
  2842.         /* BPC in FDI rx is consistent with that in PIPECONF */
  2843.         temp &= ~(0x07 << 16);
  2844.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2845.         I915_WRITE(reg, temp);
  2846.  
  2847.         POSTING_READ(reg);
  2848.         udelay(100);
  2849. }
  2850.  
  2851. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2852. {
  2853.         struct drm_device *dev = crtc->dev;
  2854.         struct drm_i915_private *dev_priv = dev->dev_private;
  2855.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2856.         unsigned long flags;
  2857.         bool pending;
  2858.  
  2859.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2860.             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2861.                 return false;
  2862.  
  2863.         spin_lock_irqsave(&dev->event_lock, flags);
  2864.         pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2865.         spin_unlock_irqrestore(&dev->event_lock, flags);
  2866.  
  2867.         return pending;
  2868. }
  2869.  
  2870. #if 0
  2871. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2872. {
  2873.         struct drm_device *dev = crtc->dev;
  2874.         struct drm_i915_private *dev_priv = dev->dev_private;
  2875.  
  2876.         if (crtc->fb == NULL)
  2877.                 return;
  2878.  
  2879.         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2880.  
  2881.         wait_event(dev_priv->pending_flip_queue,
  2882.                    !intel_crtc_has_pending_flip(crtc));
  2883.  
  2884.         mutex_lock(&dev->struct_mutex);
  2885.         intel_finish_fb(crtc->fb);
  2886.         mutex_unlock(&dev->struct_mutex);
  2887. }
  2888. #endif
  2889.  
  2890. /* Program iCLKIP clock to the desired frequency */
  2891. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2892. {
  2893.         struct drm_device *dev = crtc->dev;
  2894.         struct drm_i915_private *dev_priv = dev->dev_private;
  2895.         u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2896.         u32 temp;
  2897.  
  2898.         mutex_lock(&dev_priv->dpio_lock);
  2899.  
  2900.         /* It is necessary to ungate the pixclk gate prior to programming
  2901.          * the divisors, and gate it back when it is done.
  2902.          */
  2903.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2904.  
  2905.         /* Disable SSCCTL */
  2906.         intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2907.                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2908.                                 SBI_SSCCTL_DISABLE,
  2909.                         SBI_ICLK);
  2910.  
  2911.         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2912.         if (crtc->mode.clock == 20000) {
  2913.                 auxdiv = 1;
  2914.                 divsel = 0x41;
  2915.                 phaseinc = 0x20;
  2916.         } else {
  2917.                 /* The iCLK virtual clock root frequency is in MHz,
  2918.                  * but the crtc->mode.clock in in KHz. To get the divisors,
  2919.                  * it is necessary to divide one by another, so we
  2920.                  * convert the virtual clock precision to KHz here for higher
  2921.                  * precision.
  2922.                  */
  2923.                 u32 iclk_virtual_root_freq = 172800 * 1000;
  2924.                 u32 iclk_pi_range = 64;
  2925.                 u32 desired_divisor, msb_divisor_value, pi_value;
  2926.  
  2927.                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2928.                 msb_divisor_value = desired_divisor / iclk_pi_range;
  2929.                 pi_value = desired_divisor % iclk_pi_range;
  2930.  
  2931.                 auxdiv = 0;
  2932.                 divsel = msb_divisor_value - 2;
  2933.                 phaseinc = pi_value;
  2934.         }
  2935.  
  2936.         /* This should not happen with any sane values */
  2937.         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2938.                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2939.         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2940.                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2941.  
  2942.         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2943.                         crtc->mode.clock,
  2944.                         auxdiv,
  2945.                         divsel,
  2946.                         phasedir,
  2947.                         phaseinc);
  2948.  
  2949.         /* Program SSCDIVINTPHASE6 */
  2950.         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2951.         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2952.         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2953.         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2954.         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2955.         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2956.         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2957.         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2958.  
  2959.         /* Program SSCAUXDIV */
  2960.         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2961.         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2962.         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2963.         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2964.  
  2965.         /* Enable modulator and associated divider */
  2966.         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2967.         temp &= ~SBI_SSCCTL_DISABLE;
  2968.         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2969.  
  2970.         /* Wait for initialization time */
  2971.         udelay(24);
  2972.  
  2973.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2974.  
  2975.         mutex_unlock(&dev_priv->dpio_lock);
  2976. }
  2977.  
  2978. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2979.                                                 enum pipe pch_transcoder)
  2980. {
  2981.         struct drm_device *dev = crtc->base.dev;
  2982.         struct drm_i915_private *dev_priv = dev->dev_private;
  2983.         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2984.  
  2985.         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2986.                    I915_READ(HTOTAL(cpu_transcoder)));
  2987.         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2988.                    I915_READ(HBLANK(cpu_transcoder)));
  2989.         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2990.                    I915_READ(HSYNC(cpu_transcoder)));
  2991.  
  2992.         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2993.                    I915_READ(VTOTAL(cpu_transcoder)));
  2994.         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2995.                    I915_READ(VBLANK(cpu_transcoder)));
  2996.         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2997.                    I915_READ(VSYNC(cpu_transcoder)));
  2998.         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2999.                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
  3000. }
  3001.  
  3002. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  3003. {
  3004.         struct drm_i915_private *dev_priv = dev->dev_private;
  3005.         uint32_t temp;
  3006.  
  3007.         temp = I915_READ(SOUTH_CHICKEN1);
  3008.         if (temp & FDI_BC_BIFURCATION_SELECT)
  3009.                 return;
  3010.  
  3011.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  3012.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  3013.  
  3014.         temp |= FDI_BC_BIFURCATION_SELECT;
  3015.         DRM_DEBUG_KMS("enabling fdi C rx\n");
  3016.         I915_WRITE(SOUTH_CHICKEN1, temp);
  3017.         POSTING_READ(SOUTH_CHICKEN1);
  3018. }
  3019.  
  3020. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  3021. {
  3022.         struct drm_device *dev = intel_crtc->base.dev;
  3023.         struct drm_i915_private *dev_priv = dev->dev_private;
  3024.  
  3025.         switch (intel_crtc->pipe) {
  3026.         case PIPE_A:
  3027.                 break;
  3028.         case PIPE_B:
  3029.                 if (intel_crtc->config.fdi_lanes > 2)
  3030.                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  3031.                 else
  3032.                         cpt_enable_fdi_bc_bifurcation(dev);
  3033.  
  3034.                 break;
  3035.         case PIPE_C:
  3036.                 cpt_enable_fdi_bc_bifurcation(dev);
  3037.  
  3038.                 break;
  3039.         default:
  3040.                 BUG();
  3041.         }
  3042. }
  3043.  
  3044. /*
  3045.  * Enable PCH resources required for PCH ports:
  3046.  *   - PCH PLLs
  3047.  *   - FDI training & RX/TX
  3048.  *   - update transcoder timings
  3049.  *   - DP transcoding bits
  3050.  *   - transcoder
  3051.  */
  3052. static void ironlake_pch_enable(struct drm_crtc *crtc)
  3053. {
  3054.         struct drm_device *dev = crtc->dev;
  3055.         struct drm_i915_private *dev_priv = dev->dev_private;
  3056.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3057.         int pipe = intel_crtc->pipe;
  3058.         u32 reg, temp;
  3059.  
  3060.         assert_pch_transcoder_disabled(dev_priv, pipe);
  3061.  
  3062.         if (IS_IVYBRIDGE(dev))
  3063.                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  3064.  
  3065.         /* Write the TU size bits before fdi link training, so that error
  3066.          * detection works. */
  3067.         I915_WRITE(FDI_RX_TUSIZE1(pipe),
  3068.                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  3069.  
  3070.         /* For PCH output, training FDI link */
  3071.         dev_priv->display.fdi_link_train(crtc);
  3072.  
  3073.         /* We need to program the right clock selection before writing the pixel
  3074.          * mutliplier into the DPLL. */
  3075.         if (HAS_PCH_CPT(dev)) {
  3076.                 u32 sel;
  3077.  
  3078.                 temp = I915_READ(PCH_DPLL_SEL);
  3079.                 temp |= TRANS_DPLL_ENABLE(pipe);
  3080.                 sel = TRANS_DPLLB_SEL(pipe);
  3081.                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  3082.                         temp |= sel;
  3083.                 else
  3084.                         temp &= ~sel;
  3085.                 I915_WRITE(PCH_DPLL_SEL, temp);
  3086.         }
  3087.  
  3088.         /* XXX: pch pll's can be enabled any time before we enable the PCH
  3089.          * transcoder, and we actually should do this to not upset any PCH
  3090.          * transcoder that already use the clock when we share it.
  3091.          *
  3092.          * Note that enable_shared_dpll tries to do the right thing, but
  3093.          * get_shared_dpll unconditionally resets the pll - we need that to have
  3094.          * the right LVDS enable sequence. */
  3095.         ironlake_enable_shared_dpll(intel_crtc);
  3096.  
  3097.         /* set transcoder timing, panel must allow it */
  3098.         assert_panel_unlocked(dev_priv, pipe);
  3099.         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  3100.  
  3101.         intel_fdi_normal_train(crtc);
  3102.  
  3103.         /* For PCH DP, enable TRANS_DP_CTL */
  3104.         if (HAS_PCH_CPT(dev) &&
  3105.             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  3106.              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  3107.                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  3108.                 reg = TRANS_DP_CTL(pipe);
  3109.                 temp = I915_READ(reg);
  3110.                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
  3111.                           TRANS_DP_SYNC_MASK |
  3112.                           TRANS_DP_BPC_MASK);
  3113.                 temp |= (TRANS_DP_OUTPUT_ENABLE |
  3114.                          TRANS_DP_ENH_FRAMING);
  3115.                 temp |= bpc << 9; /* same format but at 11:9 */
  3116.  
  3117.                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  3118.                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  3119.                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  3120.                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  3121.  
  3122.                 switch (intel_trans_dp_port_sel(crtc)) {
  3123.                 case PCH_DP_B:
  3124.                         temp |= TRANS_DP_PORT_SEL_B;
  3125.                         break;
  3126.                 case PCH_DP_C:
  3127.                         temp |= TRANS_DP_PORT_SEL_C;
  3128.                         break;
  3129.                 case PCH_DP_D:
  3130.                         temp |= TRANS_DP_PORT_SEL_D;
  3131.                         break;
  3132.                 default:
  3133.                         BUG();
  3134.                 }
  3135.  
  3136.                 I915_WRITE(reg, temp);
  3137.         }
  3138.  
  3139.         ironlake_enable_pch_transcoder(dev_priv, pipe);
  3140. }
  3141.  
  3142. static void lpt_pch_enable(struct drm_crtc *crtc)
  3143. {
  3144.         struct drm_device *dev = crtc->dev;
  3145.         struct drm_i915_private *dev_priv = dev->dev_private;
  3146.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3147.         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3148.  
  3149.         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  3150.  
  3151.         lpt_program_iclkip(crtc);
  3152.  
  3153.         /* Set transcoder timing. */
  3154.         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  3155.  
  3156.         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  3157. }
  3158.  
  3159. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  3160. {
  3161.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  3162.  
  3163.         if (pll == NULL)
  3164.                 return;
  3165.  
  3166.         if (pll->refcount == 0) {
  3167.                 WARN(1, "bad %s refcount\n", pll->name);
  3168.                 return;
  3169.         }
  3170.  
  3171.         if (--pll->refcount == 0) {
  3172.                 WARN_ON(pll->on);
  3173.                 WARN_ON(pll->active);
  3174.         }
  3175.  
  3176.         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  3177. }
  3178.  
  3179. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  3180. {
  3181.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  3182.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  3183.         enum intel_dpll_id i;
  3184.  
  3185.         if (pll) {
  3186.                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  3187.                               crtc->base.base.id, pll->name);
  3188.                 intel_put_shared_dpll(crtc);
  3189.         }
  3190.  
  3191.         if (HAS_PCH_IBX(dev_priv->dev)) {
  3192.                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  3193.                 i = (enum intel_dpll_id) crtc->pipe;
  3194.                 pll = &dev_priv->shared_dplls[i];
  3195.  
  3196.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  3197.                               crtc->base.base.id, pll->name);
  3198.  
  3199.                 goto found;
  3200.         }
  3201.  
  3202.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  3203.                 pll = &dev_priv->shared_dplls[i];
  3204.  
  3205.                 /* Only want to check enabled timings first */
  3206.                 if (pll->refcount == 0)
  3207.                         continue;
  3208.  
  3209.                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  3210.                            sizeof(pll->hw_state)) == 0) {
  3211.                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  3212.                                       crtc->base.base.id,
  3213.                                       pll->name, pll->refcount, pll->active);
  3214.  
  3215.                         goto found;
  3216.                 }
  3217.         }
  3218.  
  3219.         /* Ok no matching timings, maybe there's a free one? */
  3220.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  3221.                 pll = &dev_priv->shared_dplls[i];
  3222.                 if (pll->refcount == 0) {
  3223.                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  3224.                                       crtc->base.base.id, pll->name);
  3225.                         goto found;
  3226.                 }
  3227.         }
  3228.  
  3229.         return NULL;
  3230.  
  3231. found:
  3232.         crtc->config.shared_dpll = i;
  3233.         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  3234.                          pipe_name(crtc->pipe));
  3235.  
  3236.         if (pll->active == 0) {
  3237.                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  3238.                        sizeof(pll->hw_state));
  3239.  
  3240.                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  3241.                 WARN_ON(pll->on);
  3242.                 assert_shared_dpll_disabled(dev_priv, pll);
  3243.  
  3244.                 pll->mode_set(dev_priv, pll);
  3245.         }
  3246.         pll->refcount++;
  3247.  
  3248.         return pll;
  3249. }
  3250.  
  3251. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  3252. {
  3253.         struct drm_i915_private *dev_priv = dev->dev_private;
  3254.         int dslreg = PIPEDSL(pipe);
  3255.         u32 temp;
  3256.  
  3257.         temp = I915_READ(dslreg);
  3258.         udelay(500);
  3259.         if (wait_for(I915_READ(dslreg) != temp, 5)) {
  3260.                 if (wait_for(I915_READ(dslreg) != temp, 5))
  3261.                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  3262.         }
  3263. }
  3264.  
  3265. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  3266. {
  3267.         struct drm_device *dev = crtc->base.dev;
  3268.         struct drm_i915_private *dev_priv = dev->dev_private;
  3269.         int pipe = crtc->pipe;
  3270.  
  3271.         if (crtc->config.pch_pfit.enabled) {
  3272.                 /* Force use of hard-coded filter coefficients
  3273.                  * as some pre-programmed values are broken,
  3274.                  * e.g. x201.
  3275.                  */
  3276.                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  3277.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  3278.                                                  PF_PIPE_SEL_IVB(pipe));
  3279.                 else
  3280.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  3281.                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  3282.                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  3283.         }
  3284. }
  3285.  
  3286. static void intel_enable_planes(struct drm_crtc *crtc)
  3287. {
  3288.         struct drm_device *dev = crtc->dev;
  3289.         enum pipe pipe = to_intel_crtc(crtc)->pipe;
  3290.         struct intel_plane *intel_plane;
  3291.  
  3292.         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  3293.                 if (intel_plane->pipe == pipe)
  3294.                         intel_plane_restore(&intel_plane->base);
  3295. }
  3296.  
  3297. static void intel_disable_planes(struct drm_crtc *crtc)
  3298. {
  3299.         struct drm_device *dev = crtc->dev;
  3300.         enum pipe pipe = to_intel_crtc(crtc)->pipe;
  3301.         struct intel_plane *intel_plane;
  3302.  
  3303.         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  3304.                 if (intel_plane->pipe == pipe)
  3305.                         intel_plane_disable(&intel_plane->base);
  3306. }
  3307.  
  3308. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  3309. {
  3310.     struct drm_device *dev = crtc->dev;
  3311.     struct drm_i915_private *dev_priv = dev->dev_private;
  3312.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3313.         struct intel_encoder *encoder;
  3314.     int pipe = intel_crtc->pipe;
  3315.     int plane = intel_crtc->plane;
  3316.  
  3317.         WARN_ON(!crtc->enabled);
  3318.  
  3319.     if (intel_crtc->active)
  3320.         return;
  3321.  
  3322.     intel_crtc->active = true;
  3323.  
  3324.         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  3325.         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3326.  
  3327.     intel_update_watermarks(dev);
  3328.  
  3329.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3330.                 if (encoder->pre_enable)
  3331.                         encoder->pre_enable(encoder);
  3332.  
  3333.         if (intel_crtc->config.has_pch_encoder) {
  3334.                 /* Note: FDI PLL enabling _must_ be done before we enable the
  3335.                  * cpu pipes, hence this is separate from all the other fdi/pch
  3336.                  * enabling. */
  3337.                 ironlake_fdi_pll_enable(intel_crtc);
  3338.         } else {
  3339.                 assert_fdi_tx_disabled(dev_priv, pipe);
  3340.                 assert_fdi_rx_disabled(dev_priv, pipe);
  3341.         }
  3342.  
  3343.         ironlake_pfit_enable(intel_crtc);
  3344.  
  3345.     /*
  3346.      * On ILK+ LUT must be loaded before the pipe is running but with
  3347.      * clocks enabled
  3348.      */
  3349.     intel_crtc_load_lut(crtc);
  3350.  
  3351.         intel_enable_pipe(dev_priv, pipe,
  3352.                           intel_crtc->config.has_pch_encoder);
  3353.     intel_enable_plane(dev_priv, plane, pipe);
  3354.         intel_enable_planes(crtc);
  3355.         intel_crtc_update_cursor(crtc, true);
  3356.  
  3357.         if (intel_crtc->config.has_pch_encoder)
  3358.         ironlake_pch_enable(crtc);
  3359.  
  3360.     mutex_lock(&dev->struct_mutex);
  3361.     intel_update_fbc(dev);
  3362.     mutex_unlock(&dev->struct_mutex);
  3363.  
  3364.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3365.                 encoder->enable(encoder);
  3366.  
  3367.         if (HAS_PCH_CPT(dev))
  3368.                 cpt_verify_modeset(dev, intel_crtc->pipe);
  3369.  
  3370.         /*
  3371.          * There seems to be a race in PCH platform hw (at least on some
  3372.          * outputs) where an enabled pipe still completes any pageflip right
  3373.          * away (as if the pipe is off) instead of waiting for vblank. As soon
  3374.          * as the first vblank happend, everything works as expected. Hence just
  3375.          * wait for one vblank before returning to avoid strange things
  3376.          * happening.
  3377.          */
  3378.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  3379. }
  3380.  
  3381. /* IPS only exists on ULT machines and is tied to pipe A. */
  3382. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  3383. {
  3384.         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  3385. }
  3386.  
  3387. static void hsw_enable_ips(struct intel_crtc *crtc)
  3388. {
  3389.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  3390.  
  3391.         if (!crtc->config.ips_enabled)
  3392.                 return;
  3393.  
  3394.         /* We can only enable IPS after we enable a plane and wait for a vblank.
  3395.          * We guarantee that the plane is enabled by calling intel_enable_ips
  3396.          * only after intel_enable_plane. And intel_enable_plane already waits
  3397.          * for a vblank, so all we need to do here is to enable the IPS bit. */
  3398.         assert_plane_enabled(dev_priv, crtc->plane);
  3399.         I915_WRITE(IPS_CTL, IPS_ENABLE);
  3400. }
  3401.  
  3402. static void hsw_disable_ips(struct intel_crtc *crtc)
  3403. {
  3404.         struct drm_device *dev = crtc->base.dev;
  3405.         struct drm_i915_private *dev_priv = dev->dev_private;
  3406.  
  3407.         if (!crtc->config.ips_enabled)
  3408.                 return;
  3409.  
  3410.         assert_plane_enabled(dev_priv, crtc->plane);
  3411.         I915_WRITE(IPS_CTL, 0);
  3412.  
  3413.         /* We need to wait for a vblank before we can disable the plane. */
  3414.         intel_wait_for_vblank(dev, crtc->pipe);
  3415. }
  3416.  
  3417. static void haswell_crtc_enable(struct drm_crtc *crtc)
  3418. {
  3419.         struct drm_device *dev = crtc->dev;
  3420.         struct drm_i915_private *dev_priv = dev->dev_private;
  3421.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3422.         struct intel_encoder *encoder;
  3423.         int pipe = intel_crtc->pipe;
  3424.         int plane = intel_crtc->plane;
  3425.  
  3426.         WARN_ON(!crtc->enabled);
  3427.  
  3428.         if (intel_crtc->active)
  3429.                 return;
  3430.  
  3431.         intel_crtc->active = true;
  3432.  
  3433.         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  3434.         if (intel_crtc->config.has_pch_encoder)
  3435.                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3436.  
  3437.         intel_update_watermarks(dev);
  3438.  
  3439.         if (intel_crtc->config.has_pch_encoder)
  3440.                 dev_priv->display.fdi_link_train(crtc);
  3441.  
  3442.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3443.                 if (encoder->pre_enable)
  3444.                         encoder->pre_enable(encoder);
  3445.  
  3446.         intel_ddi_enable_pipe_clock(intel_crtc);
  3447.  
  3448.         ironlake_pfit_enable(intel_crtc);
  3449.  
  3450.         /*
  3451.          * On ILK+ LUT must be loaded before the pipe is running but with
  3452.          * clocks enabled
  3453.          */
  3454.         intel_crtc_load_lut(crtc);
  3455.  
  3456.         intel_ddi_set_pipe_settings(crtc);
  3457.         intel_ddi_enable_transcoder_func(crtc);
  3458.  
  3459.         intel_enable_pipe(dev_priv, pipe,
  3460.                           intel_crtc->config.has_pch_encoder);
  3461.         intel_enable_plane(dev_priv, plane, pipe);
  3462.         intel_enable_planes(crtc);
  3463.         intel_crtc_update_cursor(crtc, true);
  3464.  
  3465.         hsw_enable_ips(intel_crtc);
  3466.  
  3467.         if (intel_crtc->config.has_pch_encoder)
  3468.                 lpt_pch_enable(crtc);
  3469.  
  3470.         mutex_lock(&dev->struct_mutex);
  3471.         intel_update_fbc(dev);
  3472.         mutex_unlock(&dev->struct_mutex);
  3473.  
  3474.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3475.                 encoder->enable(encoder);
  3476.  
  3477.         /*
  3478.          * There seems to be a race in PCH platform hw (at least on some
  3479.          * outputs) where an enabled pipe still completes any pageflip right
  3480.          * away (as if the pipe is off) instead of waiting for vblank. As soon
  3481.          * as the first vblank happend, everything works as expected. Hence just
  3482.          * wait for one vblank before returning to avoid strange things
  3483.          * happening.
  3484.          */
  3485.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  3486. }
  3487.  
  3488. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  3489. {
  3490.         struct drm_device *dev = crtc->base.dev;
  3491.         struct drm_i915_private *dev_priv = dev->dev_private;
  3492.         int pipe = crtc->pipe;
  3493.  
  3494.         /* To avoid upsetting the power well on haswell only disable the pfit if
  3495.          * it's in use. The hw state code will make sure we get this right. */
  3496.         if (crtc->config.pch_pfit.enabled) {
  3497.                 I915_WRITE(PF_CTL(pipe), 0);
  3498.                 I915_WRITE(PF_WIN_POS(pipe), 0);
  3499.                 I915_WRITE(PF_WIN_SZ(pipe), 0);
  3500.         }
  3501. }
  3502.  
  3503. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3504. {
  3505.     struct drm_device *dev = crtc->dev;
  3506.     struct drm_i915_private *dev_priv = dev->dev_private;
  3507.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3508.         struct intel_encoder *encoder;
  3509.     int pipe = intel_crtc->pipe;
  3510.     int plane = intel_crtc->plane;
  3511.     u32 reg, temp;
  3512.  
  3513.  
  3514.     if (!intel_crtc->active)
  3515.         return;
  3516.  
  3517.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3518.                 encoder->disable(encoder);
  3519.  
  3520. //    intel_crtc_wait_for_pending_flips(crtc);
  3521. //    drm_vblank_off(dev, pipe);
  3522.  
  3523.         if (dev_priv->fbc.plane == plane)
  3524.                 intel_disable_fbc(dev);
  3525.  
  3526.         intel_crtc_update_cursor(crtc, false);
  3527.         intel_disable_planes(crtc);
  3528.     intel_disable_plane(dev_priv, plane, pipe);
  3529.  
  3530.         if (intel_crtc->config.has_pch_encoder)
  3531.                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3532.  
  3533.     intel_disable_pipe(dev_priv, pipe);
  3534.  
  3535.         ironlake_pfit_disable(intel_crtc);
  3536.  
  3537.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3538.                 if (encoder->post_disable)
  3539.                         encoder->post_disable(encoder);
  3540.  
  3541.         if (intel_crtc->config.has_pch_encoder) {
  3542.     ironlake_fdi_disable(crtc);
  3543.  
  3544.         ironlake_disable_pch_transcoder(dev_priv, pipe);
  3545.                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3546.  
  3547.     if (HAS_PCH_CPT(dev)) {
  3548.         /* disable TRANS_DP_CTL */
  3549.         reg = TRANS_DP_CTL(pipe);
  3550.         temp = I915_READ(reg);
  3551.                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3552.                                   TRANS_DP_PORT_SEL_MASK);
  3553.         temp |= TRANS_DP_PORT_SEL_NONE;
  3554.         I915_WRITE(reg, temp);
  3555.  
  3556.         /* disable DPLL_SEL */
  3557.         temp = I915_READ(PCH_DPLL_SEL);
  3558.                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3559.         I915_WRITE(PCH_DPLL_SEL, temp);
  3560.     }
  3561.  
  3562.     /* disable PCH DPLL */
  3563.                 intel_disable_shared_dpll(intel_crtc);
  3564.  
  3565.         ironlake_fdi_pll_disable(intel_crtc);
  3566.         }
  3567.  
  3568.     intel_crtc->active = false;
  3569.     intel_update_watermarks(dev);
  3570.  
  3571.     mutex_lock(&dev->struct_mutex);
  3572.     intel_update_fbc(dev);
  3573.     mutex_unlock(&dev->struct_mutex);
  3574. }
  3575.  
  3576. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3577. {
  3578.         struct drm_device *dev = crtc->dev;
  3579.         struct drm_i915_private *dev_priv = dev->dev_private;
  3580.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3581.         struct intel_encoder *encoder;
  3582.         int pipe = intel_crtc->pipe;
  3583.         int plane = intel_crtc->plane;
  3584.         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3585.  
  3586.         if (!intel_crtc->active)
  3587.                 return;
  3588.  
  3589.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3590.                 encoder->disable(encoder);
  3591.  
  3592.  
  3593.         /* FBC must be disabled before disabling the plane on HSW. */
  3594.         if (dev_priv->fbc.plane == plane)
  3595.                 intel_disable_fbc(dev);
  3596.  
  3597.         hsw_disable_ips(intel_crtc);
  3598.  
  3599.         intel_crtc_update_cursor(crtc, false);
  3600.         intel_disable_planes(crtc);
  3601.         intel_disable_plane(dev_priv, plane, pipe);
  3602.  
  3603.         if (intel_crtc->config.has_pch_encoder)
  3604.                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3605.         intel_disable_pipe(dev_priv, pipe);
  3606.  
  3607.         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3608.  
  3609.         ironlake_pfit_disable(intel_crtc);
  3610.  
  3611.         intel_ddi_disable_pipe_clock(intel_crtc);
  3612.  
  3613.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3614.                 if (encoder->post_disable)
  3615.                         encoder->post_disable(encoder);
  3616.  
  3617.         if (intel_crtc->config.has_pch_encoder) {
  3618.                 lpt_disable_pch_transcoder(dev_priv);
  3619.                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3620.                 intel_ddi_fdi_disable(crtc);
  3621.         }
  3622.  
  3623.         intel_crtc->active = false;
  3624.         intel_update_watermarks(dev);
  3625.  
  3626.         mutex_lock(&dev->struct_mutex);
  3627.         intel_update_fbc(dev);
  3628.         mutex_unlock(&dev->struct_mutex);
  3629. }
  3630.  
  3631. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3632. {
  3633.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3634.         intel_put_shared_dpll(intel_crtc);
  3635. }
  3636.  
  3637. static void haswell_crtc_off(struct drm_crtc *crtc)
  3638. {
  3639.         intel_ddi_put_crtc_pll(crtc);
  3640. }
  3641.  
  3642. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3643. {
  3644.         if (!enable && intel_crtc->overlay) {
  3645.                 struct drm_device *dev = intel_crtc->base.dev;
  3646.                 struct drm_i915_private *dev_priv = dev->dev_private;
  3647.  
  3648.                 mutex_lock(&dev->struct_mutex);
  3649.                 dev_priv->mm.interruptible = false;
  3650. //       (void) intel_overlay_switch_off(intel_crtc->overlay);
  3651.                 dev_priv->mm.interruptible = true;
  3652.                 mutex_unlock(&dev->struct_mutex);
  3653.         }
  3654.  
  3655.         /* Let userspace switch the overlay on again. In most cases userspace
  3656.          * has to recompute where to put it anyway.
  3657.          */
  3658. }
  3659.  
  3660. /**
  3661.  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3662.  * cursor plane briefly if not already running after enabling the display
  3663.  * plane.
  3664.  * This workaround avoids occasional blank screens when self refresh is
  3665.  * enabled.
  3666.  */
  3667. static void
  3668. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3669. {
  3670.         u32 cntl = I915_READ(CURCNTR(pipe));
  3671.  
  3672.         if ((cntl & CURSOR_MODE) == 0) {
  3673.                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3674.  
  3675.                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3676.                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3677.                 intel_wait_for_vblank(dev_priv->dev, pipe);
  3678.                 I915_WRITE(CURCNTR(pipe), cntl);
  3679.                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3680.                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3681.         }
  3682. }
  3683.  
  3684. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3685. {
  3686.         struct drm_device *dev = crtc->base.dev;
  3687.         struct drm_i915_private *dev_priv = dev->dev_private;
  3688.         struct intel_crtc_config *pipe_config = &crtc->config;
  3689.  
  3690.         if (!crtc->config.gmch_pfit.control)
  3691.                 return;
  3692.  
  3693.         /*
  3694.          * The panel fitter should only be adjusted whilst the pipe is disabled,
  3695.          * according to register description and PRM.
  3696.          */
  3697.         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3698.         assert_pipe_disabled(dev_priv, crtc->pipe);
  3699.  
  3700.         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3701.         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3702.  
  3703.         /* Border color in case we don't scale up to the full screen. Black by
  3704.          * default, change to something else for debugging. */
  3705.         I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3706. }
  3707.  
  3708. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3709. {
  3710.         struct drm_device *dev = crtc->dev;
  3711.         struct drm_i915_private *dev_priv = dev->dev_private;
  3712.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3713.         struct intel_encoder *encoder;
  3714.         int pipe = intel_crtc->pipe;
  3715.         int plane = intel_crtc->plane;
  3716.  
  3717.         WARN_ON(!crtc->enabled);
  3718.  
  3719.         if (intel_crtc->active)
  3720.                 return;
  3721.  
  3722.         intel_crtc->active = true;
  3723.         intel_update_watermarks(dev);
  3724.  
  3725.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3726.                 if (encoder->pre_pll_enable)
  3727.                         encoder->pre_pll_enable(encoder);
  3728.  
  3729.         vlv_enable_pll(intel_crtc);
  3730.  
  3731.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3732.                 if (encoder->pre_enable)
  3733.                         encoder->pre_enable(encoder);
  3734.  
  3735.         i9xx_pfit_enable(intel_crtc);
  3736.  
  3737.         intel_crtc_load_lut(crtc);
  3738.  
  3739.         intel_enable_pipe(dev_priv, pipe, false);
  3740.         intel_enable_plane(dev_priv, plane, pipe);
  3741.         intel_enable_planes(crtc);
  3742.         intel_crtc_update_cursor(crtc, true);
  3743.  
  3744.         intel_update_fbc(dev);
  3745.  
  3746.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3747.                 encoder->enable(encoder);
  3748. }
  3749.  
  3750. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3751. {
  3752.     struct drm_device *dev = crtc->dev;
  3753.     struct drm_i915_private *dev_priv = dev->dev_private;
  3754.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3755.         struct intel_encoder *encoder;
  3756.     int pipe = intel_crtc->pipe;
  3757.     int plane = intel_crtc->plane;
  3758.  
  3759.         WARN_ON(!crtc->enabled);
  3760.  
  3761.     if (intel_crtc->active)
  3762.         return;
  3763.  
  3764.     intel_crtc->active = true;
  3765.     intel_update_watermarks(dev);
  3766.  
  3767.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3768.                 if (encoder->pre_enable)
  3769.                         encoder->pre_enable(encoder);
  3770.  
  3771.         i9xx_enable_pll(intel_crtc);
  3772.  
  3773.         i9xx_pfit_enable(intel_crtc);
  3774.  
  3775.         intel_crtc_load_lut(crtc);
  3776.  
  3777.     intel_enable_pipe(dev_priv, pipe, false);
  3778.     intel_enable_plane(dev_priv, plane, pipe);
  3779.         intel_enable_planes(crtc);
  3780.         /* The fixup needs to happen before cursor is enabled */
  3781.         if (IS_G4X(dev))
  3782.                 g4x_fixup_plane(dev_priv, pipe);
  3783.         intel_crtc_update_cursor(crtc, true);
  3784.  
  3785.     /* Give the overlay scaler a chance to enable if it's on this pipe */
  3786.     intel_crtc_dpms_overlay(intel_crtc, true);
  3787.  
  3788.         intel_update_fbc(dev);
  3789.  
  3790.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3791.                 encoder->enable(encoder);
  3792. }
  3793.  
  3794. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3795. {
  3796.         struct drm_device *dev = crtc->base.dev;
  3797.         struct drm_i915_private *dev_priv = dev->dev_private;
  3798.  
  3799.         if (!crtc->config.gmch_pfit.control)
  3800.                 return;
  3801.  
  3802.         assert_pipe_disabled(dev_priv, crtc->pipe);
  3803.  
  3804.         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3805.                          I915_READ(PFIT_CONTROL));
  3806.                 I915_WRITE(PFIT_CONTROL, 0);
  3807. }
  3808.  
  3809. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3810. {
  3811.     struct drm_device *dev = crtc->dev;
  3812.     struct drm_i915_private *dev_priv = dev->dev_private;
  3813.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3814.         struct intel_encoder *encoder;
  3815.     int pipe = intel_crtc->pipe;
  3816.     int plane = intel_crtc->plane;
  3817.  
  3818.     if (!intel_crtc->active)
  3819.         return;
  3820.  
  3821.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3822.                 encoder->disable(encoder);
  3823.  
  3824.     /* Give the overlay scaler a chance to disable if it's on this pipe */
  3825. //    intel_crtc_wait_for_pending_flips(crtc);
  3826. //    drm_vblank_off(dev, pipe);
  3827.  
  3828.         if (dev_priv->fbc.plane == plane)
  3829.         intel_disable_fbc(dev);
  3830.  
  3831.         intel_crtc_dpms_overlay(intel_crtc, false);
  3832.         intel_crtc_update_cursor(crtc, false);
  3833.         intel_disable_planes(crtc);
  3834.     intel_disable_plane(dev_priv, plane, pipe);
  3835.  
  3836.     intel_disable_pipe(dev_priv, pipe);
  3837.  
  3838.         i9xx_pfit_disable(intel_crtc);
  3839.  
  3840.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3841.                 if (encoder->post_disable)
  3842.                         encoder->post_disable(encoder);
  3843.  
  3844.         if (IS_VALLEYVIEW(dev))
  3845.                 vlv_disable_pll(dev_priv, pipe);
  3846.         else
  3847.         i9xx_disable_pll(dev_priv, pipe);
  3848.  
  3849.     intel_crtc->active = false;
  3850.     intel_update_fbc(dev);
  3851.     intel_update_watermarks(dev);
  3852. }
  3853.  
  3854. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3855. {
  3856. }
  3857.  
  3858. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3859.                                     bool enabled)
  3860. {
  3861.         struct drm_device *dev = crtc->dev;
  3862.         struct drm_i915_master_private *master_priv;
  3863.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3864.         int pipe = intel_crtc->pipe;
  3865.  
  3866.  
  3867. #if 0
  3868.         if (!dev->primary->master)
  3869.                 return;
  3870.  
  3871.         master_priv = dev->primary->master->driver_priv;
  3872.         if (!master_priv->sarea_priv)
  3873.                 return;
  3874.  
  3875.         switch (pipe) {
  3876.         case 0:
  3877.                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3878.                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3879.                 break;
  3880.         case 1:
  3881.                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3882.                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3883.                 break;
  3884.         default:
  3885.                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3886.                 break;
  3887.         }
  3888. #endif
  3889.  
  3890. }
  3891.  
  3892. /**
  3893.  * Sets the power management mode of the pipe and plane.
  3894.  */
  3895. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3896. {
  3897.         struct drm_device *dev = crtc->dev;
  3898.         struct drm_i915_private *dev_priv = dev->dev_private;
  3899.         struct intel_encoder *intel_encoder;
  3900.         bool enable = false;
  3901.  
  3902.         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3903.                 enable |= intel_encoder->connectors_active;
  3904.  
  3905.         if (enable)
  3906.                 dev_priv->display.crtc_enable(crtc);
  3907.         else
  3908.                 dev_priv->display.crtc_disable(crtc);
  3909.  
  3910.         intel_crtc_update_sarea(crtc, enable);
  3911. }
  3912.  
  3913. static void intel_crtc_disable(struct drm_crtc *crtc)
  3914. {
  3915.         struct drm_device *dev = crtc->dev;
  3916.         struct drm_connector *connector;
  3917.         struct drm_i915_private *dev_priv = dev->dev_private;
  3918.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3919.  
  3920.         /* crtc should still be enabled when we disable it. */
  3921.         WARN_ON(!crtc->enabled);
  3922.  
  3923.         dev_priv->display.crtc_disable(crtc);
  3924.         intel_crtc->eld_vld = false;
  3925.         intel_crtc_update_sarea(crtc, false);
  3926.         dev_priv->display.off(crtc);
  3927.  
  3928.         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3929.         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3930.  
  3931.         if (crtc->fb) {
  3932.                 mutex_lock(&dev->struct_mutex);
  3933.                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3934.                 mutex_unlock(&dev->struct_mutex);
  3935.                 crtc->fb = NULL;
  3936.         }
  3937.  
  3938.         /* Update computed state. */
  3939.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3940.                 if (!connector->encoder || !connector->encoder->crtc)
  3941.                         continue;
  3942.  
  3943.                 if (connector->encoder->crtc != crtc)
  3944.                         continue;
  3945.  
  3946.                 connector->dpms = DRM_MODE_DPMS_OFF;
  3947.                 to_intel_encoder(connector->encoder)->connectors_active = false;
  3948.         }
  3949. }
  3950.  
  3951. void intel_encoder_destroy(struct drm_encoder *encoder)
  3952. {
  3953.         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3954.  
  3955.         drm_encoder_cleanup(encoder);
  3956.         kfree(intel_encoder);
  3957. }
  3958.  
  3959. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3960.  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3961.  * state of the entire output pipe. */
  3962. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3963. {
  3964.         if (mode == DRM_MODE_DPMS_ON) {
  3965.                 encoder->connectors_active = true;
  3966.  
  3967.                 intel_crtc_update_dpms(encoder->base.crtc);
  3968.         } else {
  3969.                 encoder->connectors_active = false;
  3970.  
  3971.                 intel_crtc_update_dpms(encoder->base.crtc);
  3972.         }
  3973. }
  3974.  
  3975. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3976.  * internal consistency). */
  3977. static void intel_connector_check_state(struct intel_connector *connector)
  3978. {
  3979.         if (connector->get_hw_state(connector)) {
  3980.                 struct intel_encoder *encoder = connector->encoder;
  3981.                 struct drm_crtc *crtc;
  3982.                 bool encoder_enabled;
  3983.                 enum pipe pipe;
  3984.  
  3985.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3986.                               connector->base.base.id,
  3987.                               drm_get_connector_name(&connector->base));
  3988.  
  3989.                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3990.                      "wrong connector dpms state\n");
  3991.                 WARN(connector->base.encoder != &encoder->base,
  3992.                      "active connector not linked to encoder\n");
  3993.                 WARN(!encoder->connectors_active,
  3994.                      "encoder->connectors_active not set\n");
  3995.  
  3996.                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3997.                 WARN(!encoder_enabled, "encoder not enabled\n");
  3998.                 if (WARN_ON(!encoder->base.crtc))
  3999.                         return;
  4000.  
  4001.                 crtc = encoder->base.crtc;
  4002.  
  4003.                 WARN(!crtc->enabled, "crtc not enabled\n");
  4004.                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  4005.                 WARN(pipe != to_intel_crtc(crtc)->pipe,
  4006.                      "encoder active on the wrong pipe\n");
  4007.         }
  4008. }
  4009.  
  4010. /* Even simpler default implementation, if there's really no special case to
  4011.  * consider. */
  4012. void intel_connector_dpms(struct drm_connector *connector, int mode)
  4013. {
  4014.         /* All the simple cases only support two dpms states. */
  4015.         if (mode != DRM_MODE_DPMS_ON)
  4016.                 mode = DRM_MODE_DPMS_OFF;
  4017.  
  4018.         if (mode == connector->dpms)
  4019.                 return;
  4020.  
  4021.         connector->dpms = mode;
  4022.  
  4023.         /* Only need to change hw state when actually enabled */
  4024.         if (connector->encoder)
  4025.                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
  4026.  
  4027.         intel_modeset_check_state(connector->dev);
  4028. }
  4029.  
  4030. /* Simple connector->get_hw_state implementation for encoders that support only
  4031.  * one connector and no cloning and hence the encoder state determines the state
  4032.  * of the connector. */
  4033. bool intel_connector_get_hw_state(struct intel_connector *connector)
  4034. {
  4035.         enum pipe pipe = 0;
  4036.         struct intel_encoder *encoder = connector->encoder;
  4037.  
  4038.         return encoder->get_hw_state(encoder, &pipe);
  4039. }
  4040.  
  4041. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  4042.                                      struct intel_crtc_config *pipe_config)
  4043. {
  4044.         struct drm_i915_private *dev_priv = dev->dev_private;
  4045.         struct intel_crtc *pipe_B_crtc =
  4046.                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4047.  
  4048.         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  4049.                       pipe_name(pipe), pipe_config->fdi_lanes);
  4050.         if (pipe_config->fdi_lanes > 4) {
  4051.                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  4052.                               pipe_name(pipe), pipe_config->fdi_lanes);
  4053.                 return false;
  4054.         }
  4055.  
  4056.         if (IS_HASWELL(dev)) {
  4057.                 if (pipe_config->fdi_lanes > 2) {
  4058.                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  4059.                                       pipe_config->fdi_lanes);
  4060.                         return false;
  4061.                 } else {
  4062.                         return true;
  4063.                 }
  4064.         }
  4065.  
  4066.         if (INTEL_INFO(dev)->num_pipes == 2)
  4067.                 return true;
  4068.  
  4069.         /* Ivybridge 3 pipe is really complicated */
  4070.         switch (pipe) {
  4071.         case PIPE_A:
  4072.                 return true;
  4073.         case PIPE_B:
  4074.                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4075.                     pipe_config->fdi_lanes > 2) {
  4076.                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4077.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  4078.                         return false;
  4079.                 }
  4080.                 return true;
  4081.         case PIPE_C:
  4082.                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  4083.                     pipe_B_crtc->config.fdi_lanes <= 2) {
  4084.                         if (pipe_config->fdi_lanes > 2) {
  4085.                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4086.                                               pipe_name(pipe), pipe_config->fdi_lanes);
  4087.                                 return false;
  4088.                         }
  4089.                 } else {
  4090.                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4091.                         return false;
  4092.                 }
  4093.                 return true;
  4094.         default:
  4095.                 BUG();
  4096.         }
  4097. }
  4098.  
  4099. #define RETRY 1
  4100. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  4101.                                       struct intel_crtc_config *pipe_config)
  4102. {
  4103.         struct drm_device *dev = intel_crtc->base.dev;
  4104.         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  4105.         int lane, link_bw, fdi_dotclock;
  4106.         bool setup_ok, needs_recompute = false;
  4107.  
  4108. retry:
  4109.         /* FDI is a binary signal running at ~2.7GHz, encoding
  4110.          * each output octet as 10 bits. The actual frequency
  4111.          * is stored as a divider into a 100MHz clock, and the
  4112.          * mode pixel clock is stored in units of 1KHz.
  4113.          * Hence the bw of each lane in terms of the mode signal
  4114.          * is:
  4115.          */
  4116.         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4117.  
  4118.         fdi_dotclock = adjusted_mode->clock;
  4119.         fdi_dotclock /= pipe_config->pixel_multiplier;
  4120.  
  4121.         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  4122.                                            pipe_config->pipe_bpp);
  4123.  
  4124.         pipe_config->fdi_lanes = lane;
  4125.  
  4126.         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  4127.                                link_bw, &pipe_config->fdi_m_n);
  4128.  
  4129.         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  4130.                                             intel_crtc->pipe, pipe_config);
  4131.         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  4132.                 pipe_config->pipe_bpp -= 2*3;
  4133.                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  4134.                               pipe_config->pipe_bpp);
  4135.                 needs_recompute = true;
  4136.                 pipe_config->bw_constrained = true;
  4137.  
  4138.                 goto retry;
  4139.         }
  4140.  
  4141.         if (needs_recompute)
  4142.                 return RETRY;
  4143.  
  4144.         return setup_ok ? 0 : -EINVAL;
  4145. }
  4146.  
  4147. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  4148.                                    struct intel_crtc_config *pipe_config)
  4149. {
  4150.         pipe_config->ips_enabled = i915_enable_ips &&
  4151.                                    hsw_crtc_supports_ips(crtc) &&
  4152.                                    pipe_config->pipe_bpp <= 24;
  4153. }
  4154.  
  4155. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  4156.                                      struct intel_crtc_config *pipe_config)
  4157. {
  4158.         struct drm_device *dev = crtc->base.dev;
  4159.         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  4160.  
  4161.         if (HAS_PCH_SPLIT(dev)) {
  4162.                 /* FDI link clock is fixed at 2.7G */
  4163.                 if (pipe_config->requested_mode.clock * 3
  4164.                     > IRONLAKE_FDI_FREQ * 4)
  4165.                         return -EINVAL;
  4166.         }
  4167.  
  4168.         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  4169.          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  4170.          */
  4171.         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  4172.                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  4173.                 return -EINVAL;
  4174.  
  4175.         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  4176.                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  4177.         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  4178.                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  4179.                  * for lvds. */
  4180.                 pipe_config->pipe_bpp = 8*3;
  4181.         }
  4182.  
  4183.         if (HAS_IPS(dev))
  4184.                 hsw_compute_ips_config(crtc, pipe_config);
  4185.  
  4186.         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  4187.          * clock survives for now. */
  4188.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4189.                 pipe_config->shared_dpll = crtc->config.shared_dpll;
  4190.  
  4191.         if (pipe_config->has_pch_encoder)
  4192.                 return ironlake_fdi_compute_config(crtc, pipe_config);
  4193.  
  4194.         return 0;
  4195. }
  4196.  
  4197. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  4198. {
  4199.         return 400000; /* FIXME */
  4200. }
  4201.  
  4202. static int i945_get_display_clock_speed(struct drm_device *dev)
  4203. {
  4204.         return 400000;
  4205. }
  4206.  
  4207. static int i915_get_display_clock_speed(struct drm_device *dev)
  4208. {
  4209.         return 333000;
  4210. }
  4211.  
  4212. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  4213. {
  4214.         return 200000;
  4215. }
  4216.  
  4217. static int pnv_get_display_clock_speed(struct drm_device *dev)
  4218. {
  4219.         u16 gcfgc = 0;
  4220.  
  4221.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  4222.  
  4223.         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  4224.         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  4225.                 return 267000;
  4226.         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  4227.                 return 333000;
  4228.         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  4229.                 return 444000;
  4230.         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  4231.                 return 200000;
  4232.         default:
  4233.                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  4234.         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  4235.                 return 133000;
  4236.         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  4237.                 return 167000;
  4238.         }
  4239. }
  4240.  
  4241. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  4242. {
  4243.         u16 gcfgc = 0;
  4244.  
  4245.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  4246.  
  4247.         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  4248.                 return 133000;
  4249.         else {
  4250.                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  4251.                 case GC_DISPLAY_CLOCK_333_MHZ:
  4252.                         return 333000;
  4253.                 default:
  4254.                 case GC_DISPLAY_CLOCK_190_200_MHZ:
  4255.                         return 190000;
  4256.                 }
  4257.         }
  4258. }
  4259.  
  4260. static int i865_get_display_clock_speed(struct drm_device *dev)
  4261. {
  4262.         return 266000;
  4263. }
  4264.  
  4265. static int i855_get_display_clock_speed(struct drm_device *dev)
  4266. {
  4267.         u16 hpllcc = 0;
  4268.         /* Assume that the hardware is in the high speed state.  This
  4269.          * should be the default.
  4270.          */
  4271.         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  4272.         case GC_CLOCK_133_200:
  4273.         case GC_CLOCK_100_200:
  4274.                 return 200000;
  4275.         case GC_CLOCK_166_250:
  4276.                 return 250000;
  4277.         case GC_CLOCK_100_133:
  4278.                 return 133000;
  4279.         }
  4280.  
  4281.         /* Shouldn't happen */
  4282.         return 0;
  4283. }
  4284.  
  4285. static int i830_get_display_clock_speed(struct drm_device *dev)
  4286. {
  4287.         return 133000;
  4288. }
  4289.  
  4290. static void
  4291. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  4292. {
  4293.         while (*num > DATA_LINK_M_N_MASK ||
  4294.                *den > DATA_LINK_M_N_MASK) {
  4295.                 *num >>= 1;
  4296.                 *den >>= 1;
  4297.         }
  4298. }
  4299.  
  4300. static void compute_m_n(unsigned int m, unsigned int n,
  4301.                         uint32_t *ret_m, uint32_t *ret_n)
  4302. {
  4303.         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  4304.         *ret_m = div_u64((uint64_t) m * *ret_n, n);
  4305.         intel_reduce_m_n_ratio(ret_m, ret_n);
  4306. }
  4307.  
  4308. void
  4309. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  4310.                        int pixel_clock, int link_clock,
  4311.                        struct intel_link_m_n *m_n)
  4312. {
  4313.         m_n->tu = 64;
  4314.  
  4315.         compute_m_n(bits_per_pixel * pixel_clock,
  4316.                     link_clock * nlanes * 8,
  4317.                     &m_n->gmch_m, &m_n->gmch_n);
  4318.  
  4319.         compute_m_n(pixel_clock, link_clock,
  4320.                     &m_n->link_m, &m_n->link_n);
  4321. }
  4322.  
  4323. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4324. {
  4325.         if (i915_panel_use_ssc >= 0)
  4326.                 return i915_panel_use_ssc != 0;
  4327.         return dev_priv->vbt.lvds_use_ssc
  4328.                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4329. }
  4330.  
  4331. static int vlv_get_refclk(struct drm_crtc *crtc)
  4332. {
  4333.         struct drm_device *dev = crtc->dev;
  4334.         struct drm_i915_private *dev_priv = dev->dev_private;
  4335.         int refclk = 27000; /* for DP & HDMI */
  4336.  
  4337.         return 100000; /* only one validated so far */
  4338.  
  4339.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  4340.                 refclk = 96000;
  4341.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  4342.                 if (intel_panel_use_ssc(dev_priv))
  4343.                         refclk = 100000;
  4344.                 else
  4345.                         refclk = 96000;
  4346.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  4347.                 refclk = 100000;
  4348.         }
  4349.  
  4350.         return refclk;
  4351. }
  4352.  
  4353. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4354. {
  4355.         struct drm_device *dev = crtc->dev;
  4356.         struct drm_i915_private *dev_priv = dev->dev_private;
  4357.         int refclk;
  4358.  
  4359.         if (IS_VALLEYVIEW(dev)) {
  4360.                 refclk = vlv_get_refclk(crtc);
  4361.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4362.             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4363.                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  4364.                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4365.                               refclk / 1000);
  4366.         } else if (!IS_GEN2(dev)) {
  4367.                 refclk = 96000;
  4368.         } else {
  4369.                 refclk = 48000;
  4370.         }
  4371.  
  4372.         return refclk;
  4373. }
  4374.  
  4375. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  4376. {
  4377.         return (1 << dpll->n) << 16 | dpll->m2;
  4378. }
  4379.  
  4380. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  4381. {
  4382.         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  4383. }
  4384.  
  4385. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  4386.                                      intel_clock_t *reduced_clock)
  4387. {
  4388.         struct drm_device *dev = crtc->base.dev;
  4389.         struct drm_i915_private *dev_priv = dev->dev_private;
  4390.         int pipe = crtc->pipe;
  4391.         u32 fp, fp2 = 0;
  4392.  
  4393.         if (IS_PINEVIEW(dev)) {
  4394.                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  4395.                 if (reduced_clock)
  4396.                         fp2 = pnv_dpll_compute_fp(reduced_clock);
  4397.         } else {
  4398.                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  4399.                 if (reduced_clock)
  4400.                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
  4401.         }
  4402.  
  4403.         I915_WRITE(FP0(pipe), fp);
  4404.         crtc->config.dpll_hw_state.fp0 = fp;
  4405.  
  4406.         crtc->lowfreq_avail = false;
  4407.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4408.             reduced_clock && i915_powersave) {
  4409.                 I915_WRITE(FP1(pipe), fp2);
  4410.                 crtc->config.dpll_hw_state.fp1 = fp2;
  4411.                 crtc->lowfreq_avail = true;
  4412.         } else {
  4413.                 I915_WRITE(FP1(pipe), fp);
  4414.                 crtc->config.dpll_hw_state.fp1 = fp;
  4415.         }
  4416. }
  4417.  
  4418. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  4419. {
  4420.         u32 reg_val;
  4421.  
  4422.         /*
  4423.          * PLLB opamp always calibrates to max value of 0x3f, force enable it
  4424.          * and set it to a reasonable value instead.
  4425.          */
  4426.         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  4427.         reg_val &= 0xffffff00;
  4428.         reg_val |= 0x00000030;
  4429.         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  4430.  
  4431.         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  4432.         reg_val &= 0x8cffffff;
  4433.         reg_val = 0x8c000000;
  4434.         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  4435.  
  4436.         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  4437.         reg_val &= 0xffffff00;
  4438.         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  4439.  
  4440.         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  4441.         reg_val &= 0x00ffffff;
  4442.         reg_val |= 0xb0000000;
  4443.         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  4444. }
  4445.  
  4446. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  4447.                                          struct intel_link_m_n *m_n)
  4448. {
  4449.         struct drm_device *dev = crtc->base.dev;
  4450.         struct drm_i915_private *dev_priv = dev->dev_private;
  4451.         int pipe = crtc->pipe;
  4452.  
  4453.         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4454.         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  4455.         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  4456.         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  4457. }
  4458.  
  4459. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  4460.                                          struct intel_link_m_n *m_n)
  4461. {
  4462.         struct drm_device *dev = crtc->base.dev;
  4463.         struct drm_i915_private *dev_priv = dev->dev_private;
  4464.         int pipe = crtc->pipe;
  4465.         enum transcoder transcoder = crtc->config.cpu_transcoder;
  4466.  
  4467.         if (INTEL_INFO(dev)->gen >= 5) {
  4468.                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4469.                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  4470.                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  4471.                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  4472.         } else {
  4473.                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4474.                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  4475.                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  4476.                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  4477.         }
  4478. }
  4479.  
  4480. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  4481. {
  4482.         if (crtc->config.has_pch_encoder)
  4483.                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  4484.         else
  4485.                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  4486. }
  4487.  
  4488. static void vlv_update_pll(struct intel_crtc *crtc)
  4489. {
  4490.         struct drm_device *dev = crtc->base.dev;
  4491.         struct drm_i915_private *dev_priv = dev->dev_private;
  4492.         int pipe = crtc->pipe;
  4493.         u32 dpll, mdiv;
  4494.         u32 bestn, bestm1, bestm2, bestp1, bestp2;
  4495.         u32 coreclk, reg_val, dpll_md;
  4496.  
  4497.         mutex_lock(&dev_priv->dpio_lock);
  4498.  
  4499.         bestn = crtc->config.dpll.n;
  4500.         bestm1 = crtc->config.dpll.m1;
  4501.         bestm2 = crtc->config.dpll.m2;
  4502.         bestp1 = crtc->config.dpll.p1;
  4503.         bestp2 = crtc->config.dpll.p2;
  4504.  
  4505.         /* See eDP HDMI DPIO driver vbios notes doc */
  4506.  
  4507.         /* PLL B needs special handling */
  4508.         if (pipe)
  4509.                 vlv_pllb_recal_opamp(dev_priv);
  4510.  
  4511.         /* Set up Tx target for periodic Rcomp update */
  4512.         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  4513.  
  4514.         /* Disable target IRef on PLL */
  4515.         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  4516.         reg_val &= 0x00ffffff;
  4517.         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  4518.  
  4519.         /* Disable fast lock */
  4520.         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  4521.  
  4522.         /* Set idtafcrecal before PLL is enabled */
  4523.         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  4524.         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  4525.         mdiv |= ((bestn << DPIO_N_SHIFT));
  4526.         mdiv |= (1 << DPIO_K_SHIFT);
  4527.  
  4528.         /*
  4529.          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  4530.          * but we don't support that).
  4531.          * Note: don't use the DAC post divider as it seems unstable.
  4532.          */
  4533.         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  4534.         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  4535.  
  4536.         mdiv |= DPIO_ENABLE_CALIBRATION;
  4537.         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  4538.  
  4539.         /* Set HBR and RBR LPF coefficients */
  4540.         if (crtc->config.port_clock == 162000 ||
  4541.             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  4542.             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  4543.                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  4544.                                  0x009f0003);
  4545.         else
  4546.                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  4547.                                  0x00d0000f);
  4548.  
  4549.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  4550.             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  4551.                 /* Use SSC source */
  4552.                 if (!pipe)
  4553.                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  4554.                                          0x0df40000);
  4555.                 else
  4556.                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  4557.                                          0x0df70000);
  4558.         } else { /* HDMI or VGA */
  4559.                 /* Use bend source */
  4560.                 if (!pipe)
  4561.                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  4562.                                          0x0df70000);
  4563.                 else
  4564.                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  4565.                                          0x0df40000);
  4566.         }
  4567.  
  4568.         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  4569.         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  4570.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  4571.             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  4572.                 coreclk |= 0x01000000;
  4573.         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  4574.  
  4575.         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  4576.  
  4577.         /* Enable DPIO clock input */
  4578.         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  4579.                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  4580.         /* We should never disable this, set it here for state tracking */
  4581.         if (pipe == PIPE_B)
  4582.                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  4583.         dpll |= DPLL_VCO_ENABLE;
  4584.         crtc->config.dpll_hw_state.dpll = dpll;
  4585.  
  4586.         dpll_md = (crtc->config.pixel_multiplier - 1)
  4587.                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4588.         crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4589.  
  4590.         if (crtc->config.has_dp_encoder)
  4591.                 intel_dp_set_m_n(crtc);
  4592.  
  4593.         mutex_unlock(&dev_priv->dpio_lock);
  4594. }
  4595.  
  4596. static void i9xx_update_pll(struct intel_crtc *crtc,
  4597.                             intel_clock_t *reduced_clock,
  4598.                             int num_connectors)
  4599. {
  4600.         struct drm_device *dev = crtc->base.dev;
  4601.         struct drm_i915_private *dev_priv = dev->dev_private;
  4602.         u32 dpll;
  4603.         bool is_sdvo;
  4604.         struct dpll *clock = &crtc->config.dpll;
  4605.  
  4606.         i9xx_update_pll_dividers(crtc, reduced_clock);
  4607.  
  4608.         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  4609.                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  4610.  
  4611.         dpll = DPLL_VGA_MODE_DIS;
  4612.  
  4613.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  4614.                 dpll |= DPLLB_MODE_LVDS;
  4615.         else
  4616.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  4617.  
  4618.         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4619.                         dpll |= (crtc->config.pixel_multiplier - 1)
  4620.                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
  4621.                 }
  4622.  
  4623.         if (is_sdvo)
  4624.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  4625.  
  4626.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  4627.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  4628.  
  4629.         /* compute bitmask from p1 value */
  4630.         if (IS_PINEVIEW(dev))
  4631.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4632.         else {
  4633.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4634.                 if (IS_G4X(dev) && reduced_clock)
  4635.                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4636.         }
  4637.         switch (clock->p2) {
  4638.         case 5:
  4639.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4640.                 break;
  4641.         case 7:
  4642.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4643.                 break;
  4644.         case 10:
  4645.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4646.                 break;
  4647.         case 14:
  4648.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4649.                 break;
  4650.         }
  4651.         if (INTEL_INFO(dev)->gen >= 4)
  4652.                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4653.  
  4654.         if (crtc->config.sdvo_tv_clock)
  4655.                 dpll |= PLL_REF_INPUT_TVCLKINBC;
  4656.         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4657.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4658.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4659.         else
  4660.                 dpll |= PLL_REF_INPUT_DREFCLK;
  4661.  
  4662.         dpll |= DPLL_VCO_ENABLE;
  4663.         crtc->config.dpll_hw_state.dpll = dpll;
  4664.  
  4665.         if (INTEL_INFO(dev)->gen >= 4) {
  4666.                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  4667.                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4668.                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4669.         }
  4670.  
  4671.         if (crtc->config.has_dp_encoder)
  4672.                 intel_dp_set_m_n(crtc);
  4673. }
  4674.  
  4675. static void i8xx_update_pll(struct intel_crtc *crtc,
  4676.                             intel_clock_t *reduced_clock,
  4677.                             int num_connectors)
  4678. {
  4679.         struct drm_device *dev = crtc->base.dev;
  4680.         struct drm_i915_private *dev_priv = dev->dev_private;
  4681.         u32 dpll;
  4682.         struct dpll *clock = &crtc->config.dpll;
  4683.  
  4684.         i9xx_update_pll_dividers(crtc, reduced_clock);
  4685.  
  4686.         dpll = DPLL_VGA_MODE_DIS;
  4687.  
  4688.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  4689.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4690.         } else {
  4691.                 if (clock->p1 == 2)
  4692.                         dpll |= PLL_P1_DIVIDE_BY_TWO;
  4693.                 else
  4694.                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4695.                 if (clock->p2 == 4)
  4696.                         dpll |= PLL_P2_DIVIDE_BY_4;
  4697.         }
  4698.  
  4699.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  4700.                 dpll |= DPLL_DVO_2X_MODE;
  4701.  
  4702.         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4703.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4704.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4705.         else
  4706.                 dpll |= PLL_REF_INPUT_DREFCLK;
  4707.  
  4708.         dpll |= DPLL_VCO_ENABLE;
  4709.         crtc->config.dpll_hw_state.dpll = dpll;
  4710. }
  4711.  
  4712. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  4713. {
  4714.         struct drm_device *dev = intel_crtc->base.dev;
  4715.         struct drm_i915_private *dev_priv = dev->dev_private;
  4716.         enum pipe pipe = intel_crtc->pipe;
  4717.         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4718.         struct drm_display_mode *adjusted_mode =
  4719.                 &intel_crtc->config.adjusted_mode;
  4720.         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4721.         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4722.  
  4723.         /* We need to be careful not to changed the adjusted mode, for otherwise
  4724.          * the hw state checker will get angry at the mismatch. */
  4725.         crtc_vtotal = adjusted_mode->crtc_vtotal;
  4726.         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4727.  
  4728.         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4729.                 /* the chip adds 2 halflines automatically */
  4730.                 crtc_vtotal -= 1;
  4731.                 crtc_vblank_end -= 1;
  4732.                 vsyncshift = adjusted_mode->crtc_hsync_start
  4733.                              - adjusted_mode->crtc_htotal / 2;
  4734.         } else {
  4735.                 vsyncshift = 0;
  4736.         }
  4737.  
  4738.         if (INTEL_INFO(dev)->gen > 3)
  4739.                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4740.  
  4741.         I915_WRITE(HTOTAL(cpu_transcoder),
  4742.                    (adjusted_mode->crtc_hdisplay - 1) |
  4743.                    ((adjusted_mode->crtc_htotal - 1) << 16));
  4744.         I915_WRITE(HBLANK(cpu_transcoder),
  4745.                    (adjusted_mode->crtc_hblank_start - 1) |
  4746.                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4747.         I915_WRITE(HSYNC(cpu_transcoder),
  4748.                    (adjusted_mode->crtc_hsync_start - 1) |
  4749.                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4750.  
  4751.         I915_WRITE(VTOTAL(cpu_transcoder),
  4752.                    (adjusted_mode->crtc_vdisplay - 1) |
  4753.                    ((crtc_vtotal - 1) << 16));
  4754.         I915_WRITE(VBLANK(cpu_transcoder),
  4755.                    (adjusted_mode->crtc_vblank_start - 1) |
  4756.                    ((crtc_vblank_end - 1) << 16));
  4757.         I915_WRITE(VSYNC(cpu_transcoder),
  4758.                    (adjusted_mode->crtc_vsync_start - 1) |
  4759.                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4760.  
  4761.         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4762.          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4763.          * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4764.          * bits. */
  4765.         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4766.             (pipe == PIPE_B || pipe == PIPE_C))
  4767.                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4768.  
  4769.         /* pipesrc controls the size that is scaled from, which should
  4770.          * always be the user's requested size.
  4771.          */
  4772.         I915_WRITE(PIPESRC(pipe),
  4773.                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4774. }
  4775.  
  4776. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4777.                                    struct intel_crtc_config *pipe_config)
  4778. {
  4779.         struct drm_device *dev = crtc->base.dev;
  4780.         struct drm_i915_private *dev_priv = dev->dev_private;
  4781.         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4782.         uint32_t tmp;
  4783.  
  4784.         tmp = I915_READ(HTOTAL(cpu_transcoder));
  4785.         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4786.         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4787.         tmp = I915_READ(HBLANK(cpu_transcoder));
  4788.         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4789.         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4790.         tmp = I915_READ(HSYNC(cpu_transcoder));
  4791.         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4792.         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4793.  
  4794.         tmp = I915_READ(VTOTAL(cpu_transcoder));
  4795.         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4796.         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4797.         tmp = I915_READ(VBLANK(cpu_transcoder));
  4798.         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4799.         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4800.         tmp = I915_READ(VSYNC(cpu_transcoder));
  4801.         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4802.         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4803.  
  4804.         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4805.                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4806.                 pipe_config->adjusted_mode.crtc_vtotal += 1;
  4807.                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4808.         }
  4809.  
  4810.         tmp = I915_READ(PIPESRC(crtc->pipe));
  4811.         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4812.         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4813. }
  4814.  
  4815. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4816.                                              struct intel_crtc_config *pipe_config)
  4817. {
  4818.         struct drm_crtc *crtc = &intel_crtc->base;
  4819.  
  4820.         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4821.         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4822.         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4823.         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4824.  
  4825.         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4826.         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4827.         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4828.         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4829.  
  4830.         crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4831.  
  4832.         crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4833.         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4834. }
  4835.  
  4836. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4837. {
  4838.         struct drm_device *dev = intel_crtc->base.dev;
  4839.         struct drm_i915_private *dev_priv = dev->dev_private;
  4840.         uint32_t pipeconf;
  4841.  
  4842.         pipeconf = 0;
  4843.  
  4844.         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4845.             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4846.                 pipeconf |= PIPECONF_ENABLE;
  4847.  
  4848.         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4849.                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4850.                  * core speed.
  4851.                  *
  4852.                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4853.                  * pipe == 0 check?
  4854.                  */
  4855.                 if (intel_crtc->config.requested_mode.clock >
  4856.                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4857.                         pipeconf |= PIPECONF_DOUBLE_WIDE;
  4858.         }
  4859.  
  4860.         /* only g4x and later have fancy bpc/dither controls */
  4861.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4862.                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4863.                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4864.                         pipeconf |= PIPECONF_DITHER_EN |
  4865.                                     PIPECONF_DITHER_TYPE_SP;
  4866.  
  4867.                 switch (intel_crtc->config.pipe_bpp) {
  4868.                 case 18:
  4869.                         pipeconf |= PIPECONF_6BPC;
  4870.                         break;
  4871.                 case 24:
  4872.                         pipeconf |= PIPECONF_8BPC;
  4873.                         break;
  4874.                 case 30:
  4875.                         pipeconf |= PIPECONF_10BPC;
  4876.                         break;
  4877.                 default:
  4878.                         /* Case prevented by intel_choose_pipe_bpp_dither. */
  4879.                         BUG();
  4880.                 }
  4881.         }
  4882.  
  4883.         if (HAS_PIPE_CXSR(dev)) {
  4884.                 if (intel_crtc->lowfreq_avail) {
  4885.                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4886.                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4887.                 } else {
  4888.                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4889.                 }
  4890.         }
  4891.  
  4892.         if (!IS_GEN2(dev) &&
  4893.             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4894.                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4895.         else
  4896.                 pipeconf |= PIPECONF_PROGRESSIVE;
  4897.  
  4898.         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4899.                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4900.  
  4901.         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4902.         POSTING_READ(PIPECONF(intel_crtc->pipe));
  4903. }
  4904.  
  4905. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4906.                               int x, int y,
  4907.                               struct drm_framebuffer *fb)
  4908. {
  4909.         struct drm_device *dev = crtc->dev;
  4910.         struct drm_i915_private *dev_priv = dev->dev_private;
  4911.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4912.         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4913.         int pipe = intel_crtc->pipe;
  4914.         int plane = intel_crtc->plane;
  4915.         int refclk, num_connectors = 0;
  4916.         intel_clock_t clock, reduced_clock;
  4917.         u32 dspcntr;
  4918.         bool ok, has_reduced_clock = false;
  4919.         bool is_lvds = false;
  4920.         struct intel_encoder *encoder;
  4921.         const intel_limit_t *limit;
  4922.         int ret;
  4923.  
  4924.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  4925.                 switch (encoder->type) {
  4926.                 case INTEL_OUTPUT_LVDS:
  4927.                         is_lvds = true;
  4928.                         break;
  4929.                 }
  4930.  
  4931.                 num_connectors++;
  4932.         }
  4933.  
  4934.         refclk = i9xx_get_refclk(crtc, num_connectors);
  4935.  
  4936.         /*
  4937.          * Returns a set of divisors for the desired target clock with the given
  4938.          * refclk, or FALSE.  The returned values represent the clock equation:
  4939.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4940.          */
  4941.         limit = intel_limit(crtc, refclk);
  4942.         ok = dev_priv->display.find_dpll(limit, crtc,
  4943.                                          intel_crtc->config.port_clock,
  4944.                                          refclk, NULL, &clock);
  4945.         if (!ok && !intel_crtc->config.clock_set) {
  4946.                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4947.                 return -EINVAL;
  4948.         }
  4949.  
  4950.         if (is_lvds && dev_priv->lvds_downclock_avail) {
  4951.                 /*
  4952.                  * Ensure we match the reduced clock's P to the target clock.
  4953.                  * If the clocks don't match, we can't switch the display clock
  4954.                  * by using the FP0/FP1. In such case we will disable the LVDS
  4955.                  * downclock feature.
  4956.                 */
  4957.                 has_reduced_clock =
  4958.                         dev_priv->display.find_dpll(limit, crtc,
  4959.                                                     dev_priv->lvds_downclock,
  4960.                                                     refclk, &clock,
  4961.                                                     &reduced_clock);
  4962.         }
  4963.         /* Compat-code for transition, will disappear. */
  4964.         if (!intel_crtc->config.clock_set) {
  4965.                 intel_crtc->config.dpll.n = clock.n;
  4966.                 intel_crtc->config.dpll.m1 = clock.m1;
  4967.                 intel_crtc->config.dpll.m2 = clock.m2;
  4968.                 intel_crtc->config.dpll.p1 = clock.p1;
  4969.                 intel_crtc->config.dpll.p2 = clock.p2;
  4970.         }
  4971.  
  4972.         if (IS_GEN2(dev))
  4973.                 i8xx_update_pll(intel_crtc,
  4974.                                 has_reduced_clock ? &reduced_clock : NULL,
  4975.                                 num_connectors);
  4976.         else if (IS_VALLEYVIEW(dev))
  4977.                 vlv_update_pll(intel_crtc);
  4978.         else
  4979.                 i9xx_update_pll(intel_crtc,
  4980.                                 has_reduced_clock ? &reduced_clock : NULL,
  4981.                                 num_connectors);
  4982.  
  4983.         /* Set up the display plane register */
  4984.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  4985.  
  4986.         if (!IS_VALLEYVIEW(dev)) {
  4987.         if (pipe == 0)
  4988.                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4989.         else
  4990.                 dspcntr |= DISPPLANE_SEL_PIPE_B;
  4991.         }
  4992.  
  4993.         intel_set_pipe_timings(intel_crtc);
  4994.  
  4995.         /* pipesrc and dspsize control the size that is scaled from,
  4996.          * which should always be the user's requested size.
  4997.          */
  4998.         I915_WRITE(DSPSIZE(plane),
  4999.                    ((mode->vdisplay - 1) << 16) |
  5000.                    (mode->hdisplay - 1));
  5001.         I915_WRITE(DSPPOS(plane), 0);
  5002.  
  5003.         i9xx_set_pipeconf(intel_crtc);
  5004.  
  5005.         I915_WRITE(DSPCNTR(plane), dspcntr);
  5006.         POSTING_READ(DSPCNTR(plane));
  5007.  
  5008.         ret = intel_pipe_set_base(crtc, x, y, fb);
  5009.  
  5010.         intel_update_watermarks(dev);
  5011.  
  5012.     return ret;
  5013. }
  5014.  
  5015. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  5016.                                  struct intel_crtc_config *pipe_config)
  5017. {
  5018.         struct drm_device *dev = crtc->base.dev;
  5019.         struct drm_i915_private *dev_priv = dev->dev_private;
  5020.         uint32_t tmp;
  5021.  
  5022.         tmp = I915_READ(PFIT_CONTROL);
  5023.         if (!(tmp & PFIT_ENABLE))
  5024.                 return;
  5025.  
  5026.         /* Check whether the pfit is attached to our pipe. */
  5027.         if (INTEL_INFO(dev)->gen < 4) {
  5028.                 if (crtc->pipe != PIPE_B)
  5029.                         return;
  5030.         } else {
  5031.                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  5032.                         return;
  5033.         }
  5034.  
  5035.         pipe_config->gmch_pfit.control = tmp;
  5036.         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  5037.         if (INTEL_INFO(dev)->gen < 5)
  5038.                 pipe_config->gmch_pfit.lvds_border_bits =
  5039.                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  5040. }
  5041.  
  5042. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  5043.                                struct intel_crtc_config *pipe_config)
  5044. {
  5045.         struct drm_device *dev = crtc->base.dev;
  5046.         struct drm_i915_private *dev_priv = dev->dev_private;
  5047.         int pipe = pipe_config->cpu_transcoder;
  5048.         intel_clock_t clock;
  5049.         u32 mdiv;
  5050.         int refclk = 100000;
  5051.  
  5052.         mutex_lock(&dev_priv->dpio_lock);
  5053.         mdiv = vlv_dpio_read(dev_priv, DPIO_DIV(pipe));
  5054.         mutex_unlock(&dev_priv->dpio_lock);
  5055.  
  5056.         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  5057.         clock.m2 = mdiv & DPIO_M2DIV_MASK;
  5058.         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  5059.         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  5060.         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  5061.  
  5062.         clock.vco = refclk * clock.m1 * clock.m2 / clock.n;
  5063.         clock.dot = 2 * clock.vco / (clock.p1 * clock.p2);
  5064.  
  5065.         pipe_config->adjusted_mode.clock = clock.dot / 10;
  5066. }
  5067.  
  5068. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  5069.                                  struct intel_crtc_config *pipe_config)
  5070. {
  5071.         struct drm_device *dev = crtc->base.dev;
  5072.         struct drm_i915_private *dev_priv = dev->dev_private;
  5073.         uint32_t tmp;
  5074.  
  5075.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5076.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5077.  
  5078.         tmp = I915_READ(PIPECONF(crtc->pipe));
  5079.         if (!(tmp & PIPECONF_ENABLE))
  5080.                 return false;
  5081.  
  5082.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  5083.                 switch (tmp & PIPECONF_BPC_MASK) {
  5084.                 case PIPECONF_6BPC:
  5085.                         pipe_config->pipe_bpp = 18;
  5086.                         break;
  5087.                 case PIPECONF_8BPC:
  5088.                         pipe_config->pipe_bpp = 24;
  5089.                         break;
  5090.                 case PIPECONF_10BPC:
  5091.                         pipe_config->pipe_bpp = 30;
  5092.                         break;
  5093.                 default:
  5094.                         break;
  5095.                 }
  5096.         }
  5097.  
  5098.         intel_get_pipe_timings(crtc, pipe_config);
  5099.  
  5100.         i9xx_get_pfit_config(crtc, pipe_config);
  5101.  
  5102.         if (INTEL_INFO(dev)->gen >= 4) {
  5103.                 tmp = I915_READ(DPLL_MD(crtc->pipe));
  5104.                 pipe_config->pixel_multiplier =
  5105.                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  5106.                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  5107.                 pipe_config->dpll_hw_state.dpll_md = tmp;
  5108.         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  5109.                 tmp = I915_READ(DPLL(crtc->pipe));
  5110.                 pipe_config->pixel_multiplier =
  5111.                         ((tmp & SDVO_MULTIPLIER_MASK)
  5112.                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  5113.         } else {
  5114.                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
  5115.                  * port and will be fixed up in the encoder->get_config
  5116.                  * function. */
  5117.                 pipe_config->pixel_multiplier = 1;
  5118.         }
  5119.         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  5120.         if (!IS_VALLEYVIEW(dev)) {
  5121.                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  5122.                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  5123.         } else {
  5124.                 /* Mask out read-only status bits. */
  5125.                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  5126.                                                      DPLL_PORTC_READY_MASK |
  5127.                                                      DPLL_PORTB_READY_MASK);
  5128.         }
  5129.  
  5130.         return true;
  5131. }
  5132.  
  5133. static void ironlake_init_pch_refclk(struct drm_device *dev)
  5134. {
  5135.         struct drm_i915_private *dev_priv = dev->dev_private;
  5136.         struct drm_mode_config *mode_config = &dev->mode_config;
  5137.         struct intel_encoder *encoder;
  5138.         u32 val, final;
  5139.         bool has_lvds = false;
  5140.         bool has_cpu_edp = false;
  5141.         bool has_panel = false;
  5142.         bool has_ck505 = false;
  5143.         bool can_ssc = false;
  5144.  
  5145.         /* We need to take the global config into account */
  5146.                 list_for_each_entry(encoder, &mode_config->encoder_list,
  5147.                                     base.head) {
  5148.                         switch (encoder->type) {
  5149.                         case INTEL_OUTPUT_LVDS:
  5150.                         has_panel = true;
  5151.                                 has_lvds = true;
  5152.                         break;
  5153.                         case INTEL_OUTPUT_EDP:
  5154.                         has_panel = true;
  5155.                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  5156.                                 has_cpu_edp = true;
  5157.                                 break;
  5158.                         }
  5159.                 }
  5160.  
  5161.         if (HAS_PCH_IBX(dev)) {
  5162.                 has_ck505 = dev_priv->vbt.display_clock_mode;
  5163.                 can_ssc = has_ck505;
  5164.         } else {
  5165.                 has_ck505 = false;
  5166.                 can_ssc = true;
  5167.         }
  5168.  
  5169.         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  5170.                       has_panel, has_lvds, has_ck505);
  5171.  
  5172.         /* Ironlake: try to setup display ref clock before DPLL
  5173.          * enabling. This is only under driver's control after
  5174.          * PCH B stepping, previous chipset stepping should be
  5175.          * ignoring this setting.
  5176.          */
  5177.         val = I915_READ(PCH_DREF_CONTROL);
  5178.  
  5179.         /* As we must carefully and slowly disable/enable each source in turn,
  5180.          * compute the final state we want first and check if we need to
  5181.          * make any changes at all.
  5182.          */
  5183.         final = val;
  5184.         final &= ~DREF_NONSPREAD_SOURCE_MASK;
  5185.         if (has_ck505)
  5186.                 final |= DREF_NONSPREAD_CK505_ENABLE;
  5187.         else
  5188.                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
  5189.  
  5190.         final &= ~DREF_SSC_SOURCE_MASK;
  5191.         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5192.         final &= ~DREF_SSC1_ENABLE;
  5193.  
  5194.         if (has_panel) {
  5195.                 final |= DREF_SSC_SOURCE_ENABLE;
  5196.  
  5197.                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
  5198.                         final |= DREF_SSC1_ENABLE;
  5199.  
  5200.                 if (has_cpu_edp) {
  5201.                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
  5202.                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  5203.                         else
  5204.                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  5205.                 } else
  5206.                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5207.         } else {
  5208.                 final |= DREF_SSC_SOURCE_DISABLE;
  5209.                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5210.         }
  5211.  
  5212.         if (final == val)
  5213.                 return;
  5214.  
  5215.         /* Always enable nonspread source */
  5216.         val &= ~DREF_NONSPREAD_SOURCE_MASK;
  5217.  
  5218.         if (has_ck505)
  5219.                 val |= DREF_NONSPREAD_CK505_ENABLE;
  5220.         else
  5221.                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
  5222.  
  5223.         if (has_panel) {
  5224.                 val &= ~DREF_SSC_SOURCE_MASK;
  5225.                 val |= DREF_SSC_SOURCE_ENABLE;
  5226.  
  5227.                 /* SSC must be turned on before enabling the CPU output  */
  5228.                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5229.                         DRM_DEBUG_KMS("Using SSC on panel\n");
  5230.                         val |= DREF_SSC1_ENABLE;
  5231.                 } else
  5232.                         val &= ~DREF_SSC1_ENABLE;
  5233.  
  5234.                 /* Get SSC going before enabling the outputs */
  5235.                 I915_WRITE(PCH_DREF_CONTROL, val);
  5236.                         POSTING_READ(PCH_DREF_CONTROL);
  5237.                         udelay(200);
  5238.  
  5239.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5240.  
  5241.                 /* Enable CPU source on CPU attached eDP */
  5242.                 if (has_cpu_edp) {
  5243.                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5244.                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
  5245.                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  5246.                         }
  5247.                         else
  5248.                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  5249.                 } else
  5250.                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5251.  
  5252.                 I915_WRITE(PCH_DREF_CONTROL, val);
  5253.                 POSTING_READ(PCH_DREF_CONTROL);
  5254.                 udelay(200);
  5255.                 } else {
  5256.                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
  5257.  
  5258.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5259.  
  5260.                 /* Turn off CPU output */
  5261.                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5262.  
  5263.                 I915_WRITE(PCH_DREF_CONTROL, val);
  5264.                 POSTING_READ(PCH_DREF_CONTROL);
  5265.                 udelay(200);
  5266.  
  5267.                 /* Turn off the SSC source */
  5268.                 val &= ~DREF_SSC_SOURCE_MASK;
  5269.                 val |= DREF_SSC_SOURCE_DISABLE;
  5270.  
  5271.                 /* Turn off SSC1 */
  5272.                 val &= ~DREF_SSC1_ENABLE;
  5273.  
  5274.                 I915_WRITE(PCH_DREF_CONTROL, val);
  5275.                 POSTING_READ(PCH_DREF_CONTROL);
  5276.                 udelay(200);
  5277.         }
  5278.  
  5279.         BUG_ON(val != final);
  5280. }
  5281.  
  5282. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  5283. {
  5284.         uint32_t tmp;
  5285.  
  5286.                 tmp = I915_READ(SOUTH_CHICKEN2);
  5287.                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  5288.                 I915_WRITE(SOUTH_CHICKEN2, tmp);
  5289.  
  5290.                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  5291.                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  5292.                         DRM_ERROR("FDI mPHY reset assert timeout\n");
  5293.  
  5294.                 tmp = I915_READ(SOUTH_CHICKEN2);
  5295.                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  5296.                 I915_WRITE(SOUTH_CHICKEN2, tmp);
  5297.  
  5298.                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  5299.                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  5300.                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  5301. }
  5302.  
  5303. /* WaMPhyProgramming:hsw */
  5304. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  5305. {
  5306.         uint32_t tmp;
  5307.  
  5308.         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  5309.         tmp &= ~(0xFF << 24);
  5310.         tmp |= (0x12 << 24);
  5311.         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  5312.  
  5313.         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  5314.         tmp |= (1 << 11);
  5315.         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  5316.  
  5317.         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  5318.         tmp |= (1 << 11);
  5319.         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  5320.  
  5321.         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  5322.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  5323.         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  5324.  
  5325.         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  5326.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  5327.         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  5328.  
  5329.                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  5330.                 tmp &= ~(7 << 13);
  5331.                 tmp |= (5 << 13);
  5332.                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  5333.  
  5334.                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  5335.                 tmp &= ~(7 << 13);
  5336.                 tmp |= (5 << 13);
  5337.                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  5338.  
  5339.         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  5340.         tmp &= ~0xFF;
  5341.         tmp |= 0x1C;
  5342.         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  5343.  
  5344.         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  5345.         tmp &= ~0xFF;
  5346.         tmp |= 0x1C;
  5347.         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  5348.  
  5349.         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  5350.         tmp &= ~(0xFF << 16);
  5351.         tmp |= (0x1C << 16);
  5352.         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  5353.  
  5354.         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  5355.         tmp &= ~(0xFF << 16);
  5356.         tmp |= (0x1C << 16);
  5357.         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  5358.  
  5359.                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  5360.                 tmp |= (1 << 27);
  5361.                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  5362.  
  5363.                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  5364.                 tmp |= (1 << 27);
  5365.                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  5366.  
  5367.                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  5368.                 tmp &= ~(0xF << 28);
  5369.                 tmp |= (4 << 28);
  5370.                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  5371.  
  5372.                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  5373.                 tmp &= ~(0xF << 28);
  5374.                 tmp |= (4 << 28);
  5375.                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  5376. }
  5377.  
  5378. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  5379.  * Programming" based on the parameters passed:
  5380.  * - Sequence to enable CLKOUT_DP
  5381.  * - Sequence to enable CLKOUT_DP without spread
  5382.  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  5383.  */
  5384. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  5385.                                  bool with_fdi)
  5386. {
  5387.         struct drm_i915_private *dev_priv = dev->dev_private;
  5388.         uint32_t reg, tmp;
  5389.  
  5390.         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  5391.                 with_spread = true;
  5392.         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  5393.                  with_fdi, "LP PCH doesn't have FDI\n"))
  5394.                 with_fdi = false;
  5395.  
  5396.         mutex_lock(&dev_priv->dpio_lock);
  5397.  
  5398.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  5399.         tmp &= ~SBI_SSCCTL_DISABLE;
  5400.         tmp |= SBI_SSCCTL_PATHALT;
  5401.         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  5402.  
  5403.         udelay(24);
  5404.  
  5405.         if (with_spread) {
  5406.                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  5407.                 tmp &= ~SBI_SSCCTL_PATHALT;
  5408.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  5409.  
  5410.                 if (with_fdi) {
  5411.                         lpt_reset_fdi_mphy(dev_priv);
  5412.                         lpt_program_fdi_mphy(dev_priv);
  5413.                 }
  5414.         }
  5415.  
  5416.         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  5417.                SBI_GEN0 : SBI_DBUFF0;
  5418.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  5419.         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  5420.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  5421.  
  5422.         mutex_unlock(&dev_priv->dpio_lock);
  5423. }
  5424.  
  5425. /* Sequence to disable CLKOUT_DP */
  5426. static void lpt_disable_clkout_dp(struct drm_device *dev)
  5427. {
  5428.         struct drm_i915_private *dev_priv = dev->dev_private;
  5429.         uint32_t reg, tmp;
  5430.  
  5431.         mutex_lock(&dev_priv->dpio_lock);
  5432.  
  5433.         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  5434.                SBI_GEN0 : SBI_DBUFF0;
  5435.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  5436.         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  5437.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  5438.  
  5439.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  5440.         if (!(tmp & SBI_SSCCTL_DISABLE)) {
  5441.                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
  5442.                         tmp |= SBI_SSCCTL_PATHALT;
  5443.                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  5444.                         udelay(32);
  5445.                 }
  5446.                 tmp |= SBI_SSCCTL_DISABLE;
  5447.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  5448.         }
  5449.  
  5450.         mutex_unlock(&dev_priv->dpio_lock);
  5451. }
  5452.  
  5453. static void lpt_init_pch_refclk(struct drm_device *dev)
  5454. {
  5455.         struct drm_mode_config *mode_config = &dev->mode_config;
  5456.         struct intel_encoder *encoder;
  5457.         bool has_vga = false;
  5458.  
  5459.         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  5460.                 switch (encoder->type) {
  5461.                 case INTEL_OUTPUT_ANALOG:
  5462.                         has_vga = true;
  5463.                         break;
  5464.                 }
  5465.         }
  5466.  
  5467.         if (has_vga)
  5468.                 lpt_enable_clkout_dp(dev, true, true);
  5469.         else
  5470.                 lpt_disable_clkout_dp(dev);
  5471. }
  5472.  
  5473. /*
  5474.  * Initialize reference clocks when the driver loads
  5475.  */
  5476. void intel_init_pch_refclk(struct drm_device *dev)
  5477. {
  5478.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  5479.                 ironlake_init_pch_refclk(dev);
  5480.         else if (HAS_PCH_LPT(dev))
  5481.                 lpt_init_pch_refclk(dev);
  5482. }
  5483.  
  5484. static int ironlake_get_refclk(struct drm_crtc *crtc)
  5485. {
  5486.         struct drm_device *dev = crtc->dev;
  5487.         struct drm_i915_private *dev_priv = dev->dev_private;
  5488.         struct intel_encoder *encoder;
  5489.         int num_connectors = 0;
  5490.         bool is_lvds = false;
  5491.  
  5492.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5493.                 switch (encoder->type) {
  5494.                 case INTEL_OUTPUT_LVDS:
  5495.                         is_lvds = true;
  5496.                         break;
  5497.                 }
  5498.                 num_connectors++;
  5499.         }
  5500.  
  5501.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  5502.                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  5503.                               dev_priv->vbt.lvds_ssc_freq);
  5504.                 return dev_priv->vbt.lvds_ssc_freq * 1000;
  5505.         }
  5506.  
  5507.         return 120000;
  5508. }
  5509.  
  5510. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  5511. {
  5512.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  5513.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5514.         int pipe = intel_crtc->pipe;
  5515.         uint32_t val;
  5516.  
  5517.         val = 0;
  5518.  
  5519.         switch (intel_crtc->config.pipe_bpp) {
  5520.         case 18:
  5521.                 val |= PIPECONF_6BPC;
  5522.                 break;
  5523.         case 24:
  5524.                 val |= PIPECONF_8BPC;
  5525.                 break;
  5526.         case 30:
  5527.                 val |= PIPECONF_10BPC;
  5528.                 break;
  5529.         case 36:
  5530.                 val |= PIPECONF_12BPC;
  5531.                 break;
  5532.         default:
  5533.                 /* Case prevented by intel_choose_pipe_bpp_dither. */
  5534.                 BUG();
  5535.         }
  5536.  
  5537.         if (intel_crtc->config.dither)
  5538.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  5539.  
  5540.         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  5541.                 val |= PIPECONF_INTERLACED_ILK;
  5542.         else
  5543.                 val |= PIPECONF_PROGRESSIVE;
  5544.  
  5545.         if (intel_crtc->config.limited_color_range)
  5546.                 val |= PIPECONF_COLOR_RANGE_SELECT;
  5547.  
  5548.         I915_WRITE(PIPECONF(pipe), val);
  5549.         POSTING_READ(PIPECONF(pipe));
  5550. }
  5551.  
  5552. /*
  5553.  * Set up the pipe CSC unit.
  5554.  *
  5555.  * Currently only full range RGB to limited range RGB conversion
  5556.  * is supported, but eventually this should handle various
  5557.  * RGB<->YCbCr scenarios as well.
  5558.  */
  5559. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  5560. {
  5561.         struct drm_device *dev = crtc->dev;
  5562.         struct drm_i915_private *dev_priv = dev->dev_private;
  5563.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5564.         int pipe = intel_crtc->pipe;
  5565.         uint16_t coeff = 0x7800; /* 1.0 */
  5566.  
  5567.         /*
  5568.          * TODO: Check what kind of values actually come out of the pipe
  5569.          * with these coeff/postoff values and adjust to get the best
  5570.          * accuracy. Perhaps we even need to take the bpc value into
  5571.          * consideration.
  5572.          */
  5573.  
  5574.         if (intel_crtc->config.limited_color_range)
  5575.                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  5576.  
  5577.         /*
  5578.          * GY/GU and RY/RU should be the other way around according
  5579.          * to BSpec, but reality doesn't agree. Just set them up in
  5580.          * a way that results in the correct picture.
  5581.          */
  5582.         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  5583.         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  5584.  
  5585.         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  5586.         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  5587.  
  5588.         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  5589.         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  5590.  
  5591.         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  5592.         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  5593.         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  5594.  
  5595.         if (INTEL_INFO(dev)->gen > 6) {
  5596.                 uint16_t postoff = 0;
  5597.  
  5598.                 if (intel_crtc->config.limited_color_range)
  5599.                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
  5600.  
  5601.                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  5602.                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  5603.                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  5604.  
  5605.                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  5606.         } else {
  5607.                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
  5608.  
  5609.                 if (intel_crtc->config.limited_color_range)
  5610.                         mode |= CSC_BLACK_SCREEN_OFFSET;
  5611.  
  5612.                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  5613.         }
  5614. }
  5615.  
  5616. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  5617. {
  5618.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  5619.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5620.         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5621.         uint32_t val;
  5622.  
  5623.         val = 0;
  5624.  
  5625.         if (intel_crtc->config.dither)
  5626.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  5627.  
  5628.         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  5629.                 val |= PIPECONF_INTERLACED_ILK;
  5630.         else
  5631.                 val |= PIPECONF_PROGRESSIVE;
  5632.  
  5633.         I915_WRITE(PIPECONF(cpu_transcoder), val);
  5634.         POSTING_READ(PIPECONF(cpu_transcoder));
  5635.  
  5636.         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  5637.         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  5638. }
  5639.  
  5640. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  5641.                                     intel_clock_t *clock,
  5642.                                     bool *has_reduced_clock,
  5643.                                     intel_clock_t *reduced_clock)
  5644. {
  5645.         struct drm_device *dev = crtc->dev;
  5646.         struct drm_i915_private *dev_priv = dev->dev_private;
  5647.         struct intel_encoder *intel_encoder;
  5648.         int refclk;
  5649.         const intel_limit_t *limit;
  5650.         bool ret, is_lvds = false;
  5651.  
  5652.         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  5653.                 switch (intel_encoder->type) {
  5654.                 case INTEL_OUTPUT_LVDS:
  5655.                         is_lvds = true;
  5656.                         break;
  5657.                 }
  5658.         }
  5659.  
  5660.         refclk = ironlake_get_refclk(crtc);
  5661.  
  5662.         /*
  5663.          * Returns a set of divisors for the desired target clock with the given
  5664.          * refclk, or FALSE.  The returned values represent the clock equation:
  5665.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  5666.          */
  5667.         limit = intel_limit(crtc, refclk);
  5668.         ret = dev_priv->display.find_dpll(limit, crtc,
  5669.                                           to_intel_crtc(crtc)->config.port_clock,
  5670.                                           refclk, NULL, clock);
  5671.         if (!ret)
  5672.                 return false;
  5673.  
  5674.         if (is_lvds && dev_priv->lvds_downclock_avail) {
  5675.                 /*
  5676.                  * Ensure we match the reduced clock's P to the target clock.
  5677.                  * If the clocks don't match, we can't switch the display clock
  5678.                  * by using the FP0/FP1. In such case we will disable the LVDS
  5679.                  * downclock feature.
  5680.                 */
  5681.                 *has_reduced_clock =
  5682.                         dev_priv->display.find_dpll(limit, crtc,
  5683.                                                      dev_priv->lvds_downclock,
  5684.                                                     refclk, clock,
  5685.                                                      reduced_clock);
  5686.         }
  5687.  
  5688.         return true;
  5689. }
  5690.  
  5691. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  5692. {
  5693.         /*
  5694.          * Account for spread spectrum to avoid
  5695.          * oversubscribing the link. Max center spread
  5696.          * is 2.5%; use 5% for safety's sake.
  5697.          */
  5698.         u32 bps = target_clock * bpp * 21 / 20;
  5699.         return bps / (link_bw * 8) + 1;
  5700. }
  5701.  
  5702. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  5703. {
  5704.         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  5705. }
  5706.  
  5707. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  5708.                                       u32 *fp,
  5709.                                       intel_clock_t *reduced_clock, u32 *fp2)
  5710. {
  5711.         struct drm_crtc *crtc = &intel_crtc->base;
  5712.         struct drm_device *dev = crtc->dev;
  5713.         struct drm_i915_private *dev_priv = dev->dev_private;
  5714.         struct intel_encoder *intel_encoder;
  5715.         uint32_t dpll;
  5716.         int factor, num_connectors = 0;
  5717.         bool is_lvds = false, is_sdvo = false;
  5718.  
  5719.         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  5720.                 switch (intel_encoder->type) {
  5721.                 case INTEL_OUTPUT_LVDS:
  5722.                         is_lvds = true;
  5723.                         break;
  5724.                 case INTEL_OUTPUT_SDVO:
  5725.                 case INTEL_OUTPUT_HDMI:
  5726.                         is_sdvo = true;
  5727.                         break;
  5728.                 }
  5729.  
  5730.                 num_connectors++;
  5731.         }
  5732.  
  5733.     /* Enable autotuning of the PLL clock (if permissible) */
  5734.     factor = 21;
  5735.     if (is_lvds) {
  5736.         if ((intel_panel_use_ssc(dev_priv) &&
  5737.                      dev_priv->vbt.lvds_ssc_freq == 100) ||
  5738.                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  5739.             factor = 25;
  5740.         } else if (intel_crtc->config.sdvo_tv_clock)
  5741.         factor = 20;
  5742.  
  5743.         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  5744.                 *fp |= FP_CB_TUNE;
  5745.  
  5746.         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  5747.                 *fp2 |= FP_CB_TUNE;
  5748.  
  5749.     dpll = 0;
  5750.  
  5751.     if (is_lvds)
  5752.         dpll |= DPLLB_MODE_LVDS;
  5753.     else
  5754.         dpll |= DPLLB_MODE_DAC_SERIAL;
  5755.  
  5756.                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
  5757.                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5758.  
  5759.         if (is_sdvo)
  5760.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  5761.         if (intel_crtc->config.has_dp_encoder)
  5762.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  5763.  
  5764.     /* compute bitmask from p1 value */
  5765.         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5766.     /* also FPA1 */
  5767.         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5768.  
  5769.         switch (intel_crtc->config.dpll.p2) {
  5770.     case 5:
  5771.         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5772.         break;
  5773.     case 7:
  5774.         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5775.         break;
  5776.     case 10:
  5777.         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5778.         break;
  5779.     case 14:
  5780.         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5781.         break;
  5782.     }
  5783.  
  5784.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5785.         dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5786.     else
  5787.         dpll |= PLL_REF_INPUT_DREFCLK;
  5788.  
  5789.         return dpll | DPLL_VCO_ENABLE;
  5790. }
  5791.  
  5792. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5793.                                   int x, int y,
  5794.                                   struct drm_framebuffer *fb)
  5795. {
  5796.         struct drm_device *dev = crtc->dev;
  5797.         struct drm_i915_private *dev_priv = dev->dev_private;
  5798.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5799.         int pipe = intel_crtc->pipe;
  5800.         int plane = intel_crtc->plane;
  5801.         int num_connectors = 0;
  5802.         intel_clock_t clock, reduced_clock;
  5803.         u32 dpll = 0, fp = 0, fp2 = 0;
  5804.         bool ok, has_reduced_clock = false;
  5805.         bool is_lvds = false;
  5806.         struct intel_encoder *encoder;
  5807.         struct intel_shared_dpll *pll;
  5808.         int ret;
  5809.  
  5810.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5811.                 switch (encoder->type) {
  5812.                 case INTEL_OUTPUT_LVDS:
  5813.                         is_lvds = true;
  5814.                         break;
  5815.                 }
  5816.  
  5817.                 num_connectors++;
  5818.         }
  5819.  
  5820.         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  5821.              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  5822.  
  5823.         ok = ironlake_compute_clocks(crtc, &clock,
  5824.                                      &has_reduced_clock, &reduced_clock);
  5825.         if (!ok && !intel_crtc->config.clock_set) {
  5826.                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5827.                 return -EINVAL;
  5828.         }
  5829.         /* Compat-code for transition, will disappear. */
  5830.         if (!intel_crtc->config.clock_set) {
  5831.                 intel_crtc->config.dpll.n = clock.n;
  5832.                 intel_crtc->config.dpll.m1 = clock.m1;
  5833.                 intel_crtc->config.dpll.m2 = clock.m2;
  5834.                 intel_crtc->config.dpll.p1 = clock.p1;
  5835.                 intel_crtc->config.dpll.p2 = clock.p2;
  5836.         }
  5837.  
  5838.         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  5839.         if (intel_crtc->config.has_pch_encoder) {
  5840.                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  5841.         if (has_reduced_clock)
  5842.                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  5843.  
  5844.                 dpll = ironlake_compute_dpll(intel_crtc,
  5845.                                              &fp, &reduced_clock,
  5846.                                      has_reduced_clock ? &fp2 : NULL);
  5847.  
  5848.                 intel_crtc->config.dpll_hw_state.dpll = dpll;
  5849.                 intel_crtc->config.dpll_hw_state.fp0 = fp;
  5850.                 if (has_reduced_clock)
  5851.                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
  5852.                 else
  5853.                         intel_crtc->config.dpll_hw_state.fp1 = fp;
  5854.  
  5855.                 pll = intel_get_shared_dpll(intel_crtc);
  5856.                 if (pll == NULL) {
  5857.                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  5858.                                          pipe_name(pipe));
  5859.                         return -EINVAL;
  5860.         }
  5861.         } else
  5862.                 intel_put_shared_dpll(intel_crtc);
  5863.  
  5864.         if (intel_crtc->config.has_dp_encoder)
  5865.                 intel_dp_set_m_n(intel_crtc);
  5866.  
  5867.         if (is_lvds && has_reduced_clock && i915_powersave)
  5868.                 intel_crtc->lowfreq_avail = true;
  5869.         else
  5870.                 intel_crtc->lowfreq_avail = false;
  5871.  
  5872.         if (intel_crtc->config.has_pch_encoder) {
  5873.                 pll = intel_crtc_to_shared_dpll(intel_crtc);
  5874.  
  5875.         }
  5876.  
  5877.         intel_set_pipe_timings(intel_crtc);
  5878.  
  5879.         if (intel_crtc->config.has_pch_encoder) {
  5880.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  5881.                                              &intel_crtc->config.fdi_m_n);
  5882.         }
  5883.  
  5884.         ironlake_set_pipeconf(crtc);
  5885.  
  5886.         /* Set up the display plane register */
  5887.         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5888.         POSTING_READ(DSPCNTR(plane));
  5889.  
  5890.         ret = intel_pipe_set_base(crtc, x, y, fb);
  5891.  
  5892.         intel_update_watermarks(dev);
  5893.  
  5894.         return ret;
  5895. }
  5896.  
  5897. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5898.                                         struct intel_crtc_config *pipe_config)
  5899. {
  5900.         struct drm_device *dev = crtc->base.dev;
  5901.         struct drm_i915_private *dev_priv = dev->dev_private;
  5902.         enum transcoder transcoder = pipe_config->cpu_transcoder;
  5903.  
  5904.         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5905.         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5906.         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5907.                                         & ~TU_SIZE_MASK;
  5908.         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5909.         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5910.                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5911. }
  5912.  
  5913. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5914.                                      struct intel_crtc_config *pipe_config)
  5915. {
  5916.         struct drm_device *dev = crtc->base.dev;
  5917.         struct drm_i915_private *dev_priv = dev->dev_private;
  5918.         uint32_t tmp;
  5919.  
  5920.         tmp = I915_READ(PF_CTL(crtc->pipe));
  5921.  
  5922.         if (tmp & PF_ENABLE) {
  5923.                 pipe_config->pch_pfit.enabled = true;
  5924.                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5925.                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5926.  
  5927.                 /* We currently do not free assignements of panel fitters on
  5928.                  * ivb/hsw (since we don't use the higher upscaling modes which
  5929.                  * differentiates them) so just WARN about this case for now. */
  5930.                 if (IS_GEN7(dev)) {
  5931.                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5932.                                 PF_PIPE_SEL_IVB(crtc->pipe));
  5933.                 }
  5934.         }
  5935. }
  5936.  
  5937. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5938.                                      struct intel_crtc_config *pipe_config)
  5939. {
  5940.         struct drm_device *dev = crtc->base.dev;
  5941.         struct drm_i915_private *dev_priv = dev->dev_private;
  5942.         uint32_t tmp;
  5943.  
  5944.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5945.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5946.  
  5947.         tmp = I915_READ(PIPECONF(crtc->pipe));
  5948.         if (!(tmp & PIPECONF_ENABLE))
  5949.                 return false;
  5950.  
  5951.         switch (tmp & PIPECONF_BPC_MASK) {
  5952.         case PIPECONF_6BPC:
  5953.                 pipe_config->pipe_bpp = 18;
  5954.                 break;
  5955.         case PIPECONF_8BPC:
  5956.                 pipe_config->pipe_bpp = 24;
  5957.                 break;
  5958.         case PIPECONF_10BPC:
  5959.                 pipe_config->pipe_bpp = 30;
  5960.                 break;
  5961.         case PIPECONF_12BPC:
  5962.                 pipe_config->pipe_bpp = 36;
  5963.                 break;
  5964.         default:
  5965.                 break;
  5966.         }
  5967.  
  5968.         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5969.                 struct intel_shared_dpll *pll;
  5970.  
  5971.                 pipe_config->has_pch_encoder = true;
  5972.  
  5973.                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5974.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5975.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5976.  
  5977.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5978.  
  5979.                 if (HAS_PCH_IBX(dev_priv->dev)) {
  5980.                         pipe_config->shared_dpll =
  5981.                                 (enum intel_dpll_id) crtc->pipe;
  5982.                 } else {
  5983.                         tmp = I915_READ(PCH_DPLL_SEL);
  5984.                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5985.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5986.                         else
  5987.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5988.                 }
  5989.  
  5990.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5991.  
  5992.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5993.                                            &pipe_config->dpll_hw_state));
  5994.  
  5995.                 tmp = pipe_config->dpll_hw_state.dpll;
  5996.                 pipe_config->pixel_multiplier =
  5997.                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5998.                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5999.         } else {
  6000.                 pipe_config->pixel_multiplier = 1;
  6001.         }
  6002.  
  6003.         intel_get_pipe_timings(crtc, pipe_config);
  6004.  
  6005.         ironlake_get_pfit_config(crtc, pipe_config);
  6006.  
  6007.         return true;
  6008. }
  6009.  
  6010. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  6011. {
  6012.         struct drm_device *dev = dev_priv->dev;
  6013.         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  6014.         struct intel_crtc *crtc;
  6015.         unsigned long irqflags;
  6016.         uint32_t val;
  6017.  
  6018.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  6019.                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
  6020.                      pipe_name(crtc->pipe));
  6021.  
  6022.         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  6023.         WARN(plls->spll_refcount, "SPLL enabled\n");
  6024.         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  6025.         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  6026.         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  6027.         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  6028.              "CPU PWM1 enabled\n");
  6029.         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  6030.              "CPU PWM2 enabled\n");
  6031.         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  6032.              "PCH PWM1 enabled\n");
  6033.         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  6034.              "Utility pin enabled\n");
  6035.         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  6036.  
  6037.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  6038.         val = I915_READ(DEIMR);
  6039.         WARN((val & ~DE_PCH_EVENT_IVB) != val,
  6040.              "Unexpected DEIMR bits enabled: 0x%x\n", val);
  6041.         val = I915_READ(SDEIMR);
  6042.         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  6043.              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  6044.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  6045. }
  6046.  
  6047. /*
  6048.  * This function implements pieces of two sequences from BSpec:
  6049.  * - Sequence for display software to disable LCPLL
  6050.  * - Sequence for display software to allow package C8+
  6051.  * The steps implemented here are just the steps that actually touch the LCPLL
  6052.  * register. Callers should take care of disabling all the display engine
  6053.  * functions, doing the mode unset, fixing interrupts, etc.
  6054.  */
  6055. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  6056.                        bool switch_to_fclk, bool allow_power_down)
  6057. {
  6058.         uint32_t val;
  6059.  
  6060.         assert_can_disable_lcpll(dev_priv);
  6061.  
  6062.         val = I915_READ(LCPLL_CTL);
  6063.  
  6064.         if (switch_to_fclk) {
  6065.                 val |= LCPLL_CD_SOURCE_FCLK;
  6066.                 I915_WRITE(LCPLL_CTL, val);
  6067.  
  6068.                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  6069.                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
  6070.                         DRM_ERROR("Switching to FCLK failed\n");
  6071.  
  6072.                 val = I915_READ(LCPLL_CTL);
  6073.         }
  6074.  
  6075.         val |= LCPLL_PLL_DISABLE;
  6076.         I915_WRITE(LCPLL_CTL, val);
  6077.         POSTING_READ(LCPLL_CTL);
  6078.  
  6079.         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  6080.                 DRM_ERROR("LCPLL still locked\n");
  6081.  
  6082.         val = I915_READ(D_COMP);
  6083.         val |= D_COMP_COMP_DISABLE;
  6084.         I915_WRITE(D_COMP, val);
  6085.         POSTING_READ(D_COMP);
  6086.     udelay(100);
  6087.  
  6088.         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  6089.                 DRM_ERROR("D_COMP RCOMP still in progress\n");
  6090.  
  6091.         if (allow_power_down) {
  6092.                 val = I915_READ(LCPLL_CTL);
  6093.                 val |= LCPLL_POWER_DOWN_ALLOW;
  6094.                 I915_WRITE(LCPLL_CTL, val);
  6095.                 POSTING_READ(LCPLL_CTL);
  6096.         }
  6097. }
  6098.  
  6099. /*
  6100.  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  6101.  * source.
  6102.  */
  6103. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  6104. {
  6105.         uint32_t val;
  6106.  
  6107.         val = I915_READ(LCPLL_CTL);
  6108.  
  6109.         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  6110.                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  6111.                 return;
  6112.  
  6113.         /* Make sure we're not on PC8 state before disabling PC8, otherwise
  6114.          * we'll hang the machine! */
  6115.         gen6_gt_force_wake_get(dev_priv);
  6116.  
  6117.         if (val & LCPLL_POWER_DOWN_ALLOW) {
  6118.                 val &= ~LCPLL_POWER_DOWN_ALLOW;
  6119.                 I915_WRITE(LCPLL_CTL, val);
  6120.                 POSTING_READ(LCPLL_CTL);
  6121.         }
  6122.  
  6123.         val = I915_READ(D_COMP);
  6124.         val |= D_COMP_COMP_FORCE;
  6125.         val &= ~D_COMP_COMP_DISABLE;
  6126.         I915_WRITE(D_COMP, val);
  6127.         POSTING_READ(D_COMP);
  6128.  
  6129.         val = I915_READ(LCPLL_CTL);
  6130.         val &= ~LCPLL_PLL_DISABLE;
  6131.         I915_WRITE(LCPLL_CTL, val);
  6132.  
  6133.         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  6134.                 DRM_ERROR("LCPLL not locked yet\n");
  6135.  
  6136.         if (val & LCPLL_CD_SOURCE_FCLK) {
  6137.                 val = I915_READ(LCPLL_CTL);
  6138.                 val &= ~LCPLL_CD_SOURCE_FCLK;
  6139.                 I915_WRITE(LCPLL_CTL, val);
  6140.  
  6141.                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  6142.                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  6143.                         DRM_ERROR("Switching back to LCPLL failed\n");
  6144.         }
  6145.  
  6146.         gen6_gt_force_wake_put(dev_priv);
  6147. }
  6148.  
  6149. void hsw_enable_pc8_work(struct work_struct *__work)
  6150. {
  6151.         struct drm_i915_private *dev_priv =
  6152.                 container_of(to_delayed_work(__work), struct drm_i915_private,
  6153.                              pc8.enable_work);
  6154.         struct drm_device *dev = dev_priv->dev;
  6155.         uint32_t val;
  6156.  
  6157.         if (dev_priv->pc8.enabled)
  6158.                 return;
  6159.  
  6160.         DRM_DEBUG_KMS("Enabling package C8+\n");
  6161.  
  6162.         dev_priv->pc8.enabled = true;
  6163.  
  6164.         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  6165.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  6166.                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  6167.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  6168.         }
  6169.  
  6170.         lpt_disable_clkout_dp(dev);
  6171.         hsw_pc8_disable_interrupts(dev);
  6172.         hsw_disable_lcpll(dev_priv, true, true);
  6173. }
  6174.  
  6175. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  6176. {
  6177.         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  6178.         WARN(dev_priv->pc8.disable_count < 1,
  6179.              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  6180.  
  6181.         dev_priv->pc8.disable_count--;
  6182.         if (dev_priv->pc8.disable_count != 0)
  6183.                 return;
  6184.  
  6185.         schedule_delayed_work(&dev_priv->pc8.enable_work,
  6186.                               msecs_to_jiffies(i915_pc8_timeout));
  6187. }
  6188.  
  6189. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  6190. {
  6191.         struct drm_device *dev = dev_priv->dev;
  6192.         uint32_t val;
  6193.  
  6194.         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  6195.         WARN(dev_priv->pc8.disable_count < 0,
  6196.              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  6197.  
  6198.         dev_priv->pc8.disable_count++;
  6199.         if (dev_priv->pc8.disable_count != 1)
  6200.                 return;
  6201.  
  6202.         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  6203.         if (!dev_priv->pc8.enabled)
  6204.                 return;
  6205.  
  6206.         DRM_DEBUG_KMS("Disabling package C8+\n");
  6207.  
  6208.         hsw_restore_lcpll(dev_priv);
  6209.         hsw_pc8_restore_interrupts(dev);
  6210.         lpt_init_pch_refclk(dev);
  6211.  
  6212.         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  6213.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  6214.                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  6215.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  6216.         }
  6217.  
  6218.         intel_prepare_ddi(dev);
  6219.         i915_gem_init_swizzling(dev);
  6220.         mutex_lock(&dev_priv->rps.hw_lock);
  6221.         gen6_update_ring_freq(dev);
  6222.         mutex_unlock(&dev_priv->rps.hw_lock);
  6223.         dev_priv->pc8.enabled = false;
  6224. }
  6225.  
  6226. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  6227. {
  6228.         mutex_lock(&dev_priv->pc8.lock);
  6229.         __hsw_enable_package_c8(dev_priv);
  6230.         mutex_unlock(&dev_priv->pc8.lock);
  6231. }
  6232.  
  6233. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  6234. {
  6235.         mutex_lock(&dev_priv->pc8.lock);
  6236.         __hsw_disable_package_c8(dev_priv);
  6237.         mutex_unlock(&dev_priv->pc8.lock);
  6238. }
  6239.  
  6240. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  6241. {
  6242.         struct drm_device *dev = dev_priv->dev;
  6243.         struct intel_crtc *crtc;
  6244.         uint32_t val;
  6245.  
  6246.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  6247.                 if (crtc->base.enabled)
  6248.                         return false;
  6249.  
  6250.         /* This case is still possible since we have the i915.disable_power_well
  6251.          * parameter and also the KVMr or something else might be requesting the
  6252.          * power well. */
  6253.         val = I915_READ(HSW_PWR_WELL_DRIVER);
  6254.         if (val != 0) {
  6255.                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  6256.                 return false;
  6257.         }
  6258.  
  6259.         return true;
  6260. }
  6261.  
  6262. /* Since we're called from modeset_global_resources there's no way to
  6263.  * symmetrically increase and decrease the refcount, so we use
  6264.  * dev_priv->pc8.requirements_met to track whether we already have the refcount
  6265.  * or not.
  6266.  */
  6267. static void hsw_update_package_c8(struct drm_device *dev)
  6268. {
  6269.         struct drm_i915_private *dev_priv = dev->dev_private;
  6270.         bool allow;
  6271.  
  6272.         if (!i915_enable_pc8)
  6273.                 return;
  6274.  
  6275.         mutex_lock(&dev_priv->pc8.lock);
  6276.  
  6277.         allow = hsw_can_enable_package_c8(dev_priv);
  6278.  
  6279.         if (allow == dev_priv->pc8.requirements_met)
  6280.                 goto done;
  6281.  
  6282.         dev_priv->pc8.requirements_met = allow;
  6283.  
  6284.         if (allow)
  6285.                 __hsw_enable_package_c8(dev_priv);
  6286.         else
  6287.                 __hsw_disable_package_c8(dev_priv);
  6288.  
  6289. done:
  6290.         mutex_unlock(&dev_priv->pc8.lock);
  6291. }
  6292.  
  6293. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  6294. {
  6295.         if (!dev_priv->pc8.gpu_idle) {
  6296.                 dev_priv->pc8.gpu_idle = true;
  6297.                 hsw_enable_package_c8(dev_priv);
  6298.         }
  6299. }
  6300.  
  6301. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  6302. {
  6303.         if (dev_priv->pc8.gpu_idle) {
  6304.                 dev_priv->pc8.gpu_idle = false;
  6305.                 hsw_disable_package_c8(dev_priv);
  6306.         }
  6307. }
  6308.  
  6309. static void haswell_modeset_global_resources(struct drm_device *dev)
  6310. {
  6311.         bool enable = false;
  6312.         struct intel_crtc *crtc;
  6313.  
  6314.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  6315.                 if (!crtc->base.enabled)
  6316.                         continue;
  6317.  
  6318.                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
  6319.                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
  6320.                         enable = true;
  6321.         }
  6322.  
  6323.         intel_set_power_well(dev, enable);
  6324.  
  6325.         hsw_update_package_c8(dev);
  6326. }
  6327.  
  6328. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  6329.                                  int x, int y,
  6330.                                  struct drm_framebuffer *fb)
  6331. {
  6332.         struct drm_device *dev = crtc->dev;
  6333.         struct drm_i915_private *dev_priv = dev->dev_private;
  6334.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6335.         int plane = intel_crtc->plane;
  6336.         int ret;
  6337.  
  6338.         if (!intel_ddi_pll_mode_set(crtc))
  6339.                 return -EINVAL;
  6340.  
  6341.         if (intel_crtc->config.has_dp_encoder)
  6342.                 intel_dp_set_m_n(intel_crtc);
  6343.  
  6344.         intel_crtc->lowfreq_avail = false;
  6345.  
  6346.         intel_set_pipe_timings(intel_crtc);
  6347.  
  6348.         if (intel_crtc->config.has_pch_encoder) {
  6349.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  6350.                                              &intel_crtc->config.fdi_m_n);
  6351.         }
  6352.  
  6353.         haswell_set_pipeconf(crtc);
  6354.  
  6355.         intel_set_pipe_csc(crtc);
  6356.  
  6357.         /* Set up the display plane register */
  6358.         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  6359.     POSTING_READ(DSPCNTR(plane));
  6360.  
  6361.         ret = intel_pipe_set_base(crtc, x, y, fb);
  6362.  
  6363.     intel_update_watermarks(dev);
  6364.  
  6365.     return ret;
  6366. }
  6367.  
  6368. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  6369.                                     struct intel_crtc_config *pipe_config)
  6370. {
  6371.         struct drm_device *dev = crtc->base.dev;
  6372.         struct drm_i915_private *dev_priv = dev->dev_private;
  6373.         enum intel_display_power_domain pfit_domain;
  6374.         uint32_t tmp;
  6375.  
  6376.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  6377.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6378.  
  6379.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  6380.         if (tmp & TRANS_DDI_FUNC_ENABLE) {
  6381.                 enum pipe trans_edp_pipe;
  6382.                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  6383.                 default:
  6384.                         WARN(1, "unknown pipe linked to edp transcoder\n");
  6385.                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
  6386.                 case TRANS_DDI_EDP_INPUT_A_ON:
  6387.                         trans_edp_pipe = PIPE_A;
  6388.                         break;
  6389.                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
  6390.                         trans_edp_pipe = PIPE_B;
  6391.                         break;
  6392.                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
  6393.                         trans_edp_pipe = PIPE_C;
  6394.                         break;
  6395.                 }
  6396.  
  6397.                 if (trans_edp_pipe == crtc->pipe)
  6398.                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
  6399.         }
  6400.  
  6401.         if (!intel_display_power_enabled(dev,
  6402.                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  6403.                 return false;
  6404.  
  6405.         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  6406.         if (!(tmp & PIPECONF_ENABLE))
  6407.                 return false;
  6408.  
  6409.         /*
  6410.          * Haswell has only FDI/PCH transcoder A. It is which is connected to
  6411.          * DDI E. So just check whether this pipe is wired to DDI E and whether
  6412.          * the PCH transcoder is on.
  6413.          */
  6414.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  6415.         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  6416.             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  6417.                 pipe_config->has_pch_encoder = true;
  6418.  
  6419.                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  6420.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  6421.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  6422.  
  6423.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  6424.         }
  6425.  
  6426.         intel_get_pipe_timings(crtc, pipe_config);
  6427.  
  6428.         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  6429.         if (intel_display_power_enabled(dev, pfit_domain))
  6430.                 ironlake_get_pfit_config(crtc, pipe_config);
  6431.  
  6432.         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  6433.                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
  6434.  
  6435.         pipe_config->pixel_multiplier = 1;
  6436.  
  6437.         return true;
  6438. }
  6439.  
  6440. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  6441.                                int x, int y,
  6442.                                struct drm_framebuffer *fb)
  6443. {
  6444.         struct drm_device *dev = crtc->dev;
  6445.         struct drm_i915_private *dev_priv = dev->dev_private;
  6446.         struct intel_encoder *encoder;
  6447.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6448.         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  6449.         int pipe = intel_crtc->pipe;
  6450.         int ret;
  6451.  
  6452.         drm_vblank_pre_modeset(dev, pipe);
  6453.  
  6454.         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  6455.  
  6456.         drm_vblank_post_modeset(dev, pipe);
  6457.  
  6458.         if (ret != 0)
  6459.         return ret;
  6460.  
  6461.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  6462.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  6463.                         encoder->base.base.id,
  6464.                         drm_get_encoder_name(&encoder->base),
  6465.                         mode->base.id, mode->name);
  6466.                         encoder->mode_set(encoder);
  6467.         }
  6468.  
  6469.         return 0;
  6470. }
  6471.  
  6472. static bool intel_eld_uptodate(struct drm_connector *connector,
  6473.                                int reg_eldv, uint32_t bits_eldv,
  6474.                                int reg_elda, uint32_t bits_elda,
  6475.                                int reg_edid)
  6476. {
  6477.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  6478.         uint8_t *eld = connector->eld;
  6479.         uint32_t i;
  6480.  
  6481.         i = I915_READ(reg_eldv);
  6482.         i &= bits_eldv;
  6483.  
  6484.         if (!eld[0])
  6485.                 return !i;
  6486.  
  6487.         if (!i)
  6488.                 return false;
  6489.  
  6490.         i = I915_READ(reg_elda);
  6491.         i &= ~bits_elda;
  6492.         I915_WRITE(reg_elda, i);
  6493.  
  6494.         for (i = 0; i < eld[2]; i++)
  6495.                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  6496.                         return false;
  6497.  
  6498.         return true;
  6499. }
  6500.  
  6501. static void g4x_write_eld(struct drm_connector *connector,
  6502.                           struct drm_crtc *crtc)
  6503. {
  6504.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  6505.         uint8_t *eld = connector->eld;
  6506.         uint32_t eldv;
  6507.         uint32_t len;
  6508.         uint32_t i;
  6509.  
  6510.         i = I915_READ(G4X_AUD_VID_DID);
  6511.  
  6512.         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  6513.                 eldv = G4X_ELDV_DEVCL_DEVBLC;
  6514.         else
  6515.                 eldv = G4X_ELDV_DEVCTG;
  6516.  
  6517.         if (intel_eld_uptodate(connector,
  6518.                                G4X_AUD_CNTL_ST, eldv,
  6519.                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  6520.                                G4X_HDMIW_HDMIEDID))
  6521.                 return;
  6522.  
  6523.         i = I915_READ(G4X_AUD_CNTL_ST);
  6524.         i &= ~(eldv | G4X_ELD_ADDR);
  6525.         len = (i >> 9) & 0x1f;          /* ELD buffer size */
  6526.         I915_WRITE(G4X_AUD_CNTL_ST, i);
  6527.  
  6528.         if (!eld[0])
  6529.                 return;
  6530.  
  6531.         len = min_t(uint8_t, eld[2], len);
  6532.         DRM_DEBUG_DRIVER("ELD size %d\n", len);
  6533.         for (i = 0; i < len; i++)
  6534.                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  6535.  
  6536.         i = I915_READ(G4X_AUD_CNTL_ST);
  6537.         i |= eldv;
  6538.         I915_WRITE(G4X_AUD_CNTL_ST, i);
  6539. }
  6540.  
  6541. static void haswell_write_eld(struct drm_connector *connector,
  6542.                                      struct drm_crtc *crtc)
  6543. {
  6544.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  6545.         uint8_t *eld = connector->eld;
  6546.         struct drm_device *dev = crtc->dev;
  6547.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6548.         uint32_t eldv;
  6549.         uint32_t i;
  6550.         int len;
  6551.         int pipe = to_intel_crtc(crtc)->pipe;
  6552.         int tmp;
  6553.  
  6554.         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  6555.         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  6556.         int aud_config = HSW_AUD_CFG(pipe);
  6557.         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  6558.  
  6559.  
  6560.         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  6561.  
  6562.         /* Audio output enable */
  6563.         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  6564.         tmp = I915_READ(aud_cntrl_st2);
  6565.         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  6566.         I915_WRITE(aud_cntrl_st2, tmp);
  6567.  
  6568.         /* Wait for 1 vertical blank */
  6569.         intel_wait_for_vblank(dev, pipe);
  6570.  
  6571.         /* Set ELD valid state */
  6572.         tmp = I915_READ(aud_cntrl_st2);
  6573.         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  6574.         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  6575.         I915_WRITE(aud_cntrl_st2, tmp);
  6576.         tmp = I915_READ(aud_cntrl_st2);
  6577.         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  6578.  
  6579.         /* Enable HDMI mode */
  6580.         tmp = I915_READ(aud_config);
  6581.         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  6582.         /* clear N_programing_enable and N_value_index */
  6583.         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  6584.         I915_WRITE(aud_config, tmp);
  6585.  
  6586.         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  6587.  
  6588.         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  6589.         intel_crtc->eld_vld = true;
  6590.  
  6591.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  6592.                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  6593.                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
  6594.                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  6595.         } else
  6596.                 I915_WRITE(aud_config, 0);
  6597.  
  6598.         if (intel_eld_uptodate(connector,
  6599.                                aud_cntrl_st2, eldv,
  6600.                                aud_cntl_st, IBX_ELD_ADDRESS,
  6601.                                hdmiw_hdmiedid))
  6602.                 return;
  6603.  
  6604.         i = I915_READ(aud_cntrl_st2);
  6605.         i &= ~eldv;
  6606.         I915_WRITE(aud_cntrl_st2, i);
  6607.  
  6608.         if (!eld[0])
  6609.                 return;
  6610.  
  6611.         i = I915_READ(aud_cntl_st);
  6612.         i &= ~IBX_ELD_ADDRESS;
  6613.         I915_WRITE(aud_cntl_st, i);
  6614.         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
  6615.         DRM_DEBUG_DRIVER("port num:%d\n", i);
  6616.  
  6617.         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
  6618.         DRM_DEBUG_DRIVER("ELD size %d\n", len);
  6619.         for (i = 0; i < len; i++)
  6620.                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  6621.  
  6622.         i = I915_READ(aud_cntrl_st2);
  6623.         i |= eldv;
  6624.         I915_WRITE(aud_cntrl_st2, i);
  6625.  
  6626. }
  6627.  
  6628. static void ironlake_write_eld(struct drm_connector *connector,
  6629.                                      struct drm_crtc *crtc)
  6630. {
  6631.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  6632.         uint8_t *eld = connector->eld;
  6633.         uint32_t eldv;
  6634.         uint32_t i;
  6635.         int len;
  6636.         int hdmiw_hdmiedid;
  6637.         int aud_config;
  6638.         int aud_cntl_st;
  6639.         int aud_cntrl_st2;
  6640.         int pipe = to_intel_crtc(crtc)->pipe;
  6641.  
  6642.         if (HAS_PCH_IBX(connector->dev)) {
  6643.                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  6644.                 aud_config = IBX_AUD_CFG(pipe);
  6645.                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  6646.                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  6647.         } else {
  6648.                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  6649.                 aud_config = CPT_AUD_CFG(pipe);
  6650.                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  6651.                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  6652.         }
  6653.  
  6654.         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  6655.  
  6656.         i = I915_READ(aud_cntl_st);
  6657.         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
  6658.         if (!i) {
  6659.                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  6660.                 /* operate blindly on all ports */
  6661.                 eldv = IBX_ELD_VALIDB;
  6662.                 eldv |= IBX_ELD_VALIDB << 4;
  6663.                 eldv |= IBX_ELD_VALIDB << 8;
  6664.         } else {
  6665.                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  6666.                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  6667.         }
  6668.  
  6669.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  6670.                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  6671.                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
  6672.                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  6673.         } else
  6674.                 I915_WRITE(aud_config, 0);
  6675.  
  6676.         if (intel_eld_uptodate(connector,
  6677.                                aud_cntrl_st2, eldv,
  6678.                                aud_cntl_st, IBX_ELD_ADDRESS,
  6679.                                hdmiw_hdmiedid))
  6680.                 return;
  6681.  
  6682.         i = I915_READ(aud_cntrl_st2);
  6683.         i &= ~eldv;
  6684.         I915_WRITE(aud_cntrl_st2, i);
  6685.  
  6686.         if (!eld[0])
  6687.                 return;
  6688.  
  6689.         i = I915_READ(aud_cntl_st);
  6690.         i &= ~IBX_ELD_ADDRESS;
  6691.         I915_WRITE(aud_cntl_st, i);
  6692.  
  6693.         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
  6694.         DRM_DEBUG_DRIVER("ELD size %d\n", len);
  6695.         for (i = 0; i < len; i++)
  6696.                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  6697.  
  6698.         i = I915_READ(aud_cntrl_st2);
  6699.         i |= eldv;
  6700.         I915_WRITE(aud_cntrl_st2, i);
  6701. }
  6702.  
  6703. void intel_write_eld(struct drm_encoder *encoder,
  6704.                      struct drm_display_mode *mode)
  6705. {
  6706.         struct drm_crtc *crtc = encoder->crtc;
  6707.         struct drm_connector *connector;
  6708.         struct drm_device *dev = encoder->dev;
  6709.         struct drm_i915_private *dev_priv = dev->dev_private;
  6710.  
  6711.         connector = drm_select_eld(encoder, mode);
  6712.         if (!connector)
  6713.                 return;
  6714.  
  6715.         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6716.                          connector->base.id,
  6717.                          drm_get_connector_name(connector),
  6718.                          connector->encoder->base.id,
  6719.                          drm_get_encoder_name(connector->encoder));
  6720.  
  6721.         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  6722.  
  6723.         if (dev_priv->display.write_eld)
  6724.                 dev_priv->display.write_eld(connector, crtc);
  6725. }
  6726.  
  6727. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  6728. void intel_crtc_load_lut(struct drm_crtc *crtc)
  6729. {
  6730.         struct drm_device *dev = crtc->dev;
  6731.         struct drm_i915_private *dev_priv = dev->dev_private;
  6732.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6733.         enum pipe pipe = intel_crtc->pipe;
  6734.         int palreg = PALETTE(pipe);
  6735.         int i;
  6736.         bool reenable_ips = false;
  6737.  
  6738.         /* The clocks have to be on to load the palette. */
  6739.         if (!crtc->enabled || !intel_crtc->active)
  6740.                 return;
  6741.  
  6742.         if (!HAS_PCH_SPLIT(dev_priv->dev))
  6743.                 assert_pll_enabled(dev_priv, pipe);
  6744.  
  6745.         /* use legacy palette for Ironlake */
  6746.         if (HAS_PCH_SPLIT(dev))
  6747.                 palreg = LGC_PALETTE(pipe);
  6748.  
  6749.         /* Workaround : Do not read or write the pipe palette/gamma data while
  6750.          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  6751.          */
  6752.         if (intel_crtc->config.ips_enabled &&
  6753.             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  6754.              GAMMA_MODE_MODE_SPLIT)) {
  6755.                 hsw_disable_ips(intel_crtc);
  6756.                 reenable_ips = true;
  6757.         }
  6758.  
  6759.         for (i = 0; i < 256; i++) {
  6760.                 I915_WRITE(palreg + 4 * i,
  6761.                            (intel_crtc->lut_r[i] << 16) |
  6762.                            (intel_crtc->lut_g[i] << 8) |
  6763.                            intel_crtc->lut_b[i]);
  6764.         }
  6765.  
  6766.         if (reenable_ips)
  6767.                 hsw_enable_ips(intel_crtc);
  6768. }
  6769.  
  6770. #if 0
  6771. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  6772. {
  6773.         struct drm_device *dev = crtc->dev;
  6774.         struct drm_i915_private *dev_priv = dev->dev_private;
  6775.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6776.         bool visible = base != 0;
  6777.         u32 cntl;
  6778.  
  6779.         if (intel_crtc->cursor_visible == visible)
  6780.                 return;
  6781.  
  6782.         cntl = I915_READ(_CURACNTR);
  6783.         if (visible) {
  6784.                 /* On these chipsets we can only modify the base whilst
  6785.                  * the cursor is disabled.
  6786.                  */
  6787.                 I915_WRITE(_CURABASE, base);
  6788.  
  6789.                 cntl &= ~(CURSOR_FORMAT_MASK);
  6790.                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
  6791.                 cntl |= CURSOR_ENABLE |
  6792.                         CURSOR_GAMMA_ENABLE |
  6793.                         CURSOR_FORMAT_ARGB;
  6794.         } else
  6795.                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  6796.         I915_WRITE(_CURACNTR, cntl);
  6797.  
  6798.         intel_crtc->cursor_visible = visible;
  6799. }
  6800. #endif
  6801.  
  6802. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  6803. {
  6804.         struct drm_device *dev = crtc->dev;
  6805.         struct drm_i915_private *dev_priv = dev->dev_private;
  6806.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6807.         int pipe = intel_crtc->pipe;
  6808.         bool visible = base != 0;
  6809.  
  6810.         if (intel_crtc->cursor_visible != visible) {
  6811.                 uint32_t cntl = I915_READ(CURCNTR(pipe));
  6812.                 if (base) {
  6813.                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  6814.                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  6815.                         cntl |= pipe << 28; /* Connect to correct pipe */
  6816.                 } else {
  6817.                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  6818.                         cntl |= CURSOR_MODE_DISABLE;
  6819.                 }
  6820.                 I915_WRITE(CURCNTR(pipe), cntl);
  6821.  
  6822.                 intel_crtc->cursor_visible = visible;
  6823.         }
  6824.         /* and commit changes on next vblank */
  6825.         POSTING_READ(CURCNTR(pipe));
  6826.         I915_WRITE(CURBASE(pipe), base);
  6827.         POSTING_READ(CURBASE(pipe));
  6828. }
  6829.  
  6830. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  6831. {
  6832.         struct drm_device *dev = crtc->dev;
  6833.         struct drm_i915_private *dev_priv = dev->dev_private;
  6834.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6835.         int pipe = intel_crtc->pipe;
  6836.         bool visible = base != 0;
  6837.  
  6838.         if (intel_crtc->cursor_visible != visible) {
  6839.                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  6840.                 if (base) {
  6841.                         cntl &= ~CURSOR_MODE;
  6842.                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  6843.                 } else {
  6844.                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  6845.                         cntl |= CURSOR_MODE_DISABLE;
  6846.                 }
  6847.                 if (IS_HASWELL(dev)) {
  6848.                         cntl |= CURSOR_PIPE_CSC_ENABLE;
  6849.                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  6850.                 }
  6851.                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
  6852.  
  6853.                 intel_crtc->cursor_visible = visible;
  6854.         }
  6855.         /* and commit changes on next vblank */
  6856.         POSTING_READ(CURCNTR_IVB(pipe));
  6857.         I915_WRITE(CURBASE_IVB(pipe), base);
  6858.         POSTING_READ(CURBASE_IVB(pipe));
  6859. }
  6860.  
  6861. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  6862. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  6863.                                      bool on)
  6864. {
  6865.         struct drm_device *dev = crtc->dev;
  6866.         struct drm_i915_private *dev_priv = dev->dev_private;
  6867.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6868.         int pipe = intel_crtc->pipe;
  6869.         int x = intel_crtc->cursor_x;
  6870.         int y = intel_crtc->cursor_y;
  6871.         u32 base, pos;
  6872.         bool visible;
  6873.  
  6874.         pos = 0;
  6875.  
  6876.         if (on && crtc->enabled && crtc->fb) {
  6877.                 base = intel_crtc->cursor_addr;
  6878.                 if (x > (int) crtc->fb->width)
  6879.                         base = 0;
  6880.  
  6881.                 if (y > (int) crtc->fb->height)
  6882.                         base = 0;
  6883.         } else
  6884.                 base = 0;
  6885.  
  6886.         if (x < 0) {
  6887.                 if (x + intel_crtc->cursor_width < 0)
  6888.                         base = 0;
  6889.  
  6890.                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  6891.                 x = -x;
  6892.         }
  6893.         pos |= x << CURSOR_X_SHIFT;
  6894.  
  6895.         if (y < 0) {
  6896.                 if (y + intel_crtc->cursor_height < 0)
  6897.                         base = 0;
  6898.  
  6899.                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  6900.                 y = -y;
  6901.         }
  6902.         pos |= y << CURSOR_Y_SHIFT;
  6903.  
  6904.         visible = base != 0;
  6905.         if (!visible && !intel_crtc->cursor_visible)
  6906.                 return;
  6907.  
  6908.         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  6909.                 I915_WRITE(CURPOS_IVB(pipe), pos);
  6910.                 ivb_update_cursor(crtc, base);
  6911.         } else {
  6912.                 I915_WRITE(CURPOS(pipe), pos);
  6913.                         i9xx_update_cursor(crtc, base);
  6914.         }
  6915. }
  6916.  
  6917. #if 0
  6918. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  6919.                                  struct drm_file *file,
  6920.                                  uint32_t handle,
  6921.                                  uint32_t width, uint32_t height)
  6922. {
  6923.         struct drm_device *dev = crtc->dev;
  6924.         struct drm_i915_private *dev_priv = dev->dev_private;
  6925.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6926.         struct drm_i915_gem_object *obj;
  6927.         uint32_t addr;
  6928.         int ret;
  6929.  
  6930.         /* if we want to turn off the cursor ignore width and height */
  6931.         if (!handle) {
  6932.                 DRM_DEBUG_KMS("cursor off\n");
  6933.                 addr = 0;
  6934.                 obj = NULL;
  6935.                 mutex_lock(&dev->struct_mutex);
  6936.                 goto finish;
  6937.         }
  6938.  
  6939.         /* Currently we only support 64x64 cursors */
  6940.         if (width != 64 || height != 64) {
  6941.                 DRM_ERROR("we currently only support 64x64 cursors\n");
  6942.                 return -EINVAL;
  6943.         }
  6944.  
  6945.         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  6946.         if (&obj->base == NULL)
  6947.                 return -ENOENT;
  6948.  
  6949.         if (obj->base.size < width * height * 4) {
  6950.                 DRM_ERROR("buffer is to small\n");
  6951.                 ret = -ENOMEM;
  6952.                 goto fail;
  6953.         }
  6954.  
  6955.         /* we only need to pin inside GTT if cursor is non-phy */
  6956.         mutex_lock(&dev->struct_mutex);
  6957.         if (!dev_priv->info->cursor_needs_physical) {
  6958.                 unsigned alignment;
  6959.  
  6960.                 if (obj->tiling_mode) {
  6961.                         DRM_ERROR("cursor cannot be tiled\n");
  6962.                         ret = -EINVAL;
  6963.                         goto fail_locked;
  6964.                 }
  6965.  
  6966.                 /* Note that the w/a also requires 2 PTE of padding following
  6967.                  * the bo. We currently fill all unused PTE with the shadow
  6968.                  * page and so we should always have valid PTE following the
  6969.                  * cursor preventing the VT-d warning.
  6970.                  */
  6971.                 alignment = 0;
  6972.                 if (need_vtd_wa(dev))
  6973.                         alignment = 64*1024;
  6974.  
  6975.                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  6976.                 if (ret) {
  6977.                         DRM_ERROR("failed to move cursor bo into the GTT\n");
  6978.                         goto fail_locked;
  6979.                 }
  6980.  
  6981.                 ret = i915_gem_object_put_fence(obj);
  6982.                 if (ret) {
  6983.                         DRM_ERROR("failed to release fence for cursor");
  6984.                         goto fail_unpin;
  6985.                 }
  6986.  
  6987.                 addr = i915_gem_obj_ggtt_offset(obj);
  6988.         } else {
  6989.                 int align = IS_I830(dev) ? 16 * 1024 : 256;
  6990.                 ret = i915_gem_attach_phys_object(dev, obj,
  6991.                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  6992.                                                   align);
  6993.                 if (ret) {
  6994.                         DRM_ERROR("failed to attach phys object\n");
  6995.                         goto fail_locked;
  6996.                 }
  6997.                 addr = obj->phys_obj->handle->busaddr;
  6998.         }
  6999.  
  7000.         if (IS_GEN2(dev))
  7001.                 I915_WRITE(CURSIZE, (height << 12) | width);
  7002.  
  7003.  finish:
  7004.         if (intel_crtc->cursor_bo) {
  7005.                 if (dev_priv->info->cursor_needs_physical) {
  7006.                         if (intel_crtc->cursor_bo != obj)
  7007.                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  7008.                 } else
  7009.                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  7010.                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  7011.         }
  7012.  
  7013.         mutex_unlock(&dev->struct_mutex);
  7014.  
  7015.         intel_crtc->cursor_addr = addr;
  7016.         intel_crtc->cursor_bo = obj;
  7017.         intel_crtc->cursor_width = width;
  7018.         intel_crtc->cursor_height = height;
  7019.  
  7020.         if (intel_crtc->active)
  7021.                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  7022.  
  7023.         return 0;
  7024. fail_unpin:
  7025.         i915_gem_object_unpin_from_display_plane(obj);
  7026. fail_locked:
  7027.         mutex_unlock(&dev->struct_mutex);
  7028. fail:
  7029.         drm_gem_object_unreference_unlocked(&obj->base);
  7030.         return ret;
  7031. }
  7032. #endif
  7033.  
  7034. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  7035. {
  7036.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7037.  
  7038.         intel_crtc->cursor_x = x;
  7039.         intel_crtc->cursor_y = y;
  7040.  
  7041.         if (intel_crtc->active)
  7042.                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  7043.  
  7044.         return 0;
  7045. }
  7046.  
  7047. /** Sets the color ramps on behalf of RandR */
  7048. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  7049.                                  u16 blue, int regno)
  7050. {
  7051.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7052.  
  7053.         intel_crtc->lut_r[regno] = red >> 8;
  7054.         intel_crtc->lut_g[regno] = green >> 8;
  7055.         intel_crtc->lut_b[regno] = blue >> 8;
  7056. }
  7057.  
  7058. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  7059.                              u16 *blue, int regno)
  7060. {
  7061.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7062.  
  7063.         *red = intel_crtc->lut_r[regno] << 8;
  7064.         *green = intel_crtc->lut_g[regno] << 8;
  7065.         *blue = intel_crtc->lut_b[regno] << 8;
  7066. }
  7067.  
  7068. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  7069.                                  u16 *blue, uint32_t start, uint32_t size)
  7070. {
  7071.         int end = (start + size > 256) ? 256 : start + size, i;
  7072.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7073.  
  7074.         for (i = start; i < end; i++) {
  7075.                 intel_crtc->lut_r[i] = red[i] >> 8;
  7076.                 intel_crtc->lut_g[i] = green[i] >> 8;
  7077.                 intel_crtc->lut_b[i] = blue[i] >> 8;
  7078.         }
  7079.  
  7080.         intel_crtc_load_lut(crtc);
  7081. }
  7082.  
  7083. /* VESA 640x480x72Hz mode to set on the pipe */
  7084. static struct drm_display_mode load_detect_mode = {
  7085.         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  7086.                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  7087. };
  7088.  
  7089. static struct drm_framebuffer *
  7090. intel_framebuffer_create(struct drm_device *dev,
  7091.                          struct drm_mode_fb_cmd2 *mode_cmd,
  7092.                          struct drm_i915_gem_object *obj)
  7093. {
  7094.         struct intel_framebuffer *intel_fb;
  7095.         int ret;
  7096.  
  7097.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  7098.         if (!intel_fb) {
  7099.                 drm_gem_object_unreference_unlocked(&obj->base);
  7100.                 return ERR_PTR(-ENOMEM);
  7101.         }
  7102.  
  7103.         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  7104.         if (ret) {
  7105.                 drm_gem_object_unreference_unlocked(&obj->base);
  7106.                 kfree(intel_fb);
  7107.                 return ERR_PTR(ret);
  7108.         }
  7109.  
  7110.         return &intel_fb->base;
  7111. }
  7112.  
  7113. static u32
  7114. intel_framebuffer_pitch_for_width(int width, int bpp)
  7115. {
  7116.         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  7117.         return ALIGN(pitch, 64);
  7118. }
  7119.  
  7120. static u32
  7121. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  7122. {
  7123.         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  7124.         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  7125. }
  7126.  
  7127. static struct drm_framebuffer *
  7128. intel_framebuffer_create_for_mode(struct drm_device *dev,
  7129.                                   struct drm_display_mode *mode,
  7130.                                   int depth, int bpp)
  7131. {
  7132.         struct drm_i915_gem_object *obj;
  7133.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  7134.  
  7135.         return NULL;
  7136. }
  7137.  
  7138. static struct drm_framebuffer *
  7139. mode_fits_in_fbdev(struct drm_device *dev,
  7140.                    struct drm_display_mode *mode)
  7141. {
  7142.         struct drm_i915_private *dev_priv = dev->dev_private;
  7143.         struct drm_i915_gem_object *obj;
  7144.         struct drm_framebuffer *fb;
  7145.  
  7146.         if (dev_priv->fbdev == NULL)
  7147.                 return NULL;
  7148.  
  7149.         obj = dev_priv->fbdev->ifb.obj;
  7150.         if (obj == NULL)
  7151.                 return NULL;
  7152.  
  7153.         fb = &dev_priv->fbdev->ifb.base;
  7154.         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  7155.                                                                fb->bits_per_pixel))
  7156.                 return NULL;
  7157.  
  7158.         if (obj->base.size < mode->vdisplay * fb->pitches[0])
  7159.                 return NULL;
  7160.  
  7161.         return fb;
  7162. }
  7163.  
  7164. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  7165.                                 struct drm_display_mode *mode,
  7166.                                 struct intel_load_detect_pipe *old)
  7167. {
  7168.         struct intel_crtc *intel_crtc;
  7169.         struct intel_encoder *intel_encoder =
  7170.                 intel_attached_encoder(connector);
  7171.         struct drm_crtc *possible_crtc;
  7172.         struct drm_encoder *encoder = &intel_encoder->base;
  7173.         struct drm_crtc *crtc = NULL;
  7174.         struct drm_device *dev = encoder->dev;
  7175.         struct drm_framebuffer *fb;
  7176.         int i = -1;
  7177.  
  7178.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  7179.                       connector->base.id, drm_get_connector_name(connector),
  7180.                       encoder->base.id, drm_get_encoder_name(encoder));
  7181.  
  7182.         /*
  7183.          * Algorithm gets a little messy:
  7184.          *
  7185.          *   - if the connector already has an assigned crtc, use it (but make
  7186.          *     sure it's on first)
  7187.          *
  7188.          *   - try to find the first unused crtc that can drive this connector,
  7189.          *     and use that if we find one
  7190.          */
  7191.  
  7192.         /* See if we already have a CRTC for this connector */
  7193.         if (encoder->crtc) {
  7194.                 crtc = encoder->crtc;
  7195.  
  7196.                 mutex_lock(&crtc->mutex);
  7197.  
  7198.                 old->dpms_mode = connector->dpms;
  7199.                 old->load_detect_temp = false;
  7200.  
  7201.                 /* Make sure the crtc and connector are running */
  7202.                 if (connector->dpms != DRM_MODE_DPMS_ON)
  7203.                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  7204.  
  7205.                 return true;
  7206.         }
  7207.  
  7208.         /* Find an unused one (if possible) */
  7209.         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  7210.                 i++;
  7211.                 if (!(encoder->possible_crtcs & (1 << i)))
  7212.                         continue;
  7213.                 if (!possible_crtc->enabled) {
  7214.                         crtc = possible_crtc;
  7215.                         break;
  7216.                 }
  7217.         }
  7218.  
  7219.         /*
  7220.          * If we didn't find an unused CRTC, don't use any.
  7221.          */
  7222.         if (!crtc) {
  7223.                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
  7224.                 return false;
  7225.         }
  7226.  
  7227.         mutex_lock(&crtc->mutex);
  7228.         intel_encoder->new_crtc = to_intel_crtc(crtc);
  7229.         to_intel_connector(connector)->new_encoder = intel_encoder;
  7230.  
  7231.         intel_crtc = to_intel_crtc(crtc);
  7232.         old->dpms_mode = connector->dpms;
  7233.         old->load_detect_temp = true;
  7234.         old->release_fb = NULL;
  7235.  
  7236.         if (!mode)
  7237.                 mode = &load_detect_mode;
  7238.  
  7239.         /* We need a framebuffer large enough to accommodate all accesses
  7240.          * that the plane may generate whilst we perform load detection.
  7241.          * We can not rely on the fbcon either being present (we get called
  7242.          * during its initialisation to detect all boot displays, or it may
  7243.          * not even exist) or that it is large enough to satisfy the
  7244.          * requested mode.
  7245.          */
  7246.         fb = mode_fits_in_fbdev(dev, mode);
  7247.         if (fb == NULL) {
  7248.                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  7249.                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  7250.                 old->release_fb = fb;
  7251.         } else
  7252.                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  7253.         if (IS_ERR(fb)) {
  7254.                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  7255.                 mutex_unlock(&crtc->mutex);
  7256.                 return false;
  7257.         }
  7258.  
  7259.         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  7260.                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  7261.                 if (old->release_fb)
  7262.                         old->release_fb->funcs->destroy(old->release_fb);
  7263.                 mutex_unlock(&crtc->mutex);
  7264.                 return false;
  7265.         }
  7266.  
  7267.         /* let the connector get through one full cycle before testing */
  7268.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  7269.         return true;
  7270. }
  7271.  
  7272. void intel_release_load_detect_pipe(struct drm_connector *connector,
  7273.                                     struct intel_load_detect_pipe *old)
  7274. {
  7275.         struct intel_encoder *intel_encoder =
  7276.                 intel_attached_encoder(connector);
  7277.         struct drm_encoder *encoder = &intel_encoder->base;
  7278.         struct drm_crtc *crtc = encoder->crtc;
  7279.  
  7280.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  7281.                       connector->base.id, drm_get_connector_name(connector),
  7282.                       encoder->base.id, drm_get_encoder_name(encoder));
  7283.  
  7284.         if (old->load_detect_temp) {
  7285.                 to_intel_connector(connector)->new_encoder = NULL;
  7286.                 intel_encoder->new_crtc = NULL;
  7287.                 intel_set_mode(crtc, NULL, 0, 0, NULL);
  7288.  
  7289.                 if (old->release_fb) {
  7290.                         drm_framebuffer_unregister_private(old->release_fb);
  7291.                         drm_framebuffer_unreference(old->release_fb);
  7292.                 }
  7293.  
  7294.                 mutex_unlock(&crtc->mutex);
  7295.                 return;
  7296.         }
  7297.  
  7298.         /* Switch crtc and encoder back off if necessary */
  7299.         if (old->dpms_mode != DRM_MODE_DPMS_ON)
  7300.                 connector->funcs->dpms(connector, old->dpms_mode);
  7301.  
  7302.         mutex_unlock(&crtc->mutex);
  7303. }
  7304.  
  7305. /* Returns the clock of the currently programmed mode of the given pipe. */
  7306. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  7307.                                 struct intel_crtc_config *pipe_config)
  7308. {
  7309.         struct drm_device *dev = crtc->base.dev;
  7310.         struct drm_i915_private *dev_priv = dev->dev_private;
  7311.         int pipe = pipe_config->cpu_transcoder;
  7312.         u32 dpll = I915_READ(DPLL(pipe));
  7313.         u32 fp;
  7314.         intel_clock_t clock;
  7315.  
  7316.         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  7317.                 fp = I915_READ(FP0(pipe));
  7318.         else
  7319.                 fp = I915_READ(FP1(pipe));
  7320.  
  7321.         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  7322.         if (IS_PINEVIEW(dev)) {
  7323.                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  7324.                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  7325.         } else {
  7326.                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  7327.                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  7328.         }
  7329.  
  7330.         if (!IS_GEN2(dev)) {
  7331.                 if (IS_PINEVIEW(dev))
  7332.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  7333.                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  7334.                 else
  7335.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  7336.                                DPLL_FPA01_P1_POST_DIV_SHIFT);
  7337.  
  7338.                 switch (dpll & DPLL_MODE_MASK) {
  7339.                 case DPLLB_MODE_DAC_SERIAL:
  7340.                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  7341.                                 5 : 10;
  7342.                         break;
  7343.                 case DPLLB_MODE_LVDS:
  7344.                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  7345.                                 7 : 14;
  7346.                         break;
  7347.                 default:
  7348.                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  7349.                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
  7350.                         pipe_config->adjusted_mode.clock = 0;
  7351.                         return;
  7352.                 }
  7353.  
  7354.                 if (IS_PINEVIEW(dev))
  7355.                         pineview_clock(96000, &clock);
  7356.                 else
  7357.                         i9xx_clock(96000, &clock);
  7358.         } else {
  7359.                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  7360.  
  7361.                 if (is_lvds) {
  7362.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  7363.                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
  7364.                         clock.p2 = 14;
  7365.  
  7366.                         if ((dpll & PLL_REF_INPUT_MASK) ==
  7367.                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  7368.                                 /* XXX: might not be 66MHz */
  7369.                                 i9xx_clock(66000, &clock);
  7370.                         } else
  7371.                                 i9xx_clock(48000, &clock);
  7372.                 } else {
  7373.                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
  7374.                                 clock.p1 = 2;
  7375.                         else {
  7376.                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  7377.                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  7378.                         }
  7379.                         if (dpll & PLL_P2_DIVIDE_BY_4)
  7380.                                 clock.p2 = 4;
  7381.                         else
  7382.                                 clock.p2 = 2;
  7383.  
  7384.                         i9xx_clock(48000, &clock);
  7385.                 }
  7386.         }
  7387.  
  7388.         pipe_config->adjusted_mode.clock = clock.dot;
  7389. }
  7390.  
  7391. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  7392.                                     struct intel_crtc_config *pipe_config)
  7393. {
  7394.         struct drm_device *dev = crtc->base.dev;
  7395.         struct drm_i915_private *dev_priv = dev->dev_private;
  7396.         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  7397.         int link_freq, repeat;
  7398.         u64 clock;
  7399.         u32 link_m, link_n;
  7400.  
  7401.         repeat = pipe_config->pixel_multiplier;
  7402.  
  7403.         /*
  7404.          * The calculation for the data clock is:
  7405.          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  7406.          * But we want to avoid losing precison if possible, so:
  7407.          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  7408.          *
  7409.          * and the link clock is simpler:
  7410.          * link_clock = (m * link_clock * repeat) / n
  7411.          */
  7412.  
  7413.         /*
  7414.          * We need to get the FDI or DP link clock here to derive
  7415.          * the M/N dividers.
  7416.          *
  7417.          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  7418.          * For DP, it's either 1.62GHz or 2.7GHz.
  7419.          * We do our calculations in 10*MHz since we don't need much precison.
  7420.          */
  7421.         if (pipe_config->has_pch_encoder)
  7422.                 link_freq = intel_fdi_link_freq(dev) * 10000;
  7423.         else
  7424.                 link_freq = pipe_config->port_clock;
  7425.  
  7426.         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  7427.         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  7428.  
  7429.         if (!link_m || !link_n)
  7430.                 return;
  7431.  
  7432.         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  7433.         do_div(clock, link_n);
  7434.  
  7435.         pipe_config->adjusted_mode.clock = clock;
  7436. }
  7437.  
  7438. /** Returns the currently programmed mode of the given pipe. */
  7439. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  7440.                                              struct drm_crtc *crtc)
  7441. {
  7442.         struct drm_i915_private *dev_priv = dev->dev_private;
  7443.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7444.         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  7445.         struct drm_display_mode *mode;
  7446.         struct intel_crtc_config pipe_config;
  7447.         int htot = I915_READ(HTOTAL(cpu_transcoder));
  7448.         int hsync = I915_READ(HSYNC(cpu_transcoder));
  7449.         int vtot = I915_READ(VTOTAL(cpu_transcoder));
  7450.         int vsync = I915_READ(VSYNC(cpu_transcoder));
  7451.  
  7452.         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  7453.         if (!mode)
  7454.                 return NULL;
  7455.  
  7456.         /*
  7457.          * Construct a pipe_config sufficient for getting the clock info
  7458.          * back out of crtc_clock_get.
  7459.          *
  7460.          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  7461.          * to use a real value here instead.
  7462.          */
  7463.         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  7464.         pipe_config.pixel_multiplier = 1;
  7465.         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  7466.  
  7467.         mode->clock = pipe_config.adjusted_mode.clock;
  7468.         mode->hdisplay = (htot & 0xffff) + 1;
  7469.         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  7470.         mode->hsync_start = (hsync & 0xffff) + 1;
  7471.         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  7472.         mode->vdisplay = (vtot & 0xffff) + 1;
  7473.         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  7474.         mode->vsync_start = (vsync & 0xffff) + 1;
  7475.         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  7476.  
  7477.         drm_mode_set_name(mode);
  7478.  
  7479.         return mode;
  7480. }
  7481.  
  7482. static void intel_increase_pllclock(struct drm_crtc *crtc)
  7483. {
  7484.         struct drm_device *dev = crtc->dev;
  7485.         drm_i915_private_t *dev_priv = dev->dev_private;
  7486.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7487.         int pipe = intel_crtc->pipe;
  7488.         int dpll_reg = DPLL(pipe);
  7489.         int dpll;
  7490.  
  7491.         if (HAS_PCH_SPLIT(dev))
  7492.                 return;
  7493.  
  7494.         if (!dev_priv->lvds_downclock_avail)
  7495.                 return;
  7496.  
  7497.         dpll = I915_READ(dpll_reg);
  7498.         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  7499.                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
  7500.  
  7501.                 assert_panel_unlocked(dev_priv, pipe);
  7502.  
  7503.                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  7504.                 I915_WRITE(dpll_reg, dpll);
  7505.                 intel_wait_for_vblank(dev, pipe);
  7506.  
  7507.                 dpll = I915_READ(dpll_reg);
  7508.                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
  7509.                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  7510.         }
  7511. }
  7512.  
  7513. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  7514. {
  7515.         struct drm_device *dev = crtc->dev;
  7516.         drm_i915_private_t *dev_priv = dev->dev_private;
  7517.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7518.  
  7519.         if (HAS_PCH_SPLIT(dev))
  7520.                 return;
  7521.  
  7522.         if (!dev_priv->lvds_downclock_avail)
  7523.                 return;
  7524.  
  7525.         /*
  7526.          * Since this is called by a timer, we should never get here in
  7527.          * the manual case.
  7528.          */
  7529.         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  7530.                 int pipe = intel_crtc->pipe;
  7531.                 int dpll_reg = DPLL(pipe);
  7532.                 int dpll;
  7533.  
  7534.                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
  7535.  
  7536.                 assert_panel_unlocked(dev_priv, pipe);
  7537.  
  7538.                 dpll = I915_READ(dpll_reg);
  7539.                 dpll |= DISPLAY_RATE_SELECT_FPA1;
  7540.                 I915_WRITE(dpll_reg, dpll);
  7541.                 intel_wait_for_vblank(dev, pipe);
  7542.                 dpll = I915_READ(dpll_reg);
  7543.                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  7544.                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  7545.         }
  7546.  
  7547. }
  7548.  
  7549. void intel_mark_busy(struct drm_device *dev)
  7550. {
  7551.         struct drm_i915_private *dev_priv = dev->dev_private;
  7552.  
  7553.         hsw_package_c8_gpu_busy(dev_priv);
  7554.         i915_update_gfx_val(dev_priv);
  7555. }
  7556.  
  7557. void intel_mark_idle(struct drm_device *dev)
  7558. {
  7559.         struct drm_i915_private *dev_priv = dev->dev_private;
  7560.         struct drm_crtc *crtc;
  7561.  
  7562.         hsw_package_c8_gpu_idle(dev_priv);
  7563.  
  7564.         if (!i915_powersave)
  7565.                 return;
  7566.  
  7567.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7568.                 if (!crtc->fb)
  7569.                         continue;
  7570.  
  7571.                 intel_decrease_pllclock(crtc);
  7572.         }
  7573. }
  7574.  
  7575. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  7576.                         struct intel_ring_buffer *ring)
  7577. {
  7578.         struct drm_device *dev = obj->base.dev;
  7579.         struct drm_crtc *crtc;
  7580.  
  7581.         if (!i915_powersave)
  7582.                 return;
  7583.  
  7584.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7585.                 if (!crtc->fb)
  7586.                         continue;
  7587.  
  7588.                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
  7589.                         continue;
  7590.  
  7591.                         intel_increase_pllclock(crtc);
  7592.                 if (ring && intel_fbc_enabled(dev))
  7593.                         ring->fbc_dirty = true;
  7594.         }
  7595. }
  7596.  
  7597. static void intel_crtc_destroy(struct drm_crtc *crtc)
  7598. {
  7599.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7600.         struct drm_device *dev = crtc->dev;
  7601.         struct intel_unpin_work *work;
  7602.         unsigned long flags;
  7603.  
  7604.         spin_lock_irqsave(&dev->event_lock, flags);
  7605.         work = intel_crtc->unpin_work;
  7606.         intel_crtc->unpin_work = NULL;
  7607.         spin_unlock_irqrestore(&dev->event_lock, flags);
  7608.  
  7609.         if (work) {
  7610.                 cancel_work_sync(&work->work);
  7611.                 kfree(work);
  7612.         }
  7613.  
  7614.         drm_crtc_cleanup(crtc);
  7615.  
  7616.         kfree(intel_crtc);
  7617. }
  7618.  
  7619. #if 0
  7620. static void intel_unpin_work_fn(struct work_struct *__work)
  7621. {
  7622.         struct intel_unpin_work *work =
  7623.                 container_of(__work, struct intel_unpin_work, work);
  7624.         struct drm_device *dev = work->crtc->dev;
  7625.  
  7626.         mutex_lock(&dev->struct_mutex);
  7627.         intel_unpin_fb_obj(work->old_fb_obj);
  7628.         drm_gem_object_unreference(&work->pending_flip_obj->base);
  7629.         drm_gem_object_unreference(&work->old_fb_obj->base);
  7630.  
  7631.         intel_update_fbc(dev);
  7632.         mutex_unlock(&dev->struct_mutex);
  7633.  
  7634.         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  7635.         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  7636.  
  7637.         kfree(work);
  7638. }
  7639.  
  7640. static void do_intel_finish_page_flip(struct drm_device *dev,
  7641.                                       struct drm_crtc *crtc)
  7642. {
  7643.         drm_i915_private_t *dev_priv = dev->dev_private;
  7644.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7645.         struct intel_unpin_work *work;
  7646.         unsigned long flags;
  7647.  
  7648.         /* Ignore early vblank irqs */
  7649.         if (intel_crtc == NULL)
  7650.                 return;
  7651.  
  7652.         spin_lock_irqsave(&dev->event_lock, flags);
  7653.         work = intel_crtc->unpin_work;
  7654.  
  7655.         /* Ensure we don't miss a work->pending update ... */
  7656.         smp_rmb();
  7657.  
  7658.         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  7659.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  7660.                 return;
  7661.         }
  7662.  
  7663.         /* and that the unpin work is consistent wrt ->pending. */
  7664.         smp_rmb();
  7665.  
  7666.         intel_crtc->unpin_work = NULL;
  7667.  
  7668.         if (work->event)
  7669.                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  7670.  
  7671.         drm_vblank_put(dev, intel_crtc->pipe);
  7672.  
  7673.         spin_unlock_irqrestore(&dev->event_lock, flags);
  7674.  
  7675.         wake_up_all(&dev_priv->pending_flip_queue);
  7676.  
  7677.         queue_work(dev_priv->wq, &work->work);
  7678.  
  7679.         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  7680. }
  7681.  
  7682. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  7683. {
  7684.         drm_i915_private_t *dev_priv = dev->dev_private;
  7685.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  7686.  
  7687.         do_intel_finish_page_flip(dev, crtc);
  7688. }
  7689.  
  7690. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  7691. {
  7692.         drm_i915_private_t *dev_priv = dev->dev_private;
  7693.         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  7694.  
  7695.         do_intel_finish_page_flip(dev, crtc);
  7696. }
  7697.  
  7698. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  7699. {
  7700.         drm_i915_private_t *dev_priv = dev->dev_private;
  7701.         struct intel_crtc *intel_crtc =
  7702.                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  7703.         unsigned long flags;
  7704.  
  7705.         /* NB: An MMIO update of the plane base pointer will also
  7706.          * generate a page-flip completion irq, i.e. every modeset
  7707.          * is also accompanied by a spurious intel_prepare_page_flip().
  7708.          */
  7709.         spin_lock_irqsave(&dev->event_lock, flags);
  7710.         if (intel_crtc->unpin_work)
  7711.                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  7712.         spin_unlock_irqrestore(&dev->event_lock, flags);
  7713. }
  7714.  
  7715. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  7716. {
  7717.         /* Ensure that the work item is consistent when activating it ... */
  7718.         smp_wmb();
  7719.         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  7720.         /* and that it is marked active as soon as the irq could fire. */
  7721.         smp_wmb();
  7722. }
  7723.  
  7724. static int intel_gen2_queue_flip(struct drm_device *dev,
  7725.                                  struct drm_crtc *crtc,
  7726.                                  struct drm_framebuffer *fb,
  7727.                                  struct drm_i915_gem_object *obj,
  7728.                                  uint32_t flags)
  7729. {
  7730.         struct drm_i915_private *dev_priv = dev->dev_private;
  7731.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7732.         u32 flip_mask;
  7733.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  7734.         int ret;
  7735.  
  7736.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  7737.         if (ret)
  7738.                 goto err;
  7739.  
  7740.         ret = intel_ring_begin(ring, 6);
  7741.         if (ret)
  7742.                 goto err_unpin;
  7743.  
  7744.         /* Can't queue multiple flips, so wait for the previous
  7745.          * one to finish before executing the next.
  7746.          */
  7747.         if (intel_crtc->plane)
  7748.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  7749.         else
  7750.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  7751.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  7752.         intel_ring_emit(ring, MI_NOOP);
  7753.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  7754.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  7755.         intel_ring_emit(ring, fb->pitches[0]);
  7756.         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  7757.         intel_ring_emit(ring, 0); /* aux display base address, unused */
  7758.  
  7759.         intel_mark_page_flip_active(intel_crtc);
  7760.         intel_ring_advance(ring);
  7761.         return 0;
  7762.  
  7763. err_unpin:
  7764.         intel_unpin_fb_obj(obj);
  7765. err:
  7766.         return ret;
  7767. }
  7768.  
  7769. static int intel_gen3_queue_flip(struct drm_device *dev,
  7770.                                  struct drm_crtc *crtc,
  7771.                                  struct drm_framebuffer *fb,
  7772.                                  struct drm_i915_gem_object *obj,
  7773.                                  uint32_t flags)
  7774. {
  7775.         struct drm_i915_private *dev_priv = dev->dev_private;
  7776.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7777.         u32 flip_mask;
  7778.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  7779.         int ret;
  7780.  
  7781.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  7782.         if (ret)
  7783.                 goto err;
  7784.  
  7785.         ret = intel_ring_begin(ring, 6);
  7786.         if (ret)
  7787.                 goto err_unpin;
  7788.  
  7789.         if (intel_crtc->plane)
  7790.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  7791.         else
  7792.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  7793.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  7794.         intel_ring_emit(ring, MI_NOOP);
  7795.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  7796.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  7797.         intel_ring_emit(ring, fb->pitches[0]);
  7798.         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  7799.         intel_ring_emit(ring, MI_NOOP);
  7800.  
  7801.         intel_mark_page_flip_active(intel_crtc);
  7802.         intel_ring_advance(ring);
  7803.         return 0;
  7804.  
  7805. err_unpin:
  7806.         intel_unpin_fb_obj(obj);
  7807. err:
  7808.         return ret;
  7809. }
  7810.  
  7811. static int intel_gen4_queue_flip(struct drm_device *dev,
  7812.                                  struct drm_crtc *crtc,
  7813.                                  struct drm_framebuffer *fb,
  7814.                                  struct drm_i915_gem_object *obj,
  7815.                                  uint32_t flags)
  7816. {
  7817.         struct drm_i915_private *dev_priv = dev->dev_private;
  7818.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7819.         uint32_t pf, pipesrc;
  7820.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  7821.         int ret;
  7822.  
  7823.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  7824.         if (ret)
  7825.                 goto err;
  7826.  
  7827.         ret = intel_ring_begin(ring, 4);
  7828.         if (ret)
  7829.                 goto err_unpin;
  7830.  
  7831.         /* i965+ uses the linear or tiled offsets from the
  7832.          * Display Registers (which do not change across a page-flip)
  7833.          * so we need only reprogram the base address.
  7834.          */
  7835.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  7836.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  7837.         intel_ring_emit(ring, fb->pitches[0]);
  7838.         intel_ring_emit(ring,
  7839.                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  7840.                         obj->tiling_mode);
  7841.  
  7842.         /* XXX Enabling the panel-fitter across page-flip is so far
  7843.          * untested on non-native modes, so ignore it for now.
  7844.          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  7845.          */
  7846.         pf = 0;
  7847.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  7848.         intel_ring_emit(ring, pf | pipesrc);
  7849.  
  7850.         intel_mark_page_flip_active(intel_crtc);
  7851.         intel_ring_advance(ring);
  7852.         return 0;
  7853.  
  7854. err_unpin:
  7855.         intel_unpin_fb_obj(obj);
  7856. err:
  7857.         return ret;
  7858. }
  7859.  
  7860. static int intel_gen6_queue_flip(struct drm_device *dev,
  7861.                                  struct drm_crtc *crtc,
  7862.                                  struct drm_framebuffer *fb,
  7863.                                  struct drm_i915_gem_object *obj,
  7864.                                  uint32_t flags)
  7865. {
  7866.         struct drm_i915_private *dev_priv = dev->dev_private;
  7867.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7868.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  7869.         uint32_t pf, pipesrc;
  7870.         int ret;
  7871.  
  7872.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  7873.         if (ret)
  7874.                 goto err;
  7875.  
  7876.         ret = intel_ring_begin(ring, 4);
  7877.         if (ret)
  7878.                 goto err_unpin;
  7879.  
  7880.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  7881.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  7882.         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  7883.         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  7884.  
  7885.         /* Contrary to the suggestions in the documentation,
  7886.          * "Enable Panel Fitter" does not seem to be required when page
  7887.          * flipping with a non-native mode, and worse causes a normal
  7888.          * modeset to fail.
  7889.          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  7890.          */
  7891.         pf = 0;
  7892.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  7893.         intel_ring_emit(ring, pf | pipesrc);
  7894.  
  7895.         intel_mark_page_flip_active(intel_crtc);
  7896.         intel_ring_advance(ring);
  7897.         return 0;
  7898.  
  7899. err_unpin:
  7900.         intel_unpin_fb_obj(obj);
  7901. err:
  7902.         return ret;
  7903. }
  7904.  
  7905. static int intel_gen7_queue_flip(struct drm_device *dev,
  7906.                                  struct drm_crtc *crtc,
  7907.                                  struct drm_framebuffer *fb,
  7908.                                  struct drm_i915_gem_object *obj,
  7909.                                  uint32_t flags)
  7910. {
  7911.         struct drm_i915_private *dev_priv = dev->dev_private;
  7912.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  7913.         struct intel_ring_buffer *ring;
  7914.         uint32_t plane_bit = 0;
  7915.         int len, ret;
  7916.  
  7917.         ring = obj->ring;
  7918.         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  7919.                 ring = &dev_priv->ring[BCS];
  7920.  
  7921.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  7922.         if (ret)
  7923.                 goto err;
  7924.  
  7925.         switch(intel_crtc->plane) {
  7926.         case PLANE_A:
  7927.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  7928.                 break;
  7929.         case PLANE_B:
  7930.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  7931.                 break;
  7932.         case PLANE_C:
  7933.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  7934.                 break;
  7935.         default:
  7936.                 WARN_ONCE(1, "unknown plane in flip command\n");
  7937.                 ret = -ENODEV;
  7938.                 goto err_unpin;
  7939.         }
  7940.  
  7941.         len = 4;
  7942.         if (ring->id == RCS)
  7943.                 len += 6;
  7944.  
  7945.         ret = intel_ring_begin(ring, len);
  7946.         if (ret)
  7947.                 goto err_unpin;
  7948.  
  7949.         /* Unmask the flip-done completion message. Note that the bspec says that
  7950.          * we should do this for both the BCS and RCS, and that we must not unmask
  7951.          * more than one flip event at any time (or ensure that one flip message
  7952.          * can be sent by waiting for flip-done prior to queueing new flips).
  7953.          * Experimentation says that BCS works despite DERRMR masking all
  7954.          * flip-done completion events and that unmasking all planes at once
  7955.          * for the RCS also doesn't appear to drop events. Setting the DERRMR
  7956.          * to zero does lead to lockups within MI_DISPLAY_FLIP.
  7957.          */
  7958.         if (ring->id == RCS) {
  7959.                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  7960.                 intel_ring_emit(ring, DERRMR);
  7961.                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  7962.                                         DERRMR_PIPEB_PRI_FLIP_DONE |
  7963.                                         DERRMR_PIPEC_PRI_FLIP_DONE));
  7964.                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  7965.                 intel_ring_emit(ring, DERRMR);
  7966.                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  7967.         }
  7968.  
  7969.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  7970.         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  7971.         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  7972.         intel_ring_emit(ring, (MI_NOOP));
  7973.  
  7974.         intel_mark_page_flip_active(intel_crtc);
  7975.         intel_ring_advance(ring);
  7976.         return 0;
  7977.  
  7978. err_unpin:
  7979.         intel_unpin_fb_obj(obj);
  7980. err:
  7981.         return ret;
  7982. }
  7983.  
  7984. static int intel_default_queue_flip(struct drm_device *dev,
  7985.                                     struct drm_crtc *crtc,
  7986.                                     struct drm_framebuffer *fb,
  7987.                                     struct drm_i915_gem_object *obj,
  7988.                                     uint32_t flags)
  7989. {
  7990.         return -ENODEV;
  7991. }
  7992.  
  7993. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  7994.                                 struct drm_framebuffer *fb,
  7995.                                 struct drm_pending_vblank_event *event,
  7996.                                 uint32_t page_flip_flags)
  7997. {
  7998.         struct drm_device *dev = crtc->dev;
  7999.         struct drm_i915_private *dev_priv = dev->dev_private;
  8000.         struct drm_framebuffer *old_fb = crtc->fb;
  8001.         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  8002.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8003.         struct intel_unpin_work *work;
  8004.         unsigned long flags;
  8005.         int ret;
  8006.  
  8007.         /* Can't change pixel format via MI display flips. */
  8008.         if (fb->pixel_format != crtc->fb->pixel_format)
  8009.                 return -EINVAL;
  8010.  
  8011.         /*
  8012.          * TILEOFF/LINOFF registers can't be changed via MI display flips.
  8013.          * Note that pitch changes could also affect these register.
  8014.          */
  8015.         if (INTEL_INFO(dev)->gen > 3 &&
  8016.             (fb->offsets[0] != crtc->fb->offsets[0] ||
  8017.              fb->pitches[0] != crtc->fb->pitches[0]))
  8018.                 return -EINVAL;
  8019.  
  8020.         work = kzalloc(sizeof *work, GFP_KERNEL);
  8021.         if (work == NULL)
  8022.                 return -ENOMEM;
  8023.  
  8024.         work->event = event;
  8025.         work->crtc = crtc;
  8026.         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  8027.         INIT_WORK(&work->work, intel_unpin_work_fn);
  8028.  
  8029.         ret = drm_vblank_get(dev, intel_crtc->pipe);
  8030.         if (ret)
  8031.                 goto free_work;
  8032.  
  8033.         /* We borrow the event spin lock for protecting unpin_work */
  8034.         spin_lock_irqsave(&dev->event_lock, flags);
  8035.         if (intel_crtc->unpin_work) {
  8036.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  8037.                 kfree(work);
  8038.                 drm_vblank_put(dev, intel_crtc->pipe);
  8039.  
  8040.                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  8041.                 return -EBUSY;
  8042.         }
  8043.         intel_crtc->unpin_work = work;
  8044.         spin_unlock_irqrestore(&dev->event_lock, flags);
  8045.  
  8046.         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  8047.                 flush_workqueue(dev_priv->wq);
  8048.  
  8049.         ret = i915_mutex_lock_interruptible(dev);
  8050.         if (ret)
  8051.                 goto cleanup;
  8052.  
  8053.         /* Reference the objects for the scheduled work. */
  8054.         drm_gem_object_reference(&work->old_fb_obj->base);
  8055.         drm_gem_object_reference(&obj->base);
  8056.  
  8057.         crtc->fb = fb;
  8058.  
  8059.         work->pending_flip_obj = obj;
  8060.  
  8061.         work->enable_stall_check = true;
  8062.  
  8063.         atomic_inc(&intel_crtc->unpin_work_count);
  8064.         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  8065.  
  8066.         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  8067.         if (ret)
  8068.                 goto cleanup_pending;
  8069.  
  8070.         intel_disable_fbc(dev);
  8071.         intel_mark_fb_busy(obj, NULL);
  8072.         mutex_unlock(&dev->struct_mutex);
  8073.  
  8074.         trace_i915_flip_request(intel_crtc->plane, obj);
  8075.  
  8076.         return 0;
  8077.  
  8078. cleanup_pending:
  8079.         atomic_dec(&intel_crtc->unpin_work_count);
  8080.         crtc->fb = old_fb;
  8081.         drm_gem_object_unreference(&work->old_fb_obj->base);
  8082.         drm_gem_object_unreference(&obj->base);
  8083.         mutex_unlock(&dev->struct_mutex);
  8084.  
  8085. cleanup:
  8086.         spin_lock_irqsave(&dev->event_lock, flags);
  8087.         intel_crtc->unpin_work = NULL;
  8088.         spin_unlock_irqrestore(&dev->event_lock, flags);
  8089.  
  8090.         drm_vblank_put(dev, intel_crtc->pipe);
  8091. free_work:
  8092.         kfree(work);
  8093.  
  8094.         return ret;
  8095. }
  8096. #endif
  8097.  
  8098. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  8099.         .mode_set_base_atomic = intel_pipe_set_base_atomic,
  8100.         .load_lut = intel_crtc_load_lut,
  8101. };
  8102.  
  8103. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  8104.                                   struct drm_crtc *crtc)
  8105. {
  8106.         struct drm_device *dev;
  8107.         struct drm_crtc *tmp;
  8108.         int crtc_mask = 1;
  8109.  
  8110.         WARN(!crtc, "checking null crtc?\n");
  8111.  
  8112.         dev = crtc->dev;
  8113.  
  8114.         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  8115.                 if (tmp == crtc)
  8116.                         break;
  8117.                 crtc_mask <<= 1;
  8118.         }
  8119.  
  8120.         if (encoder->possible_crtcs & crtc_mask)
  8121.                 return true;
  8122.         return false;
  8123. }
  8124.  
  8125. /**
  8126.  * intel_modeset_update_staged_output_state
  8127.  *
  8128.  * Updates the staged output configuration state, e.g. after we've read out the
  8129.  * current hw state.
  8130.  */
  8131. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  8132. {
  8133.         struct intel_encoder *encoder;
  8134.         struct intel_connector *connector;
  8135.  
  8136.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  8137.                             base.head) {
  8138.                 connector->new_encoder =
  8139.                         to_intel_encoder(connector->base.encoder);
  8140.         }
  8141.  
  8142.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8143.                             base.head) {
  8144.                 encoder->new_crtc =
  8145.                         to_intel_crtc(encoder->base.crtc);
  8146.         }
  8147. }
  8148.  
  8149. /**
  8150.  * intel_modeset_commit_output_state
  8151.  *
  8152.  * This function copies the stage display pipe configuration to the real one.
  8153.  */
  8154. static void intel_modeset_commit_output_state(struct drm_device *dev)
  8155. {
  8156.         struct intel_encoder *encoder;
  8157.         struct intel_connector *connector;
  8158.  
  8159.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  8160.                             base.head) {
  8161.                 connector->base.encoder = &connector->new_encoder->base;
  8162.         }
  8163.  
  8164.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8165.                             base.head) {
  8166.                 encoder->base.crtc = &encoder->new_crtc->base;
  8167.         }
  8168. }
  8169.  
  8170. static void
  8171. connected_sink_compute_bpp(struct intel_connector * connector,
  8172.                            struct intel_crtc_config *pipe_config)
  8173. {
  8174.         int bpp = pipe_config->pipe_bpp;
  8175.  
  8176.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  8177.                 connector->base.base.id,
  8178.                 drm_get_connector_name(&connector->base));
  8179.  
  8180.         /* Don't use an invalid EDID bpc value */
  8181.         if (connector->base.display_info.bpc &&
  8182.             connector->base.display_info.bpc * 3 < bpp) {
  8183.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  8184.                               bpp, connector->base.display_info.bpc*3);
  8185.                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  8186.         }
  8187.  
  8188.         /* Clamp bpp to 8 on screens without EDID 1.4 */
  8189.         if (connector->base.display_info.bpc == 0 && bpp > 24) {
  8190.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  8191.                               bpp);
  8192.                 pipe_config->pipe_bpp = 24;
  8193.         }
  8194. }
  8195.  
  8196. static int
  8197. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  8198.                     struct drm_framebuffer *fb,
  8199.                     struct intel_crtc_config *pipe_config)
  8200. {
  8201.         struct drm_device *dev = crtc->base.dev;
  8202.         struct intel_connector *connector;
  8203.         int bpp;
  8204.  
  8205.         switch (fb->pixel_format) {
  8206.         case DRM_FORMAT_C8:
  8207.                 bpp = 8*3; /* since we go through a colormap */
  8208.                 break;
  8209.         case DRM_FORMAT_XRGB1555:
  8210.         case DRM_FORMAT_ARGB1555:
  8211.                 /* checked in intel_framebuffer_init already */
  8212.                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  8213.                         return -EINVAL;
  8214.         case DRM_FORMAT_RGB565:
  8215.                 bpp = 6*3; /* min is 18bpp */
  8216.                 break;
  8217.         case DRM_FORMAT_XBGR8888:
  8218.         case DRM_FORMAT_ABGR8888:
  8219.                 /* checked in intel_framebuffer_init already */
  8220.                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  8221.                         return -EINVAL;
  8222.         case DRM_FORMAT_XRGB8888:
  8223.         case DRM_FORMAT_ARGB8888:
  8224.                 bpp = 8*3;
  8225.                 break;
  8226.         case DRM_FORMAT_XRGB2101010:
  8227.         case DRM_FORMAT_ARGB2101010:
  8228.         case DRM_FORMAT_XBGR2101010:
  8229.         case DRM_FORMAT_ABGR2101010:
  8230.                 /* checked in intel_framebuffer_init already */
  8231.                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  8232.                         return -EINVAL;
  8233.                 bpp = 10*3;
  8234.                 break;
  8235.         /* TODO: gen4+ supports 16 bpc floating point, too. */
  8236.         default:
  8237.                 DRM_DEBUG_KMS("unsupported depth\n");
  8238.                 return -EINVAL;
  8239.         }
  8240.  
  8241.         pipe_config->pipe_bpp = bpp;
  8242.  
  8243.         /* Clamp display bpp to EDID value */
  8244.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  8245.                             base.head) {
  8246.                 if (!connector->new_encoder ||
  8247.                     connector->new_encoder->new_crtc != crtc)
  8248.                         continue;
  8249.  
  8250.                 connected_sink_compute_bpp(connector, pipe_config);
  8251.         }
  8252.  
  8253.         return bpp;
  8254. }
  8255.  
  8256. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  8257.                                    struct intel_crtc_config *pipe_config,
  8258.                                    const char *context)
  8259. {
  8260.         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  8261.                       context, pipe_name(crtc->pipe));
  8262.  
  8263.         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  8264.         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  8265.                       pipe_config->pipe_bpp, pipe_config->dither);
  8266.         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  8267.                       pipe_config->has_pch_encoder,
  8268.                       pipe_config->fdi_lanes,
  8269.                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  8270.                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  8271.                       pipe_config->fdi_m_n.tu);
  8272.         DRM_DEBUG_KMS("requested mode:\n");
  8273.         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  8274.         DRM_DEBUG_KMS("adjusted mode:\n");
  8275.         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  8276.         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  8277.                       pipe_config->gmch_pfit.control,
  8278.                       pipe_config->gmch_pfit.pgm_ratios,
  8279.                       pipe_config->gmch_pfit.lvds_border_bits);
  8280.         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  8281.                       pipe_config->pch_pfit.pos,
  8282.                       pipe_config->pch_pfit.size,
  8283.                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  8284.         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  8285. }
  8286.  
  8287. static bool check_encoder_cloning(struct drm_crtc *crtc)
  8288. {
  8289.         int num_encoders = 0;
  8290.         bool uncloneable_encoders = false;
  8291.         struct intel_encoder *encoder;
  8292.  
  8293.         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  8294.                             base.head) {
  8295.                 if (&encoder->new_crtc->base != crtc)
  8296.                         continue;
  8297.  
  8298.                 num_encoders++;
  8299.                 if (!encoder->cloneable)
  8300.                         uncloneable_encoders = true;
  8301.         }
  8302.  
  8303.         return !(num_encoders > 1 && uncloneable_encoders);
  8304. }
  8305.  
  8306. static struct intel_crtc_config *
  8307. intel_modeset_pipe_config(struct drm_crtc *crtc,
  8308.                           struct drm_framebuffer *fb,
  8309.                             struct drm_display_mode *mode)
  8310. {
  8311.         struct drm_device *dev = crtc->dev;
  8312.         struct intel_encoder *encoder;
  8313.         struct intel_crtc_config *pipe_config;
  8314.         int plane_bpp, ret = -EINVAL;
  8315.         bool retry = true;
  8316.  
  8317.         if (!check_encoder_cloning(crtc)) {
  8318.                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  8319.                 return ERR_PTR(-EINVAL);
  8320.         }
  8321.  
  8322.         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  8323.         if (!pipe_config)
  8324.                 return ERR_PTR(-ENOMEM);
  8325.  
  8326.         drm_mode_copy(&pipe_config->adjusted_mode, mode);
  8327.         drm_mode_copy(&pipe_config->requested_mode, mode);
  8328.         pipe_config->cpu_transcoder =
  8329.                 (enum transcoder) to_intel_crtc(crtc)->pipe;
  8330.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  8331.  
  8332.         /*
  8333.          * Sanitize sync polarity flags based on requested ones. If neither
  8334.          * positive or negative polarity is requested, treat this as meaning
  8335.          * negative polarity.
  8336.          */
  8337.         if (!(pipe_config->adjusted_mode.flags &
  8338.               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  8339.                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  8340.  
  8341.         if (!(pipe_config->adjusted_mode.flags &
  8342.               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  8343.                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  8344.  
  8345.         /* Compute a starting value for pipe_config->pipe_bpp taking the source
  8346.          * plane pixel format and any sink constraints into account. Returns the
  8347.          * source plane bpp so that dithering can be selected on mismatches
  8348.          * after encoders and crtc also have had their say. */
  8349.         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  8350.                                               fb, pipe_config);
  8351.         if (plane_bpp < 0)
  8352.                 goto fail;
  8353.  
  8354. encoder_retry:
  8355.         /* Ensure the port clock defaults are reset when retrying. */
  8356.         pipe_config->port_clock = 0;
  8357.         pipe_config->pixel_multiplier = 1;
  8358.  
  8359.         /* Fill in default crtc timings, allow encoders to overwrite them. */
  8360.         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  8361.  
  8362.         /* Pass our mode to the connectors and the CRTC to give them a chance to
  8363.          * adjust it according to limitations or connector properties, and also
  8364.          * a chance to reject the mode entirely.
  8365.          */
  8366.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8367.                             base.head) {
  8368.  
  8369.                 if (&encoder->new_crtc->base != crtc)
  8370.                         continue;
  8371.  
  8372.                         if (!(encoder->compute_config(encoder, pipe_config))) {
  8373.                                 DRM_DEBUG_KMS("Encoder config failure\n");
  8374.                                 goto fail;
  8375.                         }
  8376.                 }
  8377.  
  8378.         /* Set default port clock if not overwritten by the encoder. Needs to be
  8379.          * done afterwards in case the encoder adjusts the mode. */
  8380.         if (!pipe_config->port_clock)
  8381.                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  8382.  
  8383.         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  8384.         if (ret < 0) {
  8385.                 DRM_DEBUG_KMS("CRTC fixup failed\n");
  8386.                 goto fail;
  8387.         }
  8388.  
  8389.         if (ret == RETRY) {
  8390.                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
  8391.                         ret = -EINVAL;
  8392.                         goto fail;
  8393.                 }
  8394.  
  8395.                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  8396.                 retry = false;
  8397.                 goto encoder_retry;
  8398.         }
  8399.  
  8400.         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  8401.         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  8402.                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  8403.  
  8404.         return pipe_config;
  8405. fail:
  8406.         kfree(pipe_config);
  8407.         return ERR_PTR(ret);
  8408. }
  8409.  
  8410. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  8411.  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  8412. static void
  8413. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  8414.                              unsigned *prepare_pipes, unsigned *disable_pipes)
  8415. {
  8416.         struct intel_crtc *intel_crtc;
  8417.         struct drm_device *dev = crtc->dev;
  8418.         struct intel_encoder *encoder;
  8419.         struct intel_connector *connector;
  8420.         struct drm_crtc *tmp_crtc;
  8421.  
  8422.         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  8423.  
  8424.         /* Check which crtcs have changed outputs connected to them, these need
  8425.          * to be part of the prepare_pipes mask. We don't (yet) support global
  8426.          * modeset across multiple crtcs, so modeset_pipes will only have one
  8427.          * bit set at most. */
  8428.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  8429.                             base.head) {
  8430.                 if (connector->base.encoder == &connector->new_encoder->base)
  8431.                         continue;
  8432.  
  8433.                 if (connector->base.encoder) {
  8434.                         tmp_crtc = connector->base.encoder->crtc;
  8435.  
  8436.                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  8437.                 }
  8438.  
  8439.                 if (connector->new_encoder)
  8440.                         *prepare_pipes |=
  8441.                                 1 << connector->new_encoder->new_crtc->pipe;
  8442.         }
  8443.  
  8444.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8445.                             base.head) {
  8446.                 if (encoder->base.crtc == &encoder->new_crtc->base)
  8447.                         continue;
  8448.  
  8449.                 if (encoder->base.crtc) {
  8450.                         tmp_crtc = encoder->base.crtc;
  8451.  
  8452.                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  8453.                 }
  8454.  
  8455.                 if (encoder->new_crtc)
  8456.                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  8457.         }
  8458.  
  8459.         /* Check for any pipes that will be fully disabled ... */
  8460.         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  8461.                             base.head) {
  8462.                 bool used = false;
  8463.  
  8464.                 /* Don't try to disable disabled crtcs. */
  8465.                 if (!intel_crtc->base.enabled)
  8466.                         continue;
  8467.  
  8468.                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8469.                                     base.head) {
  8470.                         if (encoder->new_crtc == intel_crtc)
  8471.                                 used = true;
  8472.                 }
  8473.  
  8474.                 if (!used)
  8475.                         *disable_pipes |= 1 << intel_crtc->pipe;
  8476.         }
  8477.  
  8478.  
  8479.         /* set_mode is also used to update properties on life display pipes. */
  8480.         intel_crtc = to_intel_crtc(crtc);
  8481.         if (crtc->enabled)
  8482.                 *prepare_pipes |= 1 << intel_crtc->pipe;
  8483.  
  8484.         /*
  8485.          * For simplicity do a full modeset on any pipe where the output routing
  8486.          * changed. We could be more clever, but that would require us to be
  8487.          * more careful with calling the relevant encoder->mode_set functions.
  8488.          */
  8489.         if (*prepare_pipes)
  8490.                 *modeset_pipes = *prepare_pipes;
  8491.  
  8492.         /* ... and mask these out. */
  8493.         *modeset_pipes &= ~(*disable_pipes);
  8494.         *prepare_pipes &= ~(*disable_pipes);
  8495.  
  8496.         /*
  8497.          * HACK: We don't (yet) fully support global modesets. intel_set_config
  8498.          * obies this rule, but the modeset restore mode of
  8499.          * intel_modeset_setup_hw_state does not.
  8500.          */
  8501.         *modeset_pipes &= 1 << intel_crtc->pipe;
  8502.         *prepare_pipes &= 1 << intel_crtc->pipe;
  8503.  
  8504.         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  8505.                       *modeset_pipes, *prepare_pipes, *disable_pipes);
  8506. }
  8507.  
  8508. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  8509. {
  8510.         struct drm_encoder *encoder;
  8511.         struct drm_device *dev = crtc->dev;
  8512.  
  8513.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  8514.                 if (encoder->crtc == crtc)
  8515.                         return true;
  8516.  
  8517.         return false;
  8518. }
  8519.  
  8520. static void
  8521. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  8522. {
  8523.         struct intel_encoder *intel_encoder;
  8524.         struct intel_crtc *intel_crtc;
  8525.         struct drm_connector *connector;
  8526.  
  8527.         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  8528.                             base.head) {
  8529.                 if (!intel_encoder->base.crtc)
  8530.                         continue;
  8531.  
  8532.                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  8533.  
  8534.                 if (prepare_pipes & (1 << intel_crtc->pipe))
  8535.                         intel_encoder->connectors_active = false;
  8536.         }
  8537.  
  8538.         intel_modeset_commit_output_state(dev);
  8539.  
  8540.         /* Update computed state. */
  8541.         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  8542.                             base.head) {
  8543.                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  8544.         }
  8545.  
  8546.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  8547.                 if (!connector->encoder || !connector->encoder->crtc)
  8548.                         continue;
  8549.  
  8550.                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
  8551.  
  8552.                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
  8553.                         struct drm_property *dpms_property =
  8554.                                 dev->mode_config.dpms_property;
  8555.  
  8556.                         connector->dpms = DRM_MODE_DPMS_ON;
  8557.                         drm_object_property_set_value(&connector->base,
  8558.                                                          dpms_property,
  8559.                                                          DRM_MODE_DPMS_ON);
  8560.  
  8561.                         intel_encoder = to_intel_encoder(connector->encoder);
  8562.                         intel_encoder->connectors_active = true;
  8563.                 }
  8564.         }
  8565.  
  8566. }
  8567.  
  8568. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  8569.                                     struct intel_crtc_config *new)
  8570. {
  8571.         int clock1, clock2, diff;
  8572.  
  8573.         clock1 = cur->adjusted_mode.clock;
  8574.         clock2 = new->adjusted_mode.clock;
  8575.  
  8576.         if (clock1 == clock2)
  8577.                 return true;
  8578.  
  8579.         if (!clock1 || !clock2)
  8580.                 return false;
  8581.  
  8582.         diff = abs(clock1 - clock2);
  8583.  
  8584.         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  8585.                 return true;
  8586.  
  8587.         return false;
  8588. }
  8589.  
  8590. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  8591.         list_for_each_entry((intel_crtc), \
  8592.                             &(dev)->mode_config.crtc_list, \
  8593.                             base.head) \
  8594.                 if (mask & (1 <<(intel_crtc)->pipe))
  8595.  
  8596. static bool
  8597. intel_pipe_config_compare(struct drm_device *dev,
  8598.                           struct intel_crtc_config *current_config,
  8599.                           struct intel_crtc_config *pipe_config)
  8600. {
  8601. #define PIPE_CONF_CHECK_X(name) \
  8602.         if (current_config->name != pipe_config->name) { \
  8603.                 DRM_ERROR("mismatch in " #name " " \
  8604.                           "(expected 0x%08x, found 0x%08x)\n", \
  8605.                           current_config->name, \
  8606.                           pipe_config->name); \
  8607.                 return false; \
  8608.         }
  8609.  
  8610. #define PIPE_CONF_CHECK_I(name) \
  8611.         if (current_config->name != pipe_config->name) { \
  8612.                 DRM_ERROR("mismatch in " #name " " \
  8613.                           "(expected %i, found %i)\n", \
  8614.                           current_config->name, \
  8615.                           pipe_config->name); \
  8616.                 return false; \
  8617.         }
  8618.  
  8619. #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
  8620.         if ((current_config->name ^ pipe_config->name) & (mask)) { \
  8621.                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
  8622.                           "(expected %i, found %i)\n", \
  8623.                           current_config->name & (mask), \
  8624.                           pipe_config->name & (mask)); \
  8625.                 return false; \
  8626.         }
  8627.  
  8628. #define PIPE_CONF_QUIRK(quirk)  \
  8629.         ((current_config->quirks | pipe_config->quirks) & (quirk))
  8630.  
  8631.         PIPE_CONF_CHECK_I(cpu_transcoder);
  8632.  
  8633.         PIPE_CONF_CHECK_I(has_pch_encoder);
  8634.         PIPE_CONF_CHECK_I(fdi_lanes);
  8635.         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  8636.         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  8637.         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  8638.         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  8639.         PIPE_CONF_CHECK_I(fdi_m_n.tu);
  8640.  
  8641.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  8642.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  8643.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  8644.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  8645.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  8646.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  8647.  
  8648.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  8649.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  8650.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  8651.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  8652.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  8653.         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  8654.  
  8655.                 PIPE_CONF_CHECK_I(pixel_multiplier);
  8656.  
  8657.         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  8658.                               DRM_MODE_FLAG_INTERLACE);
  8659.  
  8660.         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  8661.                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  8662.                                       DRM_MODE_FLAG_PHSYNC);
  8663.                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  8664.                                       DRM_MODE_FLAG_NHSYNC);
  8665.                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  8666.                                       DRM_MODE_FLAG_PVSYNC);
  8667.                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  8668.                                       DRM_MODE_FLAG_NVSYNC);
  8669.         }
  8670.  
  8671.         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  8672.         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  8673.  
  8674.         PIPE_CONF_CHECK_I(gmch_pfit.control);
  8675.         /* pfit ratios are autocomputed by the hw on gen4+ */
  8676.         if (INTEL_INFO(dev)->gen < 4)
  8677.                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  8678.         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  8679.         PIPE_CONF_CHECK_I(pch_pfit.enabled);
  8680.         if (current_config->pch_pfit.enabled) {
  8681.         PIPE_CONF_CHECK_I(pch_pfit.pos);
  8682.         PIPE_CONF_CHECK_I(pch_pfit.size);
  8683.         }
  8684.  
  8685.         PIPE_CONF_CHECK_I(ips_enabled);
  8686.  
  8687.         PIPE_CONF_CHECK_I(shared_dpll);
  8688.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  8689.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  8690.         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  8691.         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  8692.  
  8693.         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  8694.                 PIPE_CONF_CHECK_I(pipe_bpp);
  8695.  
  8696. #undef PIPE_CONF_CHECK_X
  8697. #undef PIPE_CONF_CHECK_I
  8698. #undef PIPE_CONF_CHECK_FLAGS
  8699. #undef PIPE_CONF_QUIRK
  8700.  
  8701.         if (!IS_HASWELL(dev)) {
  8702.                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  8703.                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  8704.                                   current_config->adjusted_mode.clock,
  8705.                                   pipe_config->adjusted_mode.clock);
  8706.                         return false;
  8707.                 }
  8708.         }
  8709.  
  8710.         return true;
  8711. }
  8712.  
  8713. static void
  8714. check_connector_state(struct drm_device *dev)
  8715. {
  8716.         struct intel_connector *connector;
  8717.  
  8718.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  8719.                             base.head) {
  8720.                 /* This also checks the encoder/connector hw state with the
  8721.                  * ->get_hw_state callbacks. */
  8722.                 intel_connector_check_state(connector);
  8723.  
  8724.                 WARN(&connector->new_encoder->base != connector->base.encoder,
  8725.                      "connector's staged encoder doesn't match current encoder\n");
  8726.         }
  8727. }
  8728.  
  8729. static void
  8730. check_encoder_state(struct drm_device *dev)
  8731. {
  8732.         struct intel_encoder *encoder;
  8733.         struct intel_connector *connector;
  8734.  
  8735.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8736.                             base.head) {
  8737.                 bool enabled = false;
  8738.                 bool active = false;
  8739.                 enum pipe pipe, tracked_pipe;
  8740.  
  8741.                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  8742.                               encoder->base.base.id,
  8743.                               drm_get_encoder_name(&encoder->base));
  8744.  
  8745.                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
  8746.                      "encoder's stage crtc doesn't match current crtc\n");
  8747.                 WARN(encoder->connectors_active && !encoder->base.crtc,
  8748.                      "encoder's active_connectors set, but no crtc\n");
  8749.  
  8750.                 list_for_each_entry(connector, &dev->mode_config.connector_list,
  8751.                                     base.head) {
  8752.                         if (connector->base.encoder != &encoder->base)
  8753.                                 continue;
  8754.                         enabled = true;
  8755.                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  8756.                                 active = true;
  8757.                 }
  8758.                 WARN(!!encoder->base.crtc != enabled,
  8759.                      "encoder's enabled state mismatch "
  8760.                      "(expected %i, found %i)\n",
  8761.                      !!encoder->base.crtc, enabled);
  8762.                 WARN(active && !encoder->base.crtc,
  8763.                      "active encoder with no crtc\n");
  8764.  
  8765.                 WARN(encoder->connectors_active != active,
  8766.                      "encoder's computed active state doesn't match tracked active state "
  8767.                      "(expected %i, found %i)\n", active, encoder->connectors_active);
  8768.  
  8769.                 active = encoder->get_hw_state(encoder, &pipe);
  8770.                 WARN(active != encoder->connectors_active,
  8771.                      "encoder's hw state doesn't match sw tracking "
  8772.                      "(expected %i, found %i)\n",
  8773.                      encoder->connectors_active, active);
  8774.  
  8775.                 if (!encoder->base.crtc)
  8776.                         continue;
  8777.  
  8778.                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  8779.                 WARN(active && pipe != tracked_pipe,
  8780.                      "active encoder's pipe doesn't match"
  8781.                      "(expected %i, found %i)\n",
  8782.                      tracked_pipe, pipe);
  8783.  
  8784.         }
  8785. }
  8786.  
  8787. static void
  8788. check_crtc_state(struct drm_device *dev)
  8789. {
  8790.         drm_i915_private_t *dev_priv = dev->dev_private;
  8791.         struct intel_crtc *crtc;
  8792.         struct intel_encoder *encoder;
  8793.         struct intel_crtc_config pipe_config;
  8794.  
  8795.         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8796.                             base.head) {
  8797.                 bool enabled = false;
  8798.                 bool active = false;
  8799.  
  8800.                 memset(&pipe_config, 0, sizeof(pipe_config));
  8801.  
  8802.                 DRM_DEBUG_KMS("[CRTC:%d]\n",
  8803.                               crtc->base.base.id);
  8804.  
  8805.                 WARN(crtc->active && !crtc->base.enabled,
  8806.                      "active crtc, but not enabled in sw tracking\n");
  8807.  
  8808.                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8809.                                     base.head) {
  8810.                         if (encoder->base.crtc != &crtc->base)
  8811.                                 continue;
  8812.                         enabled = true;
  8813.                         if (encoder->connectors_active)
  8814.                                 active = true;
  8815.                 }
  8816.  
  8817.                 WARN(active != crtc->active,
  8818.                      "crtc's computed active state doesn't match tracked active state "
  8819.                      "(expected %i, found %i)\n", active, crtc->active);
  8820.                 WARN(enabled != crtc->base.enabled,
  8821.                      "crtc's computed enabled state doesn't match tracked enabled state "
  8822.                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  8823.  
  8824.                 active = dev_priv->display.get_pipe_config(crtc,
  8825.                                                            &pipe_config);
  8826.  
  8827.                 /* hw state is inconsistent with the pipe A quirk */
  8828.                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  8829.                         active = crtc->active;
  8830.  
  8831.                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8832.                                     base.head) {
  8833.                         enum pipe pipe;
  8834.                         if (encoder->base.crtc != &crtc->base)
  8835.                                 continue;
  8836.                         if (encoder->get_config &&
  8837.                             encoder->get_hw_state(encoder, &pipe))
  8838.                                 encoder->get_config(encoder, &pipe_config);
  8839.                 }
  8840.  
  8841.                 if (dev_priv->display.get_clock)
  8842.                         dev_priv->display.get_clock(crtc, &pipe_config);
  8843.  
  8844.                 WARN(crtc->active != active,
  8845.                      "crtc active state doesn't match with hw state "
  8846.                      "(expected %i, found %i)\n", crtc->active, active);
  8847.  
  8848.                 if (active &&
  8849.                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  8850.                         WARN(1, "pipe state doesn't match!\n");
  8851.                         intel_dump_pipe_config(crtc, &pipe_config,
  8852.                                                "[hw state]");
  8853.                         intel_dump_pipe_config(crtc, &crtc->config,
  8854.                                                "[sw state]");
  8855.                 }
  8856.         }
  8857. }
  8858.  
  8859. static void
  8860. check_shared_dpll_state(struct drm_device *dev)
  8861. {
  8862.         drm_i915_private_t *dev_priv = dev->dev_private;
  8863.         struct intel_crtc *crtc;
  8864.         struct intel_dpll_hw_state dpll_hw_state;
  8865.         int i;
  8866.  
  8867.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8868.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8869.                 int enabled_crtcs = 0, active_crtcs = 0;
  8870.                 bool active;
  8871.  
  8872.                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  8873.  
  8874.                 DRM_DEBUG_KMS("%s\n", pll->name);
  8875.  
  8876.                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  8877.  
  8878.                 WARN(pll->active > pll->refcount,
  8879.                      "more active pll users than references: %i vs %i\n",
  8880.                      pll->active, pll->refcount);
  8881.                 WARN(pll->active && !pll->on,
  8882.                      "pll in active use but not on in sw tracking\n");
  8883.                 WARN(pll->on && !pll->active,
  8884.                      "pll in on but not on in use in sw tracking\n");
  8885.                 WARN(pll->on != active,
  8886.                      "pll on state mismatch (expected %i, found %i)\n",
  8887.                      pll->on, active);
  8888.  
  8889.                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8890.                                     base.head) {
  8891.                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  8892.                                 enabled_crtcs++;
  8893.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8894.                                 active_crtcs++;
  8895.                 }
  8896.                 WARN(pll->active != active_crtcs,
  8897.                      "pll active crtcs mismatch (expected %i, found %i)\n",
  8898.                      pll->active, active_crtcs);
  8899.                 WARN(pll->refcount != enabled_crtcs,
  8900.                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
  8901.                      pll->refcount, enabled_crtcs);
  8902.  
  8903.                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  8904.                                        sizeof(dpll_hw_state)),
  8905.                      "pll hw state mismatch\n");
  8906.         }
  8907. }
  8908.  
  8909. void
  8910. intel_modeset_check_state(struct drm_device *dev)
  8911. {
  8912.         check_connector_state(dev);
  8913.         check_encoder_state(dev);
  8914.         check_crtc_state(dev);
  8915.         check_shared_dpll_state(dev);
  8916. }
  8917.  
  8918. static int __intel_set_mode(struct drm_crtc *crtc,
  8919.                     struct drm_display_mode *mode,
  8920.                     int x, int y, struct drm_framebuffer *fb)
  8921. {
  8922.         struct drm_device *dev = crtc->dev;
  8923.         drm_i915_private_t *dev_priv = dev->dev_private;
  8924.         struct drm_display_mode *saved_mode, *saved_hwmode;
  8925.         struct intel_crtc_config *pipe_config = NULL;
  8926.         struct intel_crtc *intel_crtc;
  8927.         unsigned disable_pipes, prepare_pipes, modeset_pipes;
  8928.         int ret = 0;
  8929.  
  8930.         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  8931.         if (!saved_mode)
  8932.                 return -ENOMEM;
  8933.         saved_hwmode = saved_mode + 1;
  8934.  
  8935.         intel_modeset_affected_pipes(crtc, &modeset_pipes,
  8936.                                      &prepare_pipes, &disable_pipes);
  8937.  
  8938.         *saved_hwmode = crtc->hwmode;
  8939.         *saved_mode = crtc->mode;
  8940.  
  8941.         /* Hack: Because we don't (yet) support global modeset on multiple
  8942.          * crtcs, we don't keep track of the new mode for more than one crtc.
  8943.          * Hence simply check whether any bit is set in modeset_pipes in all the
  8944.          * pieces of code that are not yet converted to deal with mutliple crtcs
  8945.          * changing their mode at the same time. */
  8946.         if (modeset_pipes) {
  8947.                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  8948.                 if (IS_ERR(pipe_config)) {
  8949.                         ret = PTR_ERR(pipe_config);
  8950.                         pipe_config = NULL;
  8951.  
  8952.                         goto out;
  8953.                 }
  8954.                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  8955.                                        "[modeset]");
  8956.         }
  8957.  
  8958.         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  8959.                 intel_crtc_disable(&intel_crtc->base);
  8960.  
  8961.         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  8962.                 if (intel_crtc->base.enabled)
  8963.                         dev_priv->display.crtc_disable(&intel_crtc->base);
  8964.         }
  8965.  
  8966.         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  8967.          * to set it here already despite that we pass it down the callchain.
  8968.          */
  8969.         if (modeset_pipes) {
  8970.                 crtc->mode = *mode;
  8971.                 /* mode_set/enable/disable functions rely on a correct pipe
  8972.                  * config. */
  8973.                 to_intel_crtc(crtc)->config = *pipe_config;
  8974.         }
  8975.  
  8976.         /* Only after disabling all output pipelines that will be changed can we
  8977.          * update the the output configuration. */
  8978.         intel_modeset_update_state(dev, prepare_pipes);
  8979.  
  8980.         if (dev_priv->display.modeset_global_resources)
  8981.                 dev_priv->display.modeset_global_resources(dev);
  8982.  
  8983.         /* Set up the DPLL and any encoders state that needs to adjust or depend
  8984.          * on the DPLL.
  8985.          */
  8986.         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  8987.                 ret = intel_crtc_mode_set(&intel_crtc->base,
  8988.                                            x, y, fb);
  8989.                 if (ret)
  8990.                     goto done;
  8991.         }
  8992.  
  8993.         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  8994.         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  8995.                 dev_priv->display.crtc_enable(&intel_crtc->base);
  8996.  
  8997.         if (modeset_pipes) {
  8998.                 /* Store real post-adjustment hardware mode. */
  8999.                 crtc->hwmode = pipe_config->adjusted_mode;
  9000.  
  9001.                 /* Calculate and store various constants which
  9002.                  * are later needed by vblank and swap-completion
  9003.                  * timestamping. They are derived from true hwmode.
  9004.                  */
  9005.                 drm_calc_timestamping_constants(crtc);
  9006.         }
  9007.  
  9008.         /* FIXME: add subpixel order */
  9009. done:
  9010.         if (ret && crtc->enabled) {
  9011.                 crtc->hwmode = *saved_hwmode;
  9012.                 crtc->mode = *saved_mode;
  9013.         }
  9014.  
  9015. out:
  9016.         kfree(pipe_config);
  9017.         kfree(saved_mode);
  9018.         return ret;
  9019. }
  9020.  
  9021. static int intel_set_mode(struct drm_crtc *crtc,
  9022.                      struct drm_display_mode *mode,
  9023.                      int x, int y, struct drm_framebuffer *fb)
  9024. {
  9025.         int ret;
  9026.  
  9027.         ret = __intel_set_mode(crtc, mode, x, y, fb);
  9028.  
  9029.         if (ret == 0)
  9030.                 intel_modeset_check_state(crtc->dev);
  9031.  
  9032.         return ret;
  9033. }
  9034.  
  9035. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  9036. {
  9037.         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  9038. }
  9039.  
  9040. #undef for_each_intel_crtc_masked
  9041.  
  9042. static void intel_set_config_free(struct intel_set_config *config)
  9043. {
  9044.         if (!config)
  9045.                 return;
  9046.  
  9047.         kfree(config->save_connector_encoders);
  9048.         kfree(config->save_encoder_crtcs);
  9049.         kfree(config);
  9050. }
  9051.  
  9052. static int intel_set_config_save_state(struct drm_device *dev,
  9053.                                        struct intel_set_config *config)
  9054. {
  9055.         struct drm_encoder *encoder;
  9056.         struct drm_connector *connector;
  9057.         int count;
  9058.  
  9059.         config->save_encoder_crtcs =
  9060.                 kcalloc(dev->mode_config.num_encoder,
  9061.                         sizeof(struct drm_crtc *), GFP_KERNEL);
  9062.         if (!config->save_encoder_crtcs)
  9063.                 return -ENOMEM;
  9064.  
  9065.         config->save_connector_encoders =
  9066.                 kcalloc(dev->mode_config.num_connector,
  9067.                         sizeof(struct drm_encoder *), GFP_KERNEL);
  9068.         if (!config->save_connector_encoders)
  9069.                 return -ENOMEM;
  9070.  
  9071.         /* Copy data. Note that driver private data is not affected.
  9072.          * Should anything bad happen only the expected state is
  9073.          * restored, not the drivers personal bookkeeping.
  9074.          */
  9075.         count = 0;
  9076.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  9077.                 config->save_encoder_crtcs[count++] = encoder->crtc;
  9078.         }
  9079.  
  9080.         count = 0;
  9081.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  9082.                 config->save_connector_encoders[count++] = connector->encoder;
  9083.         }
  9084.  
  9085.         return 0;
  9086. }
  9087.  
  9088. static void intel_set_config_restore_state(struct drm_device *dev,
  9089.                                            struct intel_set_config *config)
  9090. {
  9091.         struct intel_encoder *encoder;
  9092.         struct intel_connector *connector;
  9093.         int count;
  9094.  
  9095.         count = 0;
  9096.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  9097.                 encoder->new_crtc =
  9098.                         to_intel_crtc(config->save_encoder_crtcs[count++]);
  9099.         }
  9100.  
  9101.         count = 0;
  9102.         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  9103.                 connector->new_encoder =
  9104.                         to_intel_encoder(config->save_connector_encoders[count++]);
  9105.         }
  9106. }
  9107.  
  9108. static bool
  9109. is_crtc_connector_off(struct drm_mode_set *set)
  9110. {
  9111.         int i;
  9112.  
  9113.         if (set->num_connectors == 0)
  9114.                 return false;
  9115.  
  9116.         if (WARN_ON(set->connectors == NULL))
  9117.                 return false;
  9118.  
  9119.         for (i = 0; i < set->num_connectors; i++)
  9120.                 if (set->connectors[i]->encoder &&
  9121.                     set->connectors[i]->encoder->crtc == set->crtc &&
  9122.                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  9123.                         return true;
  9124.  
  9125.         return false;
  9126. }
  9127.  
  9128. static void
  9129. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  9130.                                       struct intel_set_config *config)
  9131. {
  9132.  
  9133.         /* We should be able to check here if the fb has the same properties
  9134.          * and then just flip_or_move it */
  9135.         if (is_crtc_connector_off(set)) {
  9136.                         config->mode_changed = true;
  9137.         } else if (set->crtc->fb != set->fb) {
  9138.                 /* If we have no fb then treat it as a full mode set */
  9139.                 if (set->crtc->fb == NULL) {
  9140.                         struct intel_crtc *intel_crtc =
  9141.                                 to_intel_crtc(set->crtc);
  9142.  
  9143.                         if (intel_crtc->active && i915_fastboot) {
  9144.                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  9145.                                 config->fb_changed = true;
  9146.                         } else {
  9147.                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  9148.                         config->mode_changed = true;
  9149.                         }
  9150.                 } else if (set->fb == NULL) {
  9151.                         config->mode_changed = true;
  9152.                 } else if (set->fb->pixel_format !=
  9153.                            set->crtc->fb->pixel_format) {
  9154.                         config->mode_changed = true;
  9155.                 } else {
  9156.                         config->fb_changed = true;
  9157.         }
  9158.         }
  9159.  
  9160.         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  9161.                 config->fb_changed = true;
  9162.  
  9163.         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  9164.                 DRM_DEBUG_KMS("modes are different, full mode set\n");
  9165.                 drm_mode_debug_printmodeline(&set->crtc->mode);
  9166.                 drm_mode_debug_printmodeline(set->mode);
  9167.                 config->mode_changed = true;
  9168.         }
  9169.  
  9170.         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  9171.                         set->crtc->base.id, config->mode_changed, config->fb_changed);
  9172. }
  9173.  
  9174. static int
  9175. intel_modeset_stage_output_state(struct drm_device *dev,
  9176.                                  struct drm_mode_set *set,
  9177.                                  struct intel_set_config *config)
  9178. {
  9179.         struct drm_crtc *new_crtc;
  9180.         struct intel_connector *connector;
  9181.         struct intel_encoder *encoder;
  9182.         int ro;
  9183.  
  9184.         /* The upper layers ensure that we either disable a crtc or have a list
  9185.          * of connectors. For paranoia, double-check this. */
  9186.         WARN_ON(!set->fb && (set->num_connectors != 0));
  9187.         WARN_ON(set->fb && (set->num_connectors == 0));
  9188.  
  9189.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  9190.                             base.head) {
  9191.                 /* Otherwise traverse passed in connector list and get encoders
  9192.                  * for them. */
  9193.                 for (ro = 0; ro < set->num_connectors; ro++) {
  9194.                         if (set->connectors[ro] == &connector->base) {
  9195.                                 connector->new_encoder = connector->encoder;
  9196.                                 break;
  9197.                         }
  9198.                 }
  9199.  
  9200.                 /* If we disable the crtc, disable all its connectors. Also, if
  9201.                  * the connector is on the changing crtc but not on the new
  9202.                  * connector list, disable it. */
  9203.                 if ((!set->fb || ro == set->num_connectors) &&
  9204.                     connector->base.encoder &&
  9205.                     connector->base.encoder->crtc == set->crtc) {
  9206.                         connector->new_encoder = NULL;
  9207.  
  9208.                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  9209.                                 connector->base.base.id,
  9210.                                 drm_get_connector_name(&connector->base));
  9211.                 }
  9212.  
  9213.  
  9214.                 if (&connector->new_encoder->base != connector->base.encoder) {
  9215.                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  9216.                         config->mode_changed = true;
  9217.                 }
  9218.         }
  9219.         /* connector->new_encoder is now updated for all connectors. */
  9220.  
  9221.         /* Update crtc of enabled connectors. */
  9222.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  9223.                             base.head) {
  9224.                 if (!connector->new_encoder)
  9225.                         continue;
  9226.  
  9227.                 new_crtc = connector->new_encoder->base.crtc;
  9228.  
  9229.                 for (ro = 0; ro < set->num_connectors; ro++) {
  9230.                         if (set->connectors[ro] == &connector->base)
  9231.                                 new_crtc = set->crtc;
  9232.                 }
  9233.  
  9234.                 /* Make sure the new CRTC will work with the encoder */
  9235.                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  9236.                                            new_crtc)) {
  9237.                         return -EINVAL;
  9238.                 }
  9239.                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  9240.  
  9241.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  9242.                         connector->base.base.id,
  9243.                         drm_get_connector_name(&connector->base),
  9244.                         new_crtc->base.id);
  9245.         }
  9246.  
  9247.         /* Check for any encoders that needs to be disabled. */
  9248.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  9249.                             base.head) {
  9250.                 list_for_each_entry(connector,
  9251.                                     &dev->mode_config.connector_list,
  9252.                                     base.head) {
  9253.                         if (connector->new_encoder == encoder) {
  9254.                                 WARN_ON(!connector->new_encoder->new_crtc);
  9255.  
  9256.                                 goto next_encoder;
  9257.                         }
  9258.                 }
  9259.                 encoder->new_crtc = NULL;
  9260. next_encoder:
  9261.                 /* Only now check for crtc changes so we don't miss encoders
  9262.                  * that will be disabled. */
  9263.                 if (&encoder->new_crtc->base != encoder->base.crtc) {
  9264.                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  9265.                         config->mode_changed = true;
  9266.                 }
  9267.         }
  9268.         /* Now we've also updated encoder->new_crtc for all encoders. */
  9269.  
  9270.         return 0;
  9271. }
  9272.  
  9273. static int intel_crtc_set_config(struct drm_mode_set *set)
  9274. {
  9275.         struct drm_device *dev;
  9276.         struct drm_mode_set save_set;
  9277.         struct intel_set_config *config;
  9278.         int ret;
  9279.  
  9280.         BUG_ON(!set);
  9281.         BUG_ON(!set->crtc);
  9282.         BUG_ON(!set->crtc->helper_private);
  9283.  
  9284.         /* Enforce sane interface api - has been abused by the fb helper. */
  9285.         BUG_ON(!set->mode && set->fb);
  9286.         BUG_ON(set->fb && set->num_connectors == 0);
  9287.  
  9288.         if (set->fb) {
  9289.                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  9290.                                 set->crtc->base.id, set->fb->base.id,
  9291.                                 (int)set->num_connectors, set->x, set->y);
  9292.         } else {
  9293.                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  9294.         }
  9295.  
  9296.         dev = set->crtc->dev;
  9297.  
  9298.         ret = -ENOMEM;
  9299.         config = kzalloc(sizeof(*config), GFP_KERNEL);
  9300.         if (!config)
  9301.                 goto out_config;
  9302.  
  9303.         ret = intel_set_config_save_state(dev, config);
  9304.         if (ret)
  9305.                 goto out_config;
  9306.  
  9307.         save_set.crtc = set->crtc;
  9308.         save_set.mode = &set->crtc->mode;
  9309.         save_set.x = set->crtc->x;
  9310.         save_set.y = set->crtc->y;
  9311.         save_set.fb = set->crtc->fb;
  9312.  
  9313.         /* Compute whether we need a full modeset, only an fb base update or no
  9314.          * change at all. In the future we might also check whether only the
  9315.          * mode changed, e.g. for LVDS where we only change the panel fitter in
  9316.          * such cases. */
  9317.         intel_set_config_compute_mode_changes(set, config);
  9318.  
  9319.         ret = intel_modeset_stage_output_state(dev, set, config);
  9320.         if (ret)
  9321.                 goto fail;
  9322.  
  9323.         if (config->mode_changed) {
  9324.                 ret = intel_set_mode(set->crtc, set->mode,
  9325.                                      set->x, set->y, set->fb);
  9326.         } else if (config->fb_changed) {
  9327. //       intel_crtc_wait_for_pending_flips(set->crtc);
  9328.  
  9329.                 ret = intel_pipe_set_base(set->crtc,
  9330.                                           set->x, set->y, set->fb);
  9331.         }
  9332.  
  9333.         if (ret) {
  9334.                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  9335.                           set->crtc->base.id, ret);
  9336. fail:
  9337.         intel_set_config_restore_state(dev, config);
  9338.  
  9339.         /* Try to restore the config */
  9340.         if (config->mode_changed &&
  9341.             intel_set_mode(save_set.crtc, save_set.mode,
  9342.                             save_set.x, save_set.y, save_set.fb))
  9343.                 DRM_ERROR("failed to restore config after modeset failure\n");
  9344.         }
  9345.  
  9346. out_config:
  9347.         intel_set_config_free(config);
  9348.         return ret;
  9349. }
  9350.  
  9351. static const struct drm_crtc_funcs intel_crtc_funcs = {
  9352. //      .cursor_set = intel_crtc_cursor_set,
  9353.         .cursor_move = intel_crtc_cursor_move,
  9354.         .gamma_set = intel_crtc_gamma_set,
  9355.         .set_config = intel_crtc_set_config,
  9356.         .destroy = intel_crtc_destroy,
  9357. //      .page_flip = intel_crtc_page_flip,
  9358. };
  9359.  
  9360. static void intel_cpu_pll_init(struct drm_device *dev)
  9361. {
  9362.         if (HAS_DDI(dev))
  9363.                 intel_ddi_pll_init(dev);
  9364. }
  9365.  
  9366. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  9367.                                       struct intel_shared_dpll *pll,
  9368.                                       struct intel_dpll_hw_state *hw_state)
  9369. {
  9370.         uint32_t val;
  9371.  
  9372.         val = I915_READ(PCH_DPLL(pll->id));
  9373.         hw_state->dpll = val;
  9374.         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  9375.         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  9376.  
  9377.         return val & DPLL_VCO_ENABLE;
  9378. }
  9379.  
  9380. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  9381.                                   struct intel_shared_dpll *pll)
  9382. {
  9383.         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  9384.         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  9385. }
  9386.  
  9387. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  9388.                                 struct intel_shared_dpll *pll)
  9389. {
  9390.         /* PCH refclock must be enabled first */
  9391.         assert_pch_refclk_enabled(dev_priv);
  9392.  
  9393.         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  9394.  
  9395.         /* Wait for the clocks to stabilize. */
  9396.         POSTING_READ(PCH_DPLL(pll->id));
  9397.         udelay(150);
  9398.  
  9399.         /* The pixel multiplier can only be updated once the
  9400.          * DPLL is enabled and the clocks are stable.
  9401.          *
  9402.          * So write it again.
  9403.          */
  9404.         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  9405.         POSTING_READ(PCH_DPLL(pll->id));
  9406.         udelay(200);
  9407. }
  9408.  
  9409. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  9410.                                  struct intel_shared_dpll *pll)
  9411. {
  9412.         struct drm_device *dev = dev_priv->dev;
  9413.         struct intel_crtc *crtc;
  9414.  
  9415.         /* Make sure no transcoder isn't still depending on us. */
  9416.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  9417.                 if (intel_crtc_to_shared_dpll(crtc) == pll)
  9418.                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  9419.         }
  9420.  
  9421.         I915_WRITE(PCH_DPLL(pll->id), 0);
  9422.         POSTING_READ(PCH_DPLL(pll->id));
  9423.         udelay(200);
  9424. }
  9425.  
  9426. static char *ibx_pch_dpll_names[] = {
  9427.         "PCH DPLL A",
  9428.         "PCH DPLL B",
  9429. };
  9430.  
  9431. static void ibx_pch_dpll_init(struct drm_device *dev)
  9432. {
  9433.         struct drm_i915_private *dev_priv = dev->dev_private;
  9434.         int i;
  9435.  
  9436.         dev_priv->num_shared_dpll = 2;
  9437.  
  9438.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  9439.                 dev_priv->shared_dplls[i].id = i;
  9440.                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  9441.                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  9442.                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  9443.                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  9444.                 dev_priv->shared_dplls[i].get_hw_state =
  9445.                         ibx_pch_dpll_get_hw_state;
  9446.         }
  9447. }
  9448.  
  9449. static void intel_shared_dpll_init(struct drm_device *dev)
  9450. {
  9451.         struct drm_i915_private *dev_priv = dev->dev_private;
  9452.  
  9453.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  9454.                 ibx_pch_dpll_init(dev);
  9455.         else
  9456.                 dev_priv->num_shared_dpll = 0;
  9457.  
  9458.         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  9459.         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  9460.                       dev_priv->num_shared_dpll);
  9461. }
  9462.  
  9463. static void intel_crtc_init(struct drm_device *dev, int pipe)
  9464. {
  9465.         drm_i915_private_t *dev_priv = dev->dev_private;
  9466.         struct intel_crtc *intel_crtc;
  9467.         int i;
  9468.  
  9469.         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  9470.         if (intel_crtc == NULL)
  9471.                 return;
  9472.  
  9473.         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  9474.  
  9475.         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  9476.         for (i = 0; i < 256; i++) {
  9477.                 intel_crtc->lut_r[i] = i;
  9478.                 intel_crtc->lut_g[i] = i;
  9479.                 intel_crtc->lut_b[i] = i;
  9480.         }
  9481.  
  9482.         /* Swap pipes & planes for FBC on pre-965 */
  9483.         intel_crtc->pipe = pipe;
  9484.         intel_crtc->plane = pipe;
  9485.         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  9486.                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  9487.                 intel_crtc->plane = !pipe;
  9488.         }
  9489.  
  9490.         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  9491.                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  9492.         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  9493.         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  9494.  
  9495.         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  9496. }
  9497.  
  9498. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  9499.                                 struct drm_file *file)
  9500. {
  9501.         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  9502.         struct drm_mode_object *drmmode_obj;
  9503.         struct intel_crtc *crtc;
  9504.  
  9505.         if (!drm_core_check_feature(dev, DRIVER_MODESET))
  9506.                 return -ENODEV;
  9507.  
  9508.         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  9509.                         DRM_MODE_OBJECT_CRTC);
  9510.  
  9511.         if (!drmmode_obj) {
  9512.                 DRM_ERROR("no such CRTC id\n");
  9513.                 return -EINVAL;
  9514.         }
  9515.  
  9516.         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  9517.         pipe_from_crtc_id->pipe = crtc->pipe;
  9518.  
  9519.         return 0;
  9520. }
  9521.  
  9522. static int intel_encoder_clones(struct intel_encoder *encoder)
  9523. {
  9524.         struct drm_device *dev = encoder->base.dev;
  9525.         struct intel_encoder *source_encoder;
  9526.         int index_mask = 0;
  9527.         int entry = 0;
  9528.  
  9529.         list_for_each_entry(source_encoder,
  9530.                             &dev->mode_config.encoder_list, base.head) {
  9531.  
  9532.                 if (encoder == source_encoder)
  9533.                         index_mask |= (1 << entry);
  9534.  
  9535.                 /* Intel hw has only one MUX where enocoders could be cloned. */
  9536.                 if (encoder->cloneable && source_encoder->cloneable)
  9537.                         index_mask |= (1 << entry);
  9538.  
  9539.                 entry++;
  9540.         }
  9541.  
  9542.         return index_mask;
  9543. }
  9544.  
  9545. static bool has_edp_a(struct drm_device *dev)
  9546. {
  9547.         struct drm_i915_private *dev_priv = dev->dev_private;
  9548.  
  9549.         if (!IS_MOBILE(dev))
  9550.                 return false;
  9551.  
  9552.         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  9553.                 return false;
  9554.  
  9555.         if (IS_GEN5(dev) &&
  9556.             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  9557.                 return false;
  9558.  
  9559.         return true;
  9560. }
  9561.  
  9562. static void intel_setup_outputs(struct drm_device *dev)
  9563. {
  9564.         struct drm_i915_private *dev_priv = dev->dev_private;
  9565.         struct intel_encoder *encoder;
  9566.         bool dpd_is_edp = false;
  9567.  
  9568.         intel_lvds_init(dev);
  9569.  
  9570.         if (!IS_ULT(dev))
  9571.         intel_crt_init(dev);
  9572.  
  9573.         if (HAS_DDI(dev)) {
  9574.                 int found;
  9575.  
  9576.                 /* Haswell uses DDI functions to detect digital outputs */
  9577.                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  9578.                 /* DDI A only supports eDP */
  9579.                 if (found)
  9580.                         intel_ddi_init(dev, PORT_A);
  9581.  
  9582.                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  9583.                  * register */
  9584.                 found = I915_READ(SFUSE_STRAP);
  9585.  
  9586.                 if (found & SFUSE_STRAP_DDIB_DETECTED)
  9587.                         intel_ddi_init(dev, PORT_B);
  9588.                 if (found & SFUSE_STRAP_DDIC_DETECTED)
  9589.                         intel_ddi_init(dev, PORT_C);
  9590.                 if (found & SFUSE_STRAP_DDID_DETECTED)
  9591.                         intel_ddi_init(dev, PORT_D);
  9592.         } else if (HAS_PCH_SPLIT(dev)) {
  9593.                 int found;
  9594.                 dpd_is_edp = intel_dpd_is_edp(dev);
  9595.  
  9596.                 if (has_edp_a(dev))
  9597.                         intel_dp_init(dev, DP_A, PORT_A);
  9598.  
  9599.                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  9600.                         /* PCH SDVOB multiplex with HDMIB */
  9601.                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
  9602.                         if (!found)
  9603.                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  9604.                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  9605.                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
  9606.                 }
  9607.  
  9608.                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  9609.                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  9610.  
  9611.                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  9612.                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  9613.  
  9614.                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
  9615.                         intel_dp_init(dev, PCH_DP_C, PORT_C);
  9616.  
  9617.                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
  9618.                         intel_dp_init(dev, PCH_DP_D, PORT_D);
  9619.         } else if (IS_VALLEYVIEW(dev)) {
  9620.                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  9621.                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  9622.                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  9623.                                         PORT_C);
  9624.                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  9625.                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  9626.                                               PORT_C);
  9627.                 }
  9628.  
  9629.                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  9630.                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  9631.                                         PORT_B);
  9632.                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  9633.                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  9634.                 }
  9635.         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  9636.                 bool found = false;
  9637.  
  9638.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  9639.                         DRM_DEBUG_KMS("probing SDVOB\n");
  9640.                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  9641.                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  9642.                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  9643.                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  9644.                         }
  9645.  
  9646.                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
  9647.                                 intel_dp_init(dev, DP_B, PORT_B);
  9648.                         }
  9649.  
  9650.                 /* Before G4X SDVOC doesn't have its own detect register */
  9651.  
  9652.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  9653.                         DRM_DEBUG_KMS("probing SDVOC\n");
  9654.                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  9655.                 }
  9656.  
  9657.                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  9658.  
  9659.                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  9660.                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  9661.                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  9662.                         }
  9663.                         if (SUPPORTS_INTEGRATED_DP(dev))
  9664.                                 intel_dp_init(dev, DP_C, PORT_C);
  9665.                         }
  9666.  
  9667.                 if (SUPPORTS_INTEGRATED_DP(dev) &&
  9668.                     (I915_READ(DP_D) & DP_DETECTED))
  9669.                         intel_dp_init(dev, DP_D, PORT_D);
  9670.         } else if (IS_GEN2(dev))
  9671.                 intel_dvo_init(dev);
  9672.  
  9673. //   if (SUPPORTS_TV(dev))
  9674. //       intel_tv_init(dev);
  9675.  
  9676.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  9677.                 encoder->base.possible_crtcs = encoder->crtc_mask;
  9678.                 encoder->base.possible_clones =
  9679.                         intel_encoder_clones(encoder);
  9680.         }
  9681.  
  9682.         intel_init_pch_refclk(dev);
  9683.  
  9684.         drm_helper_move_panel_connectors_to_head(dev);
  9685. }
  9686.  
  9687.  
  9688.  
  9689. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  9690. //      .destroy = intel_user_framebuffer_destroy,
  9691. //      .create_handle = intel_user_framebuffer_create_handle,
  9692. };
  9693.  
  9694. int intel_framebuffer_init(struct drm_device *dev,
  9695.                            struct intel_framebuffer *intel_fb,
  9696.                            struct drm_mode_fb_cmd2 *mode_cmd,
  9697.                            struct drm_i915_gem_object *obj)
  9698. {
  9699.         int pitch_limit;
  9700.         int ret;
  9701.  
  9702.         if (obj->tiling_mode == I915_TILING_Y) {
  9703.                 DRM_DEBUG("hardware does not support tiling Y\n");
  9704.                 return -EINVAL;
  9705.         }
  9706.  
  9707.         if (mode_cmd->pitches[0] & 63) {
  9708.                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  9709.                           mode_cmd->pitches[0]);
  9710.                 return -EINVAL;
  9711.         }
  9712.  
  9713.         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  9714.                 pitch_limit = 32*1024;
  9715.         } else if (INTEL_INFO(dev)->gen >= 4) {
  9716.                 if (obj->tiling_mode)
  9717.                         pitch_limit = 16*1024;
  9718.                 else
  9719.                         pitch_limit = 32*1024;
  9720.         } else if (INTEL_INFO(dev)->gen >= 3) {
  9721.                 if (obj->tiling_mode)
  9722.                         pitch_limit = 8*1024;
  9723.                 else
  9724.                         pitch_limit = 16*1024;
  9725.         } else
  9726.                 /* XXX DSPC is limited to 4k tiled */
  9727.                 pitch_limit = 8*1024;
  9728.  
  9729.         if (mode_cmd->pitches[0] > pitch_limit) {
  9730.                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  9731.                           obj->tiling_mode ? "tiled" : "linear",
  9732.                           mode_cmd->pitches[0], pitch_limit);
  9733.                 return -EINVAL;
  9734.         }
  9735.  
  9736.         if (obj->tiling_mode != I915_TILING_NONE &&
  9737.             mode_cmd->pitches[0] != obj->stride) {
  9738.                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  9739.                           mode_cmd->pitches[0], obj->stride);
  9740.                         return -EINVAL;
  9741.         }
  9742.  
  9743.         /* Reject formats not supported by any plane early. */
  9744.         switch (mode_cmd->pixel_format) {
  9745.         case DRM_FORMAT_C8:
  9746.         case DRM_FORMAT_RGB565:
  9747.         case DRM_FORMAT_XRGB8888:
  9748.         case DRM_FORMAT_ARGB8888:
  9749.                 break;
  9750.         case DRM_FORMAT_XRGB1555:
  9751.         case DRM_FORMAT_ARGB1555:
  9752.                 if (INTEL_INFO(dev)->gen > 3) {
  9753.                         DRM_DEBUG("unsupported pixel format: %s\n",
  9754.                                   drm_get_format_name(mode_cmd->pixel_format));
  9755.                         return -EINVAL;
  9756.                 }
  9757.                 break;
  9758.         case DRM_FORMAT_XBGR8888:
  9759.         case DRM_FORMAT_ABGR8888:
  9760.         case DRM_FORMAT_XRGB2101010:
  9761.         case DRM_FORMAT_ARGB2101010:
  9762.         case DRM_FORMAT_XBGR2101010:
  9763.         case DRM_FORMAT_ABGR2101010:
  9764.                 if (INTEL_INFO(dev)->gen < 4) {
  9765.                         DRM_DEBUG("unsupported pixel format: %s\n",
  9766.                                   drm_get_format_name(mode_cmd->pixel_format));
  9767.                         return -EINVAL;
  9768.                 }
  9769.                 break;
  9770.         case DRM_FORMAT_YUYV:
  9771.         case DRM_FORMAT_UYVY:
  9772.         case DRM_FORMAT_YVYU:
  9773.         case DRM_FORMAT_VYUY:
  9774.                 if (INTEL_INFO(dev)->gen < 5) {
  9775.                         DRM_DEBUG("unsupported pixel format: %s\n",
  9776.                                   drm_get_format_name(mode_cmd->pixel_format));
  9777.                         return -EINVAL;
  9778.                 }
  9779.                 break;
  9780.         default:
  9781.                 DRM_DEBUG("unsupported pixel format: %s\n",
  9782.                           drm_get_format_name(mode_cmd->pixel_format));
  9783.                 return -EINVAL;
  9784.         }
  9785.  
  9786.         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  9787.         if (mode_cmd->offsets[0] != 0)
  9788.                 return -EINVAL;
  9789.  
  9790.         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  9791.         intel_fb->obj = obj;
  9792.  
  9793.         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  9794.         if (ret) {
  9795.                 DRM_ERROR("framebuffer init failed %d\n", ret);
  9796.                 return ret;
  9797.         }
  9798.  
  9799.         return 0;
  9800. }
  9801.  
  9802.  
  9803. static const struct drm_mode_config_funcs intel_mode_funcs = {
  9804.         .fb_create = NULL /*intel_user_framebuffer_create*/,
  9805.         .output_poll_changed = intel_fb_output_poll_changed,
  9806. };
  9807.  
  9808. /* Set up chip specific display functions */
  9809. static void intel_init_display(struct drm_device *dev)
  9810. {
  9811.         struct drm_i915_private *dev_priv = dev->dev_private;
  9812.  
  9813.         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  9814.                 dev_priv->display.find_dpll = g4x_find_best_dpll;
  9815.         else if (IS_VALLEYVIEW(dev))
  9816.                 dev_priv->display.find_dpll = vlv_find_best_dpll;
  9817.         else if (IS_PINEVIEW(dev))
  9818.                 dev_priv->display.find_dpll = pnv_find_best_dpll;
  9819.         else
  9820.                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
  9821.  
  9822.         if (HAS_DDI(dev)) {
  9823.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  9824.                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  9825.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  9826.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  9827.                 dev_priv->display.off = haswell_crtc_off;
  9828.                 dev_priv->display.update_plane = ironlake_update_plane;
  9829.         } else if (HAS_PCH_SPLIT(dev)) {
  9830.                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  9831.                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
  9832.                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  9833.                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
  9834.                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
  9835.                 dev_priv->display.off = ironlake_crtc_off;
  9836.                 dev_priv->display.update_plane = ironlake_update_plane;
  9837.         } else if (IS_VALLEYVIEW(dev)) {
  9838.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  9839.                 dev_priv->display.get_clock = vlv_crtc_clock_get;
  9840.                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  9841.                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
  9842.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  9843.                 dev_priv->display.off = i9xx_crtc_off;
  9844.                 dev_priv->display.update_plane = i9xx_update_plane;
  9845.         } else {
  9846.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  9847.                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
  9848.                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  9849.                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
  9850.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  9851.                 dev_priv->display.off = i9xx_crtc_off;
  9852.                 dev_priv->display.update_plane = i9xx_update_plane;
  9853.         }
  9854.  
  9855.         /* Returns the core display clock speed */
  9856.         if (IS_VALLEYVIEW(dev))
  9857.                 dev_priv->display.get_display_clock_speed =
  9858.                         valleyview_get_display_clock_speed;
  9859.         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  9860.                 dev_priv->display.get_display_clock_speed =
  9861.                         i945_get_display_clock_speed;
  9862.         else if (IS_I915G(dev))
  9863.                 dev_priv->display.get_display_clock_speed =
  9864.                         i915_get_display_clock_speed;
  9865.         else if (IS_I945GM(dev) || IS_845G(dev))
  9866.                 dev_priv->display.get_display_clock_speed =
  9867.                         i9xx_misc_get_display_clock_speed;
  9868.         else if (IS_PINEVIEW(dev))
  9869.                 dev_priv->display.get_display_clock_speed =
  9870.                         pnv_get_display_clock_speed;
  9871.         else if (IS_I915GM(dev))
  9872.                 dev_priv->display.get_display_clock_speed =
  9873.                         i915gm_get_display_clock_speed;
  9874.         else if (IS_I865G(dev))
  9875.                 dev_priv->display.get_display_clock_speed =
  9876.                         i865_get_display_clock_speed;
  9877.         else if (IS_I85X(dev))
  9878.                 dev_priv->display.get_display_clock_speed =
  9879.                         i855_get_display_clock_speed;
  9880.         else /* 852, 830 */
  9881.                 dev_priv->display.get_display_clock_speed =
  9882.                         i830_get_display_clock_speed;
  9883.  
  9884.         if (HAS_PCH_SPLIT(dev)) {
  9885.                 if (IS_GEN5(dev)) {
  9886.                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  9887.                         dev_priv->display.write_eld = ironlake_write_eld;
  9888.                 } else if (IS_GEN6(dev)) {
  9889.                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  9890.                         dev_priv->display.write_eld = ironlake_write_eld;
  9891.                 } else if (IS_IVYBRIDGE(dev)) {
  9892.                         /* FIXME: detect B0+ stepping and use auto training */
  9893.                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  9894.                         dev_priv->display.write_eld = ironlake_write_eld;
  9895.                         dev_priv->display.modeset_global_resources =
  9896.                                 ivb_modeset_global_resources;
  9897.                 } else if (IS_HASWELL(dev)) {
  9898.                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  9899.                         dev_priv->display.write_eld = haswell_write_eld;
  9900.                         dev_priv->display.modeset_global_resources =
  9901.                                 haswell_modeset_global_resources;
  9902.                 }
  9903.         } else if (IS_G4X(dev)) {
  9904.                 dev_priv->display.write_eld = g4x_write_eld;
  9905.         }
  9906.  
  9907.         /* Default just returns -ENODEV to indicate unsupported */
  9908. //      dev_priv->display.queue_flip = intel_default_queue_flip;
  9909.  
  9910.  
  9911.  
  9912.  
  9913. }
  9914.  
  9915. /*
  9916.  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  9917.  * resume, or other times.  This quirk makes sure that's the case for
  9918.  * affected systems.
  9919.  */
  9920. static void quirk_pipea_force(struct drm_device *dev)
  9921. {
  9922.         struct drm_i915_private *dev_priv = dev->dev_private;
  9923.  
  9924.         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  9925.         DRM_INFO("applying pipe a force quirk\n");
  9926. }
  9927.  
  9928. /*
  9929.  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  9930.  */
  9931. static void quirk_ssc_force_disable(struct drm_device *dev)
  9932. {
  9933.         struct drm_i915_private *dev_priv = dev->dev_private;
  9934.         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  9935.         DRM_INFO("applying lvds SSC disable quirk\n");
  9936. }
  9937.  
  9938. /*
  9939.  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  9940.  * brightness value
  9941.  */
  9942. static void quirk_invert_brightness(struct drm_device *dev)
  9943. {
  9944.         struct drm_i915_private *dev_priv = dev->dev_private;
  9945.         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  9946.         DRM_INFO("applying inverted panel brightness quirk\n");
  9947. }
  9948.  
  9949. /*
  9950.  * Some machines (Dell XPS13) suffer broken backlight controls if
  9951.  * BLM_PCH_PWM_ENABLE is set.
  9952.  */
  9953. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  9954. {
  9955.         struct drm_i915_private *dev_priv = dev->dev_private;
  9956.         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  9957.         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  9958. }
  9959.  
  9960. struct intel_quirk {
  9961.         int device;
  9962.         int subsystem_vendor;
  9963.         int subsystem_device;
  9964.         void (*hook)(struct drm_device *dev);
  9965. };
  9966.  
  9967. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  9968. struct intel_dmi_quirk {
  9969.         void (*hook)(struct drm_device *dev);
  9970.         const struct dmi_system_id (*dmi_id_list)[];
  9971. };
  9972.  
  9973. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  9974. {
  9975.         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  9976.         return 1;
  9977. }
  9978.  
  9979. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  9980.         {
  9981.                 .dmi_id_list = &(const struct dmi_system_id[]) {
  9982.                         {
  9983.                                 .callback = intel_dmi_reverse_brightness,
  9984.                                 .ident = "NCR Corporation",
  9985.                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  9986.                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
  9987.                                 },
  9988.                         },
  9989.                         { }  /* terminating entry */
  9990.                 },
  9991.                 .hook = quirk_invert_brightness,
  9992.         },
  9993. };
  9994.  
  9995. static struct intel_quirk intel_quirks[] = {
  9996.         /* HP Mini needs pipe A force quirk (LP: #322104) */
  9997.         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  9998.  
  9999.         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  10000.         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  10001.  
  10002.         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  10003.         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  10004.  
  10005.         /* 830/845 need to leave pipe A & dpll A up */
  10006.         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  10007.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  10008.  
  10009.         /* Lenovo U160 cannot use SSC on LVDS */
  10010.         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  10011.  
  10012.         /* Sony Vaio Y cannot use SSC on LVDS */
  10013.         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  10014.  
  10015.         /* Acer Aspire 5734Z must invert backlight brightness */
  10016.         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  10017.  
  10018.         /* Acer/eMachines G725 */
  10019.         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  10020.  
  10021.         /* Acer/eMachines e725 */
  10022.         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  10023.  
  10024.         /* Acer/Packard Bell NCL20 */
  10025.         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  10026.  
  10027.         /* Acer Aspire 4736Z */
  10028.         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  10029.  
  10030.         /* Dell XPS13 HD Sandy Bridge */
  10031.         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  10032.         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  10033.         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  10034. };
  10035.  
  10036. static void intel_init_quirks(struct drm_device *dev)
  10037. {
  10038.         struct pci_dev *d = dev->pdev;
  10039.         int i;
  10040.  
  10041.         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  10042.                 struct intel_quirk *q = &intel_quirks[i];
  10043.  
  10044.                 if (d->device == q->device &&
  10045.                     (d->subsystem_vendor == q->subsystem_vendor ||
  10046.                      q->subsystem_vendor == PCI_ANY_ID) &&
  10047.                     (d->subsystem_device == q->subsystem_device ||
  10048.                      q->subsystem_device == PCI_ANY_ID))
  10049.                         q->hook(dev);
  10050.         }
  10051. }
  10052.  
  10053. /* Disable the VGA plane that we never use */
  10054. static void i915_disable_vga(struct drm_device *dev)
  10055. {
  10056.         struct drm_i915_private *dev_priv = dev->dev_private;
  10057.         u8 sr1;
  10058.         u32 vga_reg = i915_vgacntrl_reg(dev);
  10059.  
  10060. //   vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  10061.     out8(SR01, VGA_SR_INDEX);
  10062.     sr1 = in8(VGA_SR_DATA);
  10063.     out8(sr1 | 1<<5, VGA_SR_DATA);
  10064. //   vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  10065.         udelay(300);
  10066.  
  10067.         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  10068.         POSTING_READ(vga_reg);
  10069. }
  10070.  
  10071. void intel_modeset_init_hw(struct drm_device *dev)
  10072. {
  10073.         struct drm_i915_private *dev_priv = dev->dev_private;
  10074.  
  10075.         intel_init_power_well(dev);
  10076.  
  10077.         intel_prepare_ddi(dev);
  10078.  
  10079.         intel_init_clock_gating(dev);
  10080.  
  10081.         /* Enable the CRI clock source so we can get at the display */
  10082.         if (IS_VALLEYVIEW(dev))
  10083.                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  10084.                            DPLL_INTEGRATED_CRI_CLK_VLV);
  10085.  
  10086.     mutex_lock(&dev->struct_mutex);
  10087.     intel_enable_gt_powersave(dev);
  10088.     mutex_unlock(&dev->struct_mutex);
  10089. }
  10090.  
  10091. void intel_modeset_suspend_hw(struct drm_device *dev)
  10092. {
  10093.         intel_suspend_hw(dev);
  10094. }
  10095.  
  10096. void intel_modeset_init(struct drm_device *dev)
  10097. {
  10098.         struct drm_i915_private *dev_priv = dev->dev_private;
  10099.         int i, j, ret;
  10100.  
  10101.         drm_mode_config_init(dev);
  10102.  
  10103.         dev->mode_config.min_width = 0;
  10104.         dev->mode_config.min_height = 0;
  10105.  
  10106.         dev->mode_config.preferred_depth = 24;
  10107.         dev->mode_config.prefer_shadow = 1;
  10108.  
  10109.         dev->mode_config.funcs = &intel_mode_funcs;
  10110.  
  10111.         intel_init_quirks(dev);
  10112.  
  10113.         intel_init_pm(dev);
  10114.  
  10115.         if (INTEL_INFO(dev)->num_pipes == 0)
  10116.                 return;
  10117.  
  10118.         intel_init_display(dev);
  10119.  
  10120.         if (IS_GEN2(dev)) {
  10121.                 dev->mode_config.max_width = 2048;
  10122.                 dev->mode_config.max_height = 2048;
  10123.         } else if (IS_GEN3(dev)) {
  10124.                 dev->mode_config.max_width = 4096;
  10125.                 dev->mode_config.max_height = 4096;
  10126.         } else {
  10127.                 dev->mode_config.max_width = 8192;
  10128.                 dev->mode_config.max_height = 8192;
  10129.         }
  10130.         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  10131.  
  10132.         DRM_DEBUG_KMS("%d display pipe%s available.\n",
  10133.                       INTEL_INFO(dev)->num_pipes,
  10134.                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  10135.  
  10136.         for_each_pipe(i) {
  10137.                 intel_crtc_init(dev, i);
  10138.                 for (j = 0; j < dev_priv->num_plane; j++) {
  10139.                         ret = intel_plane_init(dev, i, j);
  10140.                 if (ret)
  10141.                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  10142.                                               pipe_name(i), sprite_name(i, j), ret);
  10143.                 }
  10144.         }
  10145.  
  10146.         intel_cpu_pll_init(dev);
  10147.         intel_shared_dpll_init(dev);
  10148.  
  10149.         /* Just disable it once at startup */
  10150.         i915_disable_vga(dev);
  10151.         intel_setup_outputs(dev);
  10152.  
  10153.         /* Just in case the BIOS is doing something questionable. */
  10154.         intel_disable_fbc(dev);
  10155. }
  10156.  
  10157. static void
  10158. intel_connector_break_all_links(struct intel_connector *connector)
  10159. {
  10160.         connector->base.dpms = DRM_MODE_DPMS_OFF;
  10161.         connector->base.encoder = NULL;
  10162.         connector->encoder->connectors_active = false;
  10163.         connector->encoder->base.crtc = NULL;
  10164. }
  10165.  
  10166. static void intel_enable_pipe_a(struct drm_device *dev)
  10167. {
  10168.         struct intel_connector *connector;
  10169.         struct drm_connector *crt = NULL;
  10170.         struct intel_load_detect_pipe load_detect_temp;
  10171.  
  10172.         /* We can't just switch on the pipe A, we need to set things up with a
  10173.          * proper mode and output configuration. As a gross hack, enable pipe A
  10174.          * by enabling the load detect pipe once. */
  10175.         list_for_each_entry(connector,
  10176.                             &dev->mode_config.connector_list,
  10177.                             base.head) {
  10178.                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  10179.                         crt = &connector->base;
  10180.                         break;
  10181.                 }
  10182.         }
  10183.  
  10184.         if (!crt)
  10185.                 return;
  10186.  
  10187.         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  10188.                 intel_release_load_detect_pipe(crt, &load_detect_temp);
  10189.  
  10190.  
  10191. }
  10192.  
  10193. static bool
  10194. intel_check_plane_mapping(struct intel_crtc *crtc)
  10195. {
  10196.         struct drm_device *dev = crtc->base.dev;
  10197.         struct drm_i915_private *dev_priv = dev->dev_private;
  10198.         u32 reg, val;
  10199.  
  10200.         if (INTEL_INFO(dev)->num_pipes == 1)
  10201.                 return true;
  10202.  
  10203.         reg = DSPCNTR(!crtc->plane);
  10204.         val = I915_READ(reg);
  10205.  
  10206.         if ((val & DISPLAY_PLANE_ENABLE) &&
  10207.             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  10208.                 return false;
  10209.  
  10210.         return true;
  10211. }
  10212.  
  10213. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  10214. {
  10215.         struct drm_device *dev = crtc->base.dev;
  10216.         struct drm_i915_private *dev_priv = dev->dev_private;
  10217.         u32 reg;
  10218.  
  10219.         /* Clear any frame start delays used for debugging left by the BIOS */
  10220.         reg = PIPECONF(crtc->config.cpu_transcoder);
  10221.         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  10222.  
  10223.         /* We need to sanitize the plane -> pipe mapping first because this will
  10224.          * disable the crtc (and hence change the state) if it is wrong. Note
  10225.          * that gen4+ has a fixed plane -> pipe mapping.  */
  10226.         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  10227.                 struct intel_connector *connector;
  10228.                 bool plane;
  10229.  
  10230.                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  10231.                               crtc->base.base.id);
  10232.  
  10233.                 /* Pipe has the wrong plane attached and the plane is active.
  10234.                  * Temporarily change the plane mapping and disable everything
  10235.                  * ...  */
  10236.                 plane = crtc->plane;
  10237.                 crtc->plane = !plane;
  10238.                 dev_priv->display.crtc_disable(&crtc->base);
  10239.                 crtc->plane = plane;
  10240.  
  10241.                 /* ... and break all links. */
  10242.                 list_for_each_entry(connector, &dev->mode_config.connector_list,
  10243.                                     base.head) {
  10244.                         if (connector->encoder->base.crtc != &crtc->base)
  10245.                                 continue;
  10246.  
  10247.                         intel_connector_break_all_links(connector);
  10248.                 }
  10249.  
  10250.                 WARN_ON(crtc->active);
  10251.                 crtc->base.enabled = false;
  10252.         }
  10253.  
  10254.         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  10255.             crtc->pipe == PIPE_A && !crtc->active) {
  10256.                 /* BIOS forgot to enable pipe A, this mostly happens after
  10257.                  * resume. Force-enable the pipe to fix this, the update_dpms
  10258.                  * call below we restore the pipe to the right state, but leave
  10259.                  * the required bits on. */
  10260.                 intel_enable_pipe_a(dev);
  10261.         }
  10262.  
  10263.         /* Adjust the state of the output pipe according to whether we
  10264.          * have active connectors/encoders. */
  10265.         intel_crtc_update_dpms(&crtc->base);
  10266.  
  10267.         if (crtc->active != crtc->base.enabled) {
  10268.                 struct intel_encoder *encoder;
  10269.  
  10270.                 /* This can happen either due to bugs in the get_hw_state
  10271.                  * functions or because the pipe is force-enabled due to the
  10272.                  * pipe A quirk. */
  10273.                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  10274.                               crtc->base.base.id,
  10275.                               crtc->base.enabled ? "enabled" : "disabled",
  10276.                               crtc->active ? "enabled" : "disabled");
  10277.  
  10278.                 crtc->base.enabled = crtc->active;
  10279.  
  10280.                 /* Because we only establish the connector -> encoder ->
  10281.                  * crtc links if something is active, this means the
  10282.                  * crtc is now deactivated. Break the links. connector
  10283.                  * -> encoder links are only establish when things are
  10284.                  *  actually up, hence no need to break them. */
  10285.                 WARN_ON(crtc->active);
  10286.  
  10287.                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  10288.                         WARN_ON(encoder->connectors_active);
  10289.                         encoder->base.crtc = NULL;
  10290.                 }
  10291.         }
  10292. }
  10293.  
  10294. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  10295. {
  10296.         struct intel_connector *connector;
  10297.         struct drm_device *dev = encoder->base.dev;
  10298.  
  10299.         /* We need to check both for a crtc link (meaning that the
  10300.          * encoder is active and trying to read from a pipe) and the
  10301.          * pipe itself being active. */
  10302.         bool has_active_crtc = encoder->base.crtc &&
  10303.                 to_intel_crtc(encoder->base.crtc)->active;
  10304.  
  10305.         if (encoder->connectors_active && !has_active_crtc) {
  10306.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  10307.                               encoder->base.base.id,
  10308.                               drm_get_encoder_name(&encoder->base));
  10309.  
  10310.                 /* Connector is active, but has no active pipe. This is
  10311.                  * fallout from our resume register restoring. Disable
  10312.                  * the encoder manually again. */
  10313.                 if (encoder->base.crtc) {
  10314.                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  10315.                                       encoder->base.base.id,
  10316.                                       drm_get_encoder_name(&encoder->base));
  10317.                         encoder->disable(encoder);
  10318.                 }
  10319.  
  10320.                 /* Inconsistent output/port/pipe state happens presumably due to
  10321.                  * a bug in one of the get_hw_state functions. Or someplace else
  10322.                  * in our code, like the register restore mess on resume. Clamp
  10323.                  * things to off as a safer default. */
  10324.                 list_for_each_entry(connector,
  10325.                                     &dev->mode_config.connector_list,
  10326.                                     base.head) {
  10327.                         if (connector->encoder != encoder)
  10328.                                 continue;
  10329.  
  10330.                         intel_connector_break_all_links(connector);
  10331.                 }
  10332.         }
  10333.         /* Enabled encoders without active connectors will be fixed in
  10334.          * the crtc fixup. */
  10335. }
  10336.  
  10337. void i915_redisable_vga(struct drm_device *dev)
  10338. {
  10339.         struct drm_i915_private *dev_priv = dev->dev_private;
  10340.         u32 vga_reg = i915_vgacntrl_reg(dev);
  10341.  
  10342.         /* This function can be called both from intel_modeset_setup_hw_state or
  10343.          * at a very early point in our resume sequence, where the power well
  10344.          * structures are not yet restored. Since this function is at a very
  10345.          * paranoid "someone might have enabled VGA while we were not looking"
  10346.          * level, just check if the power well is enabled instead of trying to
  10347.          * follow the "don't touch the power well if we don't need it" policy
  10348.          * the rest of the driver uses. */
  10349.         if (HAS_POWER_WELL(dev) &&
  10350.             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  10351.                 return;
  10352.  
  10353.         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  10354.                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  10355.                 i915_disable_vga(dev);
  10356.         }
  10357. }
  10358.  
  10359. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  10360. {
  10361.         struct drm_i915_private *dev_priv = dev->dev_private;
  10362.         enum pipe pipe;
  10363.         struct intel_crtc *crtc;
  10364.         struct intel_encoder *encoder;
  10365.         struct intel_connector *connector;
  10366.         int i;
  10367.  
  10368.         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  10369.                             base.head) {
  10370.                 memset(&crtc->config, 0, sizeof(crtc->config));
  10371.  
  10372.                 crtc->active = dev_priv->display.get_pipe_config(crtc,
  10373.                                                                  &crtc->config);
  10374.  
  10375.                 crtc->base.enabled = crtc->active;
  10376.  
  10377.                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  10378.                               crtc->base.base.id,
  10379.                               crtc->active ? "enabled" : "disabled");
  10380.         }
  10381.  
  10382.         /* FIXME: Smash this into the new shared dpll infrastructure. */
  10383.         if (HAS_DDI(dev))
  10384.                 intel_ddi_setup_hw_pll_state(dev);
  10385.  
  10386.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  10387.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  10388.  
  10389.                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  10390.                 pll->active = 0;
  10391.                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  10392.                                     base.head) {
  10393.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  10394.                                 pll->active++;
  10395.                 }
  10396.                 pll->refcount = pll->active;
  10397.  
  10398.                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  10399.                               pll->name, pll->refcount, pll->on);
  10400.         }
  10401.  
  10402.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  10403.                             base.head) {
  10404.                 pipe = 0;
  10405.  
  10406.                 if (encoder->get_hw_state(encoder, &pipe)) {
  10407.                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  10408.                         encoder->base.crtc = &crtc->base;
  10409.                         if (encoder->get_config)
  10410.                                 encoder->get_config(encoder, &crtc->config);
  10411.                 } else {
  10412.                         encoder->base.crtc = NULL;
  10413.                 }
  10414.  
  10415.                 encoder->connectors_active = false;
  10416.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  10417.                               encoder->base.base.id,
  10418.                               drm_get_encoder_name(&encoder->base),
  10419.                               encoder->base.crtc ? "enabled" : "disabled",
  10420.                               pipe);
  10421.         }
  10422.  
  10423.         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  10424.                             base.head) {
  10425.                 if (!crtc->active)
  10426.                         continue;
  10427.                 if (dev_priv->display.get_clock)
  10428.                         dev_priv->display.get_clock(crtc,
  10429.                                                     &crtc->config);
  10430.         }
  10431.  
  10432.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  10433.                             base.head) {
  10434.                 if (connector->get_hw_state(connector)) {
  10435.                         connector->base.dpms = DRM_MODE_DPMS_ON;
  10436.                         connector->encoder->connectors_active = true;
  10437.                         connector->base.encoder = &connector->encoder->base;
  10438.                 } else {
  10439.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  10440.                         connector->base.encoder = NULL;
  10441.                 }
  10442.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  10443.                               connector->base.base.id,
  10444.                               drm_get_connector_name(&connector->base),
  10445.                               connector->base.encoder ? "enabled" : "disabled");
  10446.         }
  10447. }
  10448.  
  10449. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  10450.  * and i915 state tracking structures. */
  10451. void intel_modeset_setup_hw_state(struct drm_device *dev,
  10452.                                   bool force_restore)
  10453. {
  10454.         struct drm_i915_private *dev_priv = dev->dev_private;
  10455.         enum pipe pipe;
  10456.         struct drm_plane *plane;
  10457.         struct intel_crtc *crtc;
  10458.         struct intel_encoder *encoder;
  10459.         int i;
  10460.  
  10461.         intel_modeset_readout_hw_state(dev);
  10462.  
  10463.         /*
  10464.          * Now that we have the config, copy it to each CRTC struct
  10465.          * Note that this could go away if we move to using crtc_config
  10466.          * checking everywhere.
  10467.          */
  10468.         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  10469.                             base.head) {
  10470.                 if (crtc->active && i915_fastboot) {
  10471.                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  10472.  
  10473.                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  10474.                                       crtc->base.base.id);
  10475.                         drm_mode_debug_printmodeline(&crtc->base.mode);
  10476.                 }
  10477.         }
  10478.  
  10479.         /* HW state is read out, now we need to sanitize this mess. */
  10480.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  10481.                             base.head) {
  10482.                 intel_sanitize_encoder(encoder);
  10483.         }
  10484.  
  10485.         for_each_pipe(pipe) {
  10486.                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  10487.                 intel_sanitize_crtc(crtc);
  10488.                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  10489.         }
  10490.  
  10491.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  10492.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  10493.  
  10494.                 if (!pll->on || pll->active)
  10495.                         continue;
  10496.  
  10497.                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  10498.  
  10499.                 pll->disable(dev_priv, pll);
  10500.                 pll->on = false;
  10501.         }
  10502.  
  10503.         if (force_restore) {
  10504.                 /*
  10505.                  * We need to use raw interfaces for restoring state to avoid
  10506.                  * checking (bogus) intermediate states.
  10507.                  */
  10508.                 for_each_pipe(pipe) {
  10509.                         struct drm_crtc *crtc =
  10510.                                 dev_priv->pipe_to_crtc_mapping[pipe];
  10511.  
  10512.                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  10513.                                          crtc->fb);
  10514.                 }
  10515.                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  10516.                         intel_plane_restore(plane);
  10517.  
  10518.                 i915_redisable_vga(dev);
  10519.         } else {
  10520.         intel_modeset_update_staged_output_state(dev);
  10521.         }
  10522.  
  10523.         intel_modeset_check_state(dev);
  10524.  
  10525.         drm_mode_config_reset(dev);
  10526. }
  10527.  
  10528. void intel_modeset_gem_init(struct drm_device *dev)
  10529. {
  10530.         intel_modeset_init_hw(dev);
  10531.  
  10532. //   intel_setup_overlay(dev);
  10533.  
  10534.         mutex_lock(&dev->mode_config.mutex);
  10535.         intel_modeset_setup_hw_state(dev, false);
  10536.         mutex_unlock(&dev->mode_config.mutex);
  10537. }
  10538.  
  10539. void intel_modeset_cleanup(struct drm_device *dev)
  10540. {
  10541. #if 0
  10542.         struct drm_i915_private *dev_priv = dev->dev_private;
  10543.         struct drm_crtc *crtc;
  10544.  
  10545.         /*
  10546.          * Interrupts and polling as the first thing to avoid creating havoc.
  10547.          * Too much stuff here (turning of rps, connectors, ...) would
  10548.          * experience fancy races otherwise.
  10549.          */
  10550.         drm_irq_uninstall(dev);
  10551.         cancel_work_sync(&dev_priv->hotplug_work);
  10552.         /*
  10553.          * Due to the hpd irq storm handling the hotplug work can re-arm the
  10554.          * poll handlers. Hence disable polling after hpd handling is shut down.
  10555.          */
  10556. //   drm_kms_helper_poll_fini(dev);
  10557.  
  10558.         mutex_lock(&dev->struct_mutex);
  10559.  
  10560. //   intel_unregister_dsm_handler();
  10561.  
  10562.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  10563.                 /* Skip inactive CRTCs */
  10564.                 if (!crtc->fb)
  10565.                         continue;
  10566.  
  10567.                 intel_increase_pllclock(crtc);
  10568.         }
  10569.  
  10570.         intel_disable_fbc(dev);
  10571.  
  10572.         intel_disable_gt_powersave(dev);
  10573.  
  10574.         ironlake_teardown_rc6(dev);
  10575.  
  10576.         mutex_unlock(&dev->struct_mutex);
  10577.  
  10578.         /* flush any delayed tasks or pending work */
  10579.         flush_scheduled_work();
  10580.  
  10581.         /* destroy backlight, if any, before the connectors */
  10582.         intel_panel_destroy_backlight(dev);
  10583.  
  10584.         drm_mode_config_cleanup(dev);
  10585. #endif
  10586. }
  10587.  
  10588. /*
  10589.  * Return which encoder is currently attached for connector.
  10590.  */
  10591. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  10592. {
  10593.         return &intel_attached_encoder(connector)->base;
  10594. }
  10595.  
  10596. void intel_connector_attach_encoder(struct intel_connector *connector,
  10597.                                     struct intel_encoder *encoder)
  10598. {
  10599.         connector->encoder = encoder;
  10600.         drm_mode_connector_attach_encoder(&connector->base,
  10601.                                           &encoder->base);
  10602. }
  10603.  
  10604. /*
  10605.  * set vga decode state - true == enable VGA decode
  10606.  */
  10607. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  10608. {
  10609.         struct drm_i915_private *dev_priv = dev->dev_private;
  10610.         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
  10611.         u16 gmch_ctrl;
  10612.  
  10613.         pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl);
  10614.         if (state)
  10615.                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  10616.         else
  10617.                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  10618.         pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl);
  10619.         return 0;
  10620. }
  10621.  
  10622. #ifdef CONFIG_DEBUG_FS
  10623. #include <linux/seq_file.h>
  10624.  
  10625. struct intel_display_error_state {
  10626.  
  10627.         u32 power_well_driver;
  10628.  
  10629.         int num_transcoders;
  10630.  
  10631.         struct intel_cursor_error_state {
  10632.                 u32 control;
  10633.                 u32 position;
  10634.                 u32 base;
  10635.                 u32 size;
  10636.         } cursor[I915_MAX_PIPES];
  10637.  
  10638.         struct intel_pipe_error_state {
  10639.                 u32 source;
  10640.         } pipe[I915_MAX_PIPES];
  10641.  
  10642.         struct intel_plane_error_state {
  10643.                 u32 control;
  10644.                 u32 stride;
  10645.                 u32 size;
  10646.                 u32 pos;
  10647.                 u32 addr;
  10648.                 u32 surface;
  10649.                 u32 tile_offset;
  10650.         } plane[I915_MAX_PIPES];
  10651.  
  10652.         struct intel_transcoder_error_state {
  10653.                 enum transcoder cpu_transcoder;
  10654.  
  10655.                 u32 conf;
  10656.  
  10657.                 u32 htotal;
  10658.                 u32 hblank;
  10659.                 u32 hsync;
  10660.                 u32 vtotal;
  10661.                 u32 vblank;
  10662.                 u32 vsync;
  10663.         } transcoder[4];
  10664. };
  10665.  
  10666. struct intel_display_error_state *
  10667. intel_display_capture_error_state(struct drm_device *dev)
  10668. {
  10669.         drm_i915_private_t *dev_priv = dev->dev_private;
  10670.         struct intel_display_error_state *error;
  10671.         int transcoders[] = {
  10672.                 TRANSCODER_A,
  10673.                 TRANSCODER_B,
  10674.                 TRANSCODER_C,
  10675.                 TRANSCODER_EDP,
  10676.         };
  10677.         int i;
  10678.  
  10679.         if (INTEL_INFO(dev)->num_pipes == 0)
  10680.                 return NULL;
  10681.  
  10682.         error = kmalloc(sizeof(*error), GFP_ATOMIC);
  10683.         if (error == NULL)
  10684.                 return NULL;
  10685.  
  10686.         if (HAS_POWER_WELL(dev))
  10687.                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  10688.  
  10689.         for_each_pipe(i) {
  10690.                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  10691.                 error->cursor[i].control = I915_READ(CURCNTR(i));
  10692.                 error->cursor[i].position = I915_READ(CURPOS(i));
  10693.                 error->cursor[i].base = I915_READ(CURBASE(i));
  10694.                 } else {
  10695.                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  10696.                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  10697.                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  10698.                 }
  10699.  
  10700.                 error->plane[i].control = I915_READ(DSPCNTR(i));
  10701.                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  10702.                 if (INTEL_INFO(dev)->gen <= 3) {
  10703.                 error->plane[i].size = I915_READ(DSPSIZE(i));
  10704.                 error->plane[i].pos = I915_READ(DSPPOS(i));
  10705.                 }
  10706.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  10707.                 error->plane[i].addr = I915_READ(DSPADDR(i));
  10708.                 if (INTEL_INFO(dev)->gen >= 4) {
  10709.                         error->plane[i].surface = I915_READ(DSPSURF(i));
  10710.                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  10711.                 }
  10712.  
  10713.                 error->pipe[i].source = I915_READ(PIPESRC(i));
  10714.         }
  10715.  
  10716.         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  10717.         if (HAS_DDI(dev_priv->dev))
  10718.                 error->num_transcoders++; /* Account for eDP. */
  10719.  
  10720.         for (i = 0; i < error->num_transcoders; i++) {
  10721.                 enum transcoder cpu_transcoder = transcoders[i];
  10722.  
  10723.                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
  10724.  
  10725.                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  10726.                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  10727.                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  10728.                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  10729.                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  10730.                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  10731.                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  10732.         }
  10733.  
  10734.         /* In the code above we read the registers without checking if the power
  10735.          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  10736.          * prevent the next I915_WRITE from detecting it and printing an error
  10737.          * message. */
  10738.         intel_uncore_clear_errors(dev);
  10739.  
  10740.         return error;
  10741. }
  10742.  
  10743. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  10744.  
  10745. void
  10746. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  10747.                                 struct drm_device *dev,
  10748.                                 struct intel_display_error_state *error)
  10749. {
  10750.         int i;
  10751.  
  10752.         if (!error)
  10753.                 return;
  10754.  
  10755.         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  10756.         if (HAS_POWER_WELL(dev))
  10757.                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
  10758.                            error->power_well_driver);
  10759.         for_each_pipe(i) {
  10760.                 err_printf(m, "Pipe [%d]:\n", i);
  10761.                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
  10762.  
  10763.                 err_printf(m, "Plane [%d]:\n", i);
  10764.                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
  10765.                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
  10766.                 if (INTEL_INFO(dev)->gen <= 3) {
  10767.                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
  10768.                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
  10769.                 }
  10770.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  10771.                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
  10772.                 if (INTEL_INFO(dev)->gen >= 4) {
  10773.                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
  10774.                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
  10775.                 }
  10776.  
  10777.                 err_printf(m, "Cursor [%d]:\n", i);
  10778.                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
  10779.                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
  10780.                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
  10781.         }
  10782.  
  10783.         for (i = 0; i < error->num_transcoders; i++) {
  10784.                 err_printf(m, "  CPU transcoder: %c\n",
  10785.                            transcoder_name(error->transcoder[i].cpu_transcoder));
  10786.                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
  10787.                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
  10788.                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
  10789.                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
  10790.                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
  10791.                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
  10792.                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
  10793.         }
  10794. }
  10795. #endif
  10796.