Subversion Repositories Kolibri OS

Rev

Rev 6934 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * FPU data structures:
  3.  */
  4. #ifndef _ASM_X86_FPU_H
  5. #define _ASM_X86_FPU_H
  6.  
  7. /*
  8.  * The legacy x87 FPU state format, as saved by FSAVE and
  9.  * restored by the FRSTOR instructions:
  10.  */
  11. struct fregs_state {
  12.         u32                     cwd;    /* FPU Control Word             */
  13.         u32                     swd;    /* FPU Status Word              */
  14.         u32                     twd;    /* FPU Tag Word                 */
  15.         u32                     fip;    /* FPU IP Offset                */
  16.         u32                     fcs;    /* FPU IP Selector              */
  17.         u32                     foo;    /* FPU Operand Pointer Offset   */
  18.         u32                     fos;    /* FPU Operand Pointer Selector */
  19.  
  20.         /* 8*10 bytes for each FP-reg = 80 bytes:                       */
  21.         u32                     st_space[20];
  22.  
  23.         /* Software status information [not touched by FSAVE]:          */
  24.         u32                     status;
  25. };
  26.  
  27. /*
  28.  * The legacy fx SSE/MMX FPU state format, as saved by FXSAVE and
  29.  * restored by the FXRSTOR instructions. It's similar to the FSAVE
  30.  * format, but differs in some areas, plus has extensions at
  31.  * the end for the XMM registers.
  32.  */
  33. struct fxregs_state {
  34.         u16                     cwd; /* Control Word                    */
  35.         u16                     swd; /* Status Word                     */
  36.         u16                     twd; /* Tag Word                        */
  37.         u16                     fop; /* Last Instruction Opcode         */
  38.         union {
  39.                 struct {
  40.                         u64     rip; /* Instruction Pointer             */
  41.                         u64     rdp; /* Data Pointer                    */
  42.                 };
  43.                 struct {
  44.                         u32     fip; /* FPU IP Offset                   */
  45.                         u32     fcs; /* FPU IP Selector                 */
  46.                         u32     foo; /* FPU Operand Offset              */
  47.                         u32     fos; /* FPU Operand Selector            */
  48.                 };
  49.         };
  50.         u32                     mxcsr;          /* MXCSR Register State */
  51.         u32                     mxcsr_mask;     /* MXCSR Mask           */
  52.  
  53.         /* 8*16 bytes for each FP-reg = 128 bytes:                      */
  54.         u32                     st_space[32];
  55.  
  56.         /* 16*16 bytes for each XMM-reg = 256 bytes:                    */
  57.         u32                     xmm_space[64];
  58.  
  59.         u32                     padding[12];
  60.  
  61.         union {
  62.                 u32             padding1[12];
  63.                 u32             sw_reserved[12];
  64.         };
  65.  
  66. } __attribute__((aligned(16)));
  67.  
  68. /* Default value for fxregs_state.mxcsr: */
  69. #define MXCSR_DEFAULT           0x1f80
  70.  
  71. /*
  72.  * Software based FPU emulation state. This is arbitrary really,
  73.  * it matches the x87 format to make it easier to understand:
  74.  */
  75. struct swregs_state {
  76.         u32                     cwd;
  77.         u32                     swd;
  78.         u32                     twd;
  79.         u32                     fip;
  80.         u32                     fcs;
  81.         u32                     foo;
  82.         u32                     fos;
  83.         /* 8*10 bytes for each FP-reg = 80 bytes: */
  84.         u32                     st_space[20];
  85.         u8                      ftop;
  86.         u8                      changed;
  87.         u8                      lookahead;
  88.         u8                      no_update;
  89.         u8                      rm;
  90.         u8                      alimit;
  91.         struct math_emu_info    *info;
  92.         u32                     entry_eip;
  93. };
  94.  
  95. /*
  96.  * List of XSAVE features Linux knows about:
  97.  */
  98. enum xfeature {
  99.         XFEATURE_FP,
  100.         XFEATURE_SSE,
  101.         /*
  102.          * Values above here are "legacy states".
  103.          * Those below are "extended states".
  104.          */
  105.         XFEATURE_YMM,
  106.         XFEATURE_BNDREGS,
  107.         XFEATURE_BNDCSR,
  108.         XFEATURE_OPMASK,
  109.         XFEATURE_ZMM_Hi256,
  110.         XFEATURE_Hi16_ZMM,
  111.  
  112.         XFEATURE_MAX,
  113. };
  114.  
  115. #define XFEATURE_MASK_FP                (1 << XFEATURE_FP)
  116. #define XFEATURE_MASK_SSE               (1 << XFEATURE_SSE)
  117. #define XFEATURE_MASK_YMM               (1 << XFEATURE_YMM)
  118. #define XFEATURE_MASK_BNDREGS           (1 << XFEATURE_BNDREGS)
  119. #define XFEATURE_MASK_BNDCSR            (1 << XFEATURE_BNDCSR)
  120. #define XFEATURE_MASK_OPMASK            (1 << XFEATURE_OPMASK)
  121. #define XFEATURE_MASK_ZMM_Hi256         (1 << XFEATURE_ZMM_Hi256)
  122. #define XFEATURE_MASK_Hi16_ZMM          (1 << XFEATURE_Hi16_ZMM)
  123.  
  124. #define XFEATURE_MASK_FPSSE             (XFEATURE_MASK_FP | XFEATURE_MASK_SSE)
  125. #define XFEATURE_MASK_AVX512            (XFEATURE_MASK_OPMASK \
  126.                                          | XFEATURE_MASK_ZMM_Hi256 \
  127.                                          | XFEATURE_MASK_Hi16_ZMM)
  128.  
  129. #define FIRST_EXTENDED_XFEATURE XFEATURE_YMM
  130.  
  131. struct reg_128_bit {
  132.         u8      regbytes[128/8];
  133. };
  134. struct reg_256_bit {
  135.         u8      regbytes[256/8];
  136. };
  137. struct reg_512_bit {
  138.         u8      regbytes[512/8];
  139. };
  140.  
  141. /*
  142.  * State component 2:
  143.  *
  144.  * There are 16x 256-bit AVX registers named YMM0-YMM15.
  145.  * The low 128 bits are aliased to the 16 SSE registers (XMM0-XMM15)
  146.  * and are stored in 'struct fxregs_state::xmm_space[]' in the
  147.  * "legacy" area.
  148.  *
  149.  * The high 128 bits are stored here.
  150.  */
  151. struct ymmh_struct {
  152.         struct reg_128_bit              hi_ymm[16];
  153. } __packed;
  154.  
  155. /* Intel MPX support: */
  156.  
  157. struct mpx_bndreg {
  158.         u64                             lower_bound;
  159.         u64                             upper_bound;
  160. } __packed;
  161. /*
  162.  * State component 3 is used for the 4 128-bit bounds registers
  163.  */
  164. struct mpx_bndreg_state {
  165.         struct mpx_bndreg               bndreg[4];
  166. } __packed;
  167.  
  168. /*
  169.  * State component 4 is used for the 64-bit user-mode MPX
  170.  * configuration register BNDCFGU and the 64-bit MPX status
  171.  * register BNDSTATUS.  We call the pair "BNDCSR".
  172.  */
  173. struct mpx_bndcsr {
  174.         u64                             bndcfgu;
  175.         u64                             bndstatus;
  176. } __packed;
  177.  
  178. /*
  179.  * The BNDCSR state is padded out to be 64-bytes in size.
  180.  */
  181. struct mpx_bndcsr_state {
  182.         union {
  183.                 struct mpx_bndcsr               bndcsr;
  184.                 u8                              pad_to_64_bytes[64];
  185.         };
  186. } __packed;
  187.  
  188. /* AVX-512 Components: */
  189.  
  190. /*
  191.  * State component 5 is used for the 8 64-bit opmask registers
  192.  * k0-k7 (opmask state).
  193.  */
  194. struct avx_512_opmask_state {
  195.         u64                             opmask_reg[8];
  196. } __packed;
  197.  
  198. /*
  199.  * State component 6 is used for the upper 256 bits of the
  200.  * registers ZMM0-ZMM15. These 16 256-bit values are denoted
  201.  * ZMM0_H-ZMM15_H (ZMM_Hi256 state).
  202.  */
  203. struct avx_512_zmm_uppers_state {
  204.         struct reg_256_bit              zmm_upper[16];
  205. } __packed;
  206.  
  207. /*
  208.  * State component 7 is used for the 16 512-bit registers
  209.  * ZMM16-ZMM31 (Hi16_ZMM state).
  210.  */
  211. struct avx_512_hi16_state {
  212.         struct reg_512_bit              hi16_zmm[16];
  213. } __packed;
  214.  
  215. struct xstate_header {
  216.         u64                             xfeatures;
  217.         u64                             xcomp_bv;
  218.         u64                             reserved[6];
  219. } __attribute__((packed));
  220.  
  221. /*
  222.  * This is our most modern FPU state format, as saved by the XSAVE
  223.  * and restored by the XRSTOR instructions.
  224.  *
  225.  * It consists of a legacy fxregs portion, an xstate header and
  226.  * subsequent areas as defined by the xstate header.  Not all CPUs
  227.  * support all the extensions, so the size of the extended area
  228.  * can vary quite a bit between CPUs.
  229.  */
  230. struct xregs_state {
  231.         struct fxregs_state             i387;
  232.         struct xstate_header            header;
  233.         u8                              extended_state_area[0];
  234. } __attribute__ ((packed, aligned (64)));
  235.  
  236. /*
  237.  * This is a union of all the possible FPU state formats
  238.  * put together, so that we can pick the right one runtime.
  239.  *
  240.  * The size of the structure is determined by the largest
  241.  * member - which is the xsave area.  The padding is there
  242.  * to ensure that statically-allocated task_structs (just
  243.  * the init_task today) have enough space.
  244.  */
  245. union fpregs_state {
  246.         struct fregs_state              fsave;
  247.         struct fxregs_state             fxsave;
  248.         struct swregs_state             soft;
  249.         struct xregs_state              xsave;
  250.         u8 __padding[PAGE_SIZE];
  251. };
  252.  
  253. /*
  254.  * Highest level per task FPU state data structure that
  255.  * contains the FPU register state plus various FPU
  256.  * state fields:
  257.  */
  258. struct fpu {
  259.         /*
  260.          * @last_cpu:
  261.          *
  262.          * Records the last CPU on which this context was loaded into
  263.          * FPU registers. (In the lazy-restore case we might be
  264.          * able to reuse FPU registers across multiple context switches
  265.          * this way, if no intermediate task used the FPU.)
  266.          *
  267.          * A value of -1 is used to indicate that the FPU state in context
  268.          * memory is newer than the FPU state in registers, and that the
  269.          * FPU state should be reloaded next time the task is run.
  270.          */
  271.         unsigned int                    last_cpu;
  272.  
  273.         /*
  274.          * @fpstate_active:
  275.          *
  276.          * This flag indicates whether this context is active: if the task
  277.          * is not running then we can restore from this context, if the task
  278.          * is running then we should save into this context.
  279.          */
  280.         unsigned char                   fpstate_active;
  281.  
  282.         /*
  283.          * @fpregs_active:
  284.          *
  285.          * This flag determines whether a given context is actively
  286.          * loaded into the FPU's registers and that those registers
  287.          * represent the task's current FPU state.
  288.          *
  289.          * Note the interaction with fpstate_active:
  290.          *
  291.          *   # task does not use the FPU:
  292.          *   fpstate_active == 0
  293.          *
  294.          *   # task uses the FPU and regs are active:
  295.          *   fpstate_active == 1 && fpregs_active == 1
  296.          *
  297.          *   # the regs are inactive but still match fpstate:
  298.          *   fpstate_active == 1 && fpregs_active == 0 && fpregs_owner == fpu
  299.          *
  300.          * The third state is what we use for the lazy restore optimization
  301.          * on lazy-switching CPUs.
  302.          */
  303.         unsigned char                   fpregs_active;
  304.  
  305.         /*
  306.          * @counter:
  307.          *
  308.          * This counter contains the number of consecutive context switches
  309.          * during which the FPU stays used. If this is over a threshold, the
  310.          * lazy FPU restore logic becomes eager, to save the trap overhead.
  311.          * This is an unsigned char so that after 256 iterations the counter
  312.          * wraps and the context switch behavior turns lazy again; this is to
  313.          * deal with bursty apps that only use the FPU for a short time:
  314.          */
  315.         unsigned char                   counter;
  316.         /*
  317.          * @state:
  318.          *
  319.          * In-memory copy of all FPU registers that we save/restore
  320.          * over context switches. If the task is using the FPU then
  321.          * the registers in the FPU are more recent than this state
  322.          * copy. If the task context-switches away then they get
  323.          * saved here and represent the FPU state.
  324.          *
  325.          * After context switches there may be a (short) time period
  326.          * during which the in-FPU hardware registers are unchanged
  327.          * and still perfectly match this state, if the tasks
  328.          * scheduled afterwards are not using the FPU.
  329.          *
  330.          * This is the 'lazy restore' window of optimization, which
  331.          * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
  332.          *
  333.          * We detect whether a subsequent task uses the FPU via setting
  334.          * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
  335.          *
  336.          * During this window, if the task gets scheduled again, we
  337.          * might be able to skip having to do a restore from this
  338.          * memory buffer to the hardware registers - at the cost of
  339.          * incurring the overhead of #NM fault traps.
  340.          *
  341.          * Note that on modern CPUs that support the XSAVEOPT (or other
  342.          * optimized XSAVE instructions), we don't use #NM traps anymore,
  343.          * as the hardware can track whether FPU registers need saving
  344.          * or not. On such CPUs we activate the non-lazy ('eagerfpu')
  345.          * logic, which unconditionally saves/restores all FPU state
  346.          * across context switches. (if FPU state exists.)
  347.          */
  348.         union fpregs_state              state;
  349.         /*
  350.          * WARNING: 'state' is dynamically-sized.  Do not put
  351.          * anything after it here.
  352.          */
  353. };
  354.  
  355. #endif /* _ASM_X86_FPU_H */
  356.