Subversion Repositories Kolibri OS

Rev

Rev 5354 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2014 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21.  * IN THE SOFTWARE.
  22.  *
  23.  * Please try to maintain the following order within this file unless it makes
  24.  * sense to do otherwise. From top to bottom:
  25.  * 1. typedefs
  26.  * 2. #defines, and macros
  27.  * 3. structure definitions
  28.  * 4. function prototypes
  29.  *
  30.  * Within each section, please try to order by generation in ascending order,
  31.  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
  32.  */
  33.  
  34. #ifndef __I915_GEM_GTT_H__
  35. #define __I915_GEM_GTT_H__
  36.  
  37. typedef uint32_t gen6_gtt_pte_t;
  38. typedef uint64_t gen8_gtt_pte_t;
  39. typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
  40.  
  41. #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
  42.  
  43. #define I915_PPGTT_PT_ENTRIES           (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  44. /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
  45. #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
  46. #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
  47. #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
  48. #define GEN6_PTE_CACHE_LLC              (2 << 1)
  49. #define GEN6_PTE_UNCACHED               (1 << 1)
  50. #define GEN6_PTE_VALID                  (1 << 0)
  51.  
  52. #define GEN6_PPGTT_PD_ENTRIES           512
  53. #define GEN6_PD_SIZE                    (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
  54. #define GEN6_PD_ALIGN                   (PAGE_SIZE * 16)
  55. #define GEN6_PDE_VALID                  (1 << 0)
  56.  
  57. #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
  58.  
  59. #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
  60. #define BYT_PTE_WRITEABLE               (1 << 1)
  61.  
  62. /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
  63.  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  64.  */
  65. #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
  66.                                          (((bits) & 0x8) << (11 - 3)))
  67. #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
  68. #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
  69. #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
  70. #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
  71. #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
  72. #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
  73. #define HSW_PTE_UNCACHED                (0)
  74. #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
  75. #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
  76.  
  77. /* GEN8 legacy style address is defined as a 3 level page table:
  78.  * 31:30 | 29:21 | 20:12 |  11:0
  79.  * PDPE  |  PDE  |  PTE  | offset
  80.  * The difference as compared to normal x86 3 level page table is the PDPEs are
  81.  * programmed via register.
  82.  */
  83. #define GEN8_PDPE_SHIFT                 30
  84. #define GEN8_PDPE_MASK                  0x3
  85. #define GEN8_PDE_SHIFT                  21
  86. #define GEN8_PDE_MASK                   0x1ff
  87. #define GEN8_PTE_SHIFT                  12
  88. #define GEN8_PTE_MASK                   0x1ff
  89. #define GEN8_LEGACY_PDPS                4
  90. #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
  91. #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
  92.  
  93. #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
  94. #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
  95. #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
  96. #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
  97.  
  98. #define CHV_PPAT_SNOOP                  (1<<6)
  99. #define GEN8_PPAT_AGE(x)                (x<<4)
  100. #define GEN8_PPAT_LLCeLLC               (3<<2)
  101. #define GEN8_PPAT_LLCELLC               (2<<2)
  102. #define GEN8_PPAT_LLC                   (1<<2)
  103. #define GEN8_PPAT_WB                    (3<<0)
  104. #define GEN8_PPAT_WT                    (2<<0)
  105. #define GEN8_PPAT_WC                    (1<<0)
  106. #define GEN8_PPAT_UC                    (0<<0)
  107. #define GEN8_PPAT_ELLC_OVERRIDE         (0<<2)
  108. #define GEN8_PPAT(i, x)                 ((uint64_t) (x) << ((i) * 8))
  109.  
  110. enum i915_cache_level;
  111. /**
  112.  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
  113.  * VMA's presence cannot be guaranteed before binding, or after unbinding the
  114.  * object into/from the address space.
  115.  *
  116.  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
  117.  * will always be <= an objects lifetime. So object refcounting should cover us.
  118.  */
  119. struct i915_vma {
  120.         struct drm_mm_node node;
  121.         struct drm_i915_gem_object *obj;
  122.         struct i915_address_space *vm;
  123.  
  124.         /** This object's place on the active/inactive lists */
  125.         struct list_head mm_list;
  126.  
  127.         struct list_head vma_link; /* Link in the object's VMA list */
  128.  
  129.         /** This vma's place in the batchbuffer or on the eviction list */
  130.         struct list_head exec_list;
  131.  
  132.         /**
  133.          * Used for performing relocations during execbuffer insertion.
  134.          */
  135.         struct hlist_node exec_node;
  136.         unsigned long exec_handle;
  137.         struct drm_i915_gem_exec_object2 *exec_entry;
  138.  
  139.         /**
  140.          * How many users have pinned this object in GTT space. The following
  141.          * users can each hold at most one reference: pwrite/pread, pin_ioctl
  142.          * (via user_pin_count), execbuffer (objects are not allowed multiple
  143.          * times for the same batchbuffer), and the framebuffer code. When
  144.          * switching/pageflipping, the framebuffer code has at most two buffers
  145.          * pinned per crtc.
  146.          *
  147.          * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
  148.          * bits with absolutely no headroom. So use 4 bits. */
  149.         unsigned int pin_count:4;
  150. #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
  151.  
  152.         /** Unmap an object from an address space. This usually consists of
  153.          * setting the valid PTE entries to a reserved scratch page. */
  154.         void (*unbind_vma)(struct i915_vma *vma);
  155.         /* Map an object into an address space with the given cache flags. */
  156. #define GLOBAL_BIND (1<<0)
  157. #define PTE_READ_ONLY (1<<1)
  158.         void (*bind_vma)(struct i915_vma *vma,
  159.                          enum i915_cache_level cache_level,
  160.                          u32 flags);
  161. };
  162.  
  163. struct i915_address_space {
  164.         struct drm_mm mm;
  165.         struct drm_device *dev;
  166.         struct list_head global_link;
  167.         unsigned long start;            /* Start offset always 0 for dri2 */
  168.         size_t total;           /* size addr space maps (ex. 2GB for ggtt) */
  169.  
  170.         struct {
  171.                 dma_addr_t addr;
  172.                 struct page *page;
  173.         } scratch;
  174.  
  175.         /**
  176.          * List of objects currently involved in rendering.
  177.          *
  178.          * Includes buffers having the contents of their GPU caches
  179.          * flushed, not necessarily primitives.  last_rendering_seqno
  180.          * represents when the rendering involved will be completed.
  181.          *
  182.          * A reference is held on the buffer while on this list.
  183.          */
  184.         struct list_head active_list;
  185.  
  186.         /**
  187.          * LRU list of objects which are not in the ringbuffer and
  188.          * are ready to unbind, but are still in the GTT.
  189.          *
  190.          * last_rendering_seqno is 0 while an object is in this list.
  191.          *
  192.          * A reference is not held on the buffer while on this list,
  193.          * as merely being GTT-bound shouldn't prevent its being
  194.          * freed, and we'll pull it off the list in the free path.
  195.          */
  196.         struct list_head inactive_list;
  197.  
  198.         /* FIXME: Need a more generic return type */
  199.         gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
  200.                                      enum i915_cache_level level,
  201.                                      bool valid, u32 flags); /* Create a valid PTE */
  202.         void (*clear_range)(struct i915_address_space *vm,
  203.                             uint64_t start,
  204.                             uint64_t length,
  205.                             bool use_scratch);
  206.         void (*insert_entries)(struct i915_address_space *vm,
  207.                                struct sg_table *st,
  208.                                uint64_t start,
  209.                                enum i915_cache_level cache_level, u32 flags);
  210.         void (*cleanup)(struct i915_address_space *vm);
  211. };
  212.  
  213. /* The Graphics Translation Table is the way in which GEN hardware translates a
  214.  * Graphics Virtual Address into a Physical Address. In addition to the normal
  215.  * collateral associated with any va->pa translations GEN hardware also has a
  216.  * portion of the GTT which can be mapped by the CPU and remain both coherent
  217.  * and correct (in cases like swizzling). That region is referred to as GMADR in
  218.  * the spec.
  219.  */
  220. struct i915_gtt {
  221.         struct i915_address_space base;
  222.         size_t stolen_size;             /* Total size of stolen memory */
  223.  
  224.         unsigned long mappable_end;     /* End offset that we can CPU map */
  225.         struct io_mapping *mappable;    /* Mapping to our CPU mappable region */
  226.         phys_addr_t mappable_base;      /* PA of our GMADR */
  227.  
  228.         /** "Graphics Stolen Memory" holds the global PTEs */
  229.         void __iomem *gsm;
  230.  
  231.         bool do_idle_maps;
  232.  
  233.         int mtrr;
  234.  
  235.         /* global gtt ops */
  236.         int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
  237.                           size_t *stolen, phys_addr_t *mappable_base,
  238.                           unsigned long *mappable_end);
  239. };
  240.  
  241. struct i915_hw_ppgtt {
  242.         struct i915_address_space base;
  243.         struct kref ref;
  244.         struct drm_mm_node node;
  245.         unsigned num_pd_entries;
  246.         unsigned num_pd_pages; /* gen8+ */
  247.         union {
  248.                 struct page **pt_pages;
  249.                 struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
  250.         };
  251.         struct page *pd_pages;
  252.         union {
  253.                 uint32_t pd_offset;
  254.                 dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
  255.         };
  256.         union {
  257.                 dma_addr_t *pt_dma_addr;
  258.                 dma_addr_t *gen8_pt_dma_addr[4];
  259.         };
  260.  
  261.         struct intel_context *ctx;
  262.  
  263.         int (*enable)(struct i915_hw_ppgtt *ppgtt);
  264.         int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
  265.                          struct intel_engine_cs *ring,
  266.                          bool synchronous);
  267. //   void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
  268. };
  269.  
  270. int i915_gem_gtt_init(struct drm_device *dev);
  271. void i915_gem_init_global_gtt(struct drm_device *dev);
  272. void i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start,
  273.                                unsigned long mappable_end, unsigned long end);
  274.  
  275. bool intel_enable_ppgtt(struct drm_device *dev, bool full);
  276. int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
  277.  
  278. void i915_check_and_clear_faults(struct drm_device *dev);
  279. void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
  280. void i915_gem_restore_gtt_mappings(struct drm_device *dev);
  281.  
  282. int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
  283. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
  284.  
  285. #endif
  286.