Subversion Repositories Kolibri OS

Rev

Rev 5056 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #ifndef _LINUX_MATH64_H
  2. #define _LINUX_MATH64_H
  3.  
  4. #include <linux/types.h>
  5. #include <asm/div64.h>
  6.  
  7. #if BITS_PER_LONG == 64
  8.  
  9. #define div64_long(x, y) div64_s64((x), (y))
  10. #define div64_ul(x, y)   div64_u64((x), (y))
  11.  
  12. /**
  13.  * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
  14.  *
  15.  * This is commonly provided by 32bit archs to provide an optimized 64bit
  16.  * divide.
  17.  */
  18. static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  19. {
  20.         *remainder = dividend % divisor;
  21.         return dividend / divisor;
  22. }
  23.  
  24. /**
  25.  * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
  26.  */
  27. static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
  28. {
  29.         *remainder = dividend % divisor;
  30.         return dividend / divisor;
  31. }
  32.  
  33. /**
  34.  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
  35.  */
  36. static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
  37. {
  38.         *remainder = dividend % divisor;
  39.         return dividend / divisor;
  40. }
  41.  
  42. /**
  43.  * div64_u64 - unsigned 64bit divide with 64bit divisor
  44.  */
  45. static inline u64 div64_u64(u64 dividend, u64 divisor)
  46. {
  47.         return dividend / divisor;
  48. }
  49.  
  50. /**
  51.  * div64_s64 - signed 64bit divide with 64bit divisor
  52.  */
  53. static inline s64 div64_s64(s64 dividend, s64 divisor)
  54. {
  55.         return dividend / divisor;
  56. }
  57.  
  58. #elif BITS_PER_LONG == 32
  59.  
  60. #define div64_long(x, y) div_s64((x), (y))
  61. #define div64_ul(x, y)   div_u64((x), (y))
  62.  
  63. #ifndef div_u64_rem
  64. static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  65. {
  66.         *remainder = do_div(dividend, divisor);
  67.         return dividend;
  68. }
  69. #endif
  70.  
  71. #ifndef div_s64_rem
  72. extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
  73. #endif
  74.  
  75. #ifndef div64_u64_rem
  76. extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
  77. #endif
  78.  
  79. #ifndef div64_u64
  80. extern u64 div64_u64(u64 dividend, u64 divisor);
  81. #endif
  82.  
  83. #ifndef div64_s64
  84. extern s64 div64_s64(s64 dividend, s64 divisor);
  85. #endif
  86.  
  87. #endif /* BITS_PER_LONG */
  88.  
  89. /**
  90.  * div_u64 - unsigned 64bit divide with 32bit divisor
  91.  *
  92.  * This is the most common 64bit divide and should be used if possible,
  93.  * as many 32bit archs can optimize this variant better than a full 64bit
  94.  * divide.
  95.  */
  96. #ifndef div_u64
  97. static inline u64 div_u64(u64 dividend, u32 divisor)
  98. {
  99.         u32 remainder;
  100.         return div_u64_rem(dividend, divisor, &remainder);
  101. }
  102. #endif
  103.  
  104. /**
  105.  * div_s64 - signed 64bit divide with 32bit divisor
  106.  */
  107. #ifndef div_s64
  108. static inline s64 div_s64(s64 dividend, s32 divisor)
  109. {
  110.         s32 remainder;
  111.         return div_s64_rem(dividend, divisor, &remainder);
  112. }
  113. #endif
  114.  
  115. u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
  116.  
  117. static __always_inline u32
  118. __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
  119. {
  120.         u32 ret = 0;
  121.  
  122.         while (dividend >= divisor) {
  123.                 /* The following asm() prevents the compiler from
  124.                    optimising this loop into a modulo operation.  */
  125.                 asm("" : "+rm"(dividend));
  126.  
  127.                 dividend -= divisor;
  128.                 ret++;
  129.         }
  130.  
  131.         *remainder = dividend;
  132.  
  133.         return ret;
  134. }
  135.  
  136. #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
  137.  
  138. #ifndef mul_u64_u32_shr
  139. static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
  140. {
  141.         return (u64)(((unsigned __int128)a * mul) >> shift);
  142. }
  143. #endif /* mul_u64_u32_shr */
  144.  
  145. #ifndef mul_u64_u64_shr
  146. static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
  147. {
  148.         return (u64)(((unsigned __int128)a * mul) >> shift);
  149. }
  150. #endif /* mul_u64_u64_shr */
  151.  
  152. #else
  153.  
  154. #ifndef mul_u64_u32_shr
  155. static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
  156. {
  157.         u32 ah, al;
  158.         u64 ret;
  159.  
  160.         al = a;
  161.         ah = a >> 32;
  162.  
  163.         ret = ((u64)al * mul) >> shift;
  164.         if (ah)
  165.                 ret += ((u64)ah * mul) << (32 - shift);
  166.  
  167.         return ret;
  168. }
  169. #endif /* mul_u64_u32_shr */
  170.  
  171. #ifndef mul_u64_u64_shr
  172. static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
  173. {
  174.         union {
  175.                 u64 ll;
  176.                 struct {
  177. #ifdef __BIG_ENDIAN
  178.                         u32 high, low;
  179. #else
  180.                         u32 low, high;
  181. #endif
  182.                 } l;
  183.         } rl, rm, rn, rh, a0, b0;
  184.         u64 c;
  185.  
  186.         a0.ll = a;
  187.         b0.ll = b;
  188.  
  189.         rl.ll = (u64)a0.l.low * b0.l.low;
  190.         rm.ll = (u64)a0.l.low * b0.l.high;
  191.         rn.ll = (u64)a0.l.high * b0.l.low;
  192.         rh.ll = (u64)a0.l.high * b0.l.high;
  193.  
  194.         /*
  195.          * Each of these lines computes a 64-bit intermediate result into "c",
  196.          * starting at bits 32-95.  The low 32-bits go into the result of the
  197.          * multiplication, the high 32-bits are carried into the next step.
  198.          */
  199.         rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
  200.         rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
  201.         rh.l.high = (c >> 32) + rh.l.high;
  202.  
  203.         /*
  204.          * The 128-bit result of the multiplication is in rl.ll and rh.ll,
  205.          * shift it right and throw away the high part of the result.
  206.          */
  207.         if (shift == 0)
  208.                 return rl.ll;
  209.         if (shift < 64)
  210.                 return (rl.ll >> shift) | (rh.ll << (64 - shift));
  211.         return rh.ll >> (shift & 63);
  212. }
  213. #endif /* mul_u64_u64_shr */
  214.  
  215. #endif
  216.  
  217. #ifndef mul_u64_u32_div
  218. static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
  219. {
  220.         union {
  221.                 u64 ll;
  222.                 struct {
  223. #ifdef __BIG_ENDIAN
  224.                         u32 high, low;
  225. #else
  226.                         u32 low, high;
  227. #endif
  228.                 } l;
  229.         } u, rl, rh;
  230.  
  231.         u.ll = a;
  232.         rl.ll = (u64)u.l.low * mul;
  233.         rh.ll = (u64)u.l.high * mul + rl.l.high;
  234.  
  235.         /* Bits 32-63 of the result will be in rh.l.low. */
  236.         rl.l.high = do_div(rh.ll, divisor);
  237.  
  238.         /* Bits 0-31 of the result will be in rl.l.low. */
  239.         do_div(rl.ll, divisor);
  240.  
  241.         rl.l.high = rh.l.low;
  242.         return rl.ll;
  243. }
  244. #endif /* mul_u64_u32_div */
  245.  
  246. #endif /* _LINUX_MATH64_H */
  247.