Subversion Repositories Kolibri OS

Rev

Rev 1408 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #ifndef _LINUX_BYTEORDER_GENERIC_H
  2. #define _LINUX_BYTEORDER_GENERIC_H
  3.  
  4. /*
  5.  * linux/byteorder/generic.h
  6.  * Generic Byte-reordering support
  7.  *
  8.  * The "... p" macros, like le64_to_cpup, can be used with pointers
  9.  * to unaligned data, but there will be a performance penalty on
  10.  * some architectures.  Use get_unaligned for unaligned data.
  11.  *
  12.  * Francois-Rene Rideau <fare@tunes.org> 19970707
  13.  *    gathered all the good ideas from all asm-foo/byteorder.h into one file,
  14.  *    cleaned them up.
  15.  *    I hope it is compliant with non-GCC compilers.
  16.  *    I decided to put __BYTEORDER_HAS_U64__ in byteorder.h,
  17.  *    because I wasn't sure it would be ok to put it in types.h
  18.  *    Upgraded it to 2.1.43
  19.  * Francois-Rene Rideau <fare@tunes.org> 19971012
  20.  *    Upgraded it to 2.1.57
  21.  *    to please Linus T., replaced huge #ifdef's between little/big endian
  22.  *    by nestedly #include'd files.
  23.  * Francois-Rene Rideau <fare@tunes.org> 19971205
  24.  *    Made it to 2.1.71; now a facelift:
  25.  *    Put files under include/linux/byteorder/
  26.  *    Split swab from generic support.
  27.  *
  28.  * TODO:
  29.  *   = Regular kernel maintainers could also replace all these manual
  30.  *    byteswap macros that remain, disseminated among drivers,
  31.  *    after some grep or the sources...
  32.  *   = Linus might want to rename all these macros and files to fit his taste,
  33.  *    to fit his personal naming scheme.
  34.  *   = it seems that a few drivers would also appreciate
  35.  *    nybble swapping support...
  36.  *   = every architecture could add their byteswap macro in asm/byteorder.h
  37.  *    see how some architectures already do (i386, alpha, ppc, etc)
  38.  *   = cpu_to_beXX and beXX_to_cpu might some day need to be well
  39.  *    distinguished throughout the kernel. This is not the case currently,
  40.  *    since little endian, big endian, and pdp endian machines needn't it.
  41.  *    But this might be the case for, say, a port of Linux to 20/21 bit
  42.  *    architectures (and F21 Linux addict around?).
  43.  */
  44.  
  45. /*
  46.  * The following macros are to be defined by <asm/byteorder.h>:
  47.  *
  48.  * Conversion of long and short int between network and host format
  49.  *      ntohl(__u32 x)
  50.  *      ntohs(__u16 x)
  51.  *      htonl(__u32 x)
  52.  *      htons(__u16 x)
  53.  * It seems that some programs (which? where? or perhaps a standard? POSIX?)
  54.  * might like the above to be functions, not macros (why?).
  55.  * if that's true, then detect them, and take measures.
  56.  * Anyway, the measure is: define only ___ntohl as a macro instead,
  57.  * and in a separate file, have
  58.  * unsigned long inline ntohl(x){return ___ntohl(x);}
  59.  *
  60.  * The same for constant arguments
  61.  *      __constant_ntohl(__u32 x)
  62.  *      __constant_ntohs(__u16 x)
  63.  *      __constant_htonl(__u32 x)
  64.  *      __constant_htons(__u16 x)
  65.  *
  66.  * Conversion of XX-bit integers (16- 32- or 64-)
  67.  * between native CPU format and little/big endian format
  68.  * 64-bit stuff only defined for proper architectures
  69.  *      cpu_to_[bl]eXX(__uXX x)
  70.  *      [bl]eXX_to_cpu(__uXX x)
  71.  *
  72.  * The same, but takes a pointer to the value to convert
  73.  *      cpu_to_[bl]eXXp(__uXX x)
  74.  *      [bl]eXX_to_cpup(__uXX x)
  75.  *
  76.  * The same, but change in situ
  77.  *      cpu_to_[bl]eXXs(__uXX x)
  78.  *      [bl]eXX_to_cpus(__uXX x)
  79.  *
  80.  * See asm-foo/byteorder.h for examples of how to provide
  81.  * architecture-optimized versions
  82.  *
  83.  */
  84.  
  85. #define cpu_to_le64 __cpu_to_le64
  86. #define le64_to_cpu __le64_to_cpu
  87. #define cpu_to_le32 __cpu_to_le32
  88. #define le32_to_cpu __le32_to_cpu
  89. #define cpu_to_le16 __cpu_to_le16
  90. #define le16_to_cpu __le16_to_cpu
  91. #define cpu_to_be64 __cpu_to_be64
  92. #define be64_to_cpu __be64_to_cpu
  93. #define cpu_to_be32 __cpu_to_be32
  94. #define be32_to_cpu __be32_to_cpu
  95. #define cpu_to_be16 __cpu_to_be16
  96. #define be16_to_cpu __be16_to_cpu
  97. #define cpu_to_le64p __cpu_to_le64p
  98. #define le64_to_cpup __le64_to_cpup
  99. #define cpu_to_le32p __cpu_to_le32p
  100. #define le32_to_cpup __le32_to_cpup
  101. #define cpu_to_le16p __cpu_to_le16p
  102. #define le16_to_cpup __le16_to_cpup
  103. #define cpu_to_be64p __cpu_to_be64p
  104. #define be64_to_cpup __be64_to_cpup
  105. #define cpu_to_be32p __cpu_to_be32p
  106. #define be32_to_cpup __be32_to_cpup
  107. #define cpu_to_be16p __cpu_to_be16p
  108. #define be16_to_cpup __be16_to_cpup
  109. #define cpu_to_le64s __cpu_to_le64s
  110. #define le64_to_cpus __le64_to_cpus
  111. #define cpu_to_le32s __cpu_to_le32s
  112. #define le32_to_cpus __le32_to_cpus
  113. #define cpu_to_le16s __cpu_to_le16s
  114. #define le16_to_cpus __le16_to_cpus
  115. #define cpu_to_be64s __cpu_to_be64s
  116. #define be64_to_cpus __be64_to_cpus
  117. #define cpu_to_be32s __cpu_to_be32s
  118. #define be32_to_cpus __be32_to_cpus
  119. #define cpu_to_be16s __cpu_to_be16s
  120. #define be16_to_cpus __be16_to_cpus
  121.  
  122. /*
  123.  * They have to be macros in order to do the constant folding
  124.  * correctly - if the argument passed into a inline function
  125.  * it is no longer constant according to gcc..
  126.  */
  127.  
  128. #undef ntohl
  129. #undef ntohs
  130. #undef htonl
  131. #undef htons
  132.  
  133. #define ___htonl(x) __cpu_to_be32(x)
  134. #define ___htons(x) __cpu_to_be16(x)
  135. #define ___ntohl(x) __be32_to_cpu(x)
  136. #define ___ntohs(x) __be16_to_cpu(x)
  137.  
  138. #define htonl(x) ___htonl(x)
  139. #define ntohl(x) ___ntohl(x)
  140. #define htons(x) ___htons(x)
  141. #define ntohs(x) ___ntohs(x)
  142.  
  143. static inline void le16_add_cpu(__le16 *var, u16 val)
  144. {
  145.         *var = cpu_to_le16(le16_to_cpu(*var) + val);
  146. }
  147.  
  148. static inline void le32_add_cpu(__le32 *var, u32 val)
  149. {
  150.         *var = cpu_to_le32(le32_to_cpu(*var) + val);
  151. }
  152.  
  153. static inline void le64_add_cpu(__le64 *var, u64 val)
  154. {
  155.         *var = cpu_to_le64(le64_to_cpu(*var) + val);
  156. }
  157.  
  158. static inline void be16_add_cpu(__be16 *var, u16 val)
  159. {
  160.         *var = cpu_to_be16(be16_to_cpu(*var) + val);
  161. }
  162.  
  163. static inline void be32_add_cpu(__be32 *var, u32 val)
  164. {
  165.         *var = cpu_to_be32(be32_to_cpu(*var) + val);
  166. }
  167.  
  168. static inline void be64_add_cpu(__be64 *var, u64 val)
  169. {
  170.         *var = cpu_to_be64(be64_to_cpu(*var) + val);
  171. }
  172.  
  173. #endif /* _LINUX_BYTEORDER_GENERIC_H */
  174.