Subversion Repositories Kolibri OS

Rev

Rev 5056 | Rev 6934 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
  3.  *      Copyright (C) 2002 by Concurrent Computer Corporation
  4.  *      Distributed under the GNU GPL license version 2.
  5.  *
  6.  * Modified by George Anzinger to reuse immediately and to use
  7.  * find bit instructions.  Also removed _irq on spinlocks.
  8.  *
  9.  * Modified by Nadia Derbey to make it RCU safe.
  10.  *
  11.  * Small id to pointer translation service.
  12.  *
  13.  * It uses a radix tree like structure as a sparse array indexed
  14.  * by the id to obtain the pointer.  The bitmap makes allocating
  15.  * a new id quick.
  16.  *
  17.  * You call it to allocate an id (an int) an associate with that id a
  18.  * pointer or what ever, we treat it as a (void *).  You can pass this
  19.  * id to a user for him to pass back at a later time.  You then pass
  20.  * that id to this code and it returns your pointer.
  21.  */
  22.  
  23. #ifndef TEST                        // to test in user space...
  24. #include <linux/slab.h>
  25. #include <linux/export.h>
  26. #endif
  27. #include <linux/err.h>
  28. #include <linux/string.h>
  29. #include <linux/idr.h>
  30. #include <linux/spinlock.h>
  31.  
  32.  
  33.  
  34.  
  35. #define MAX_IDR_SHIFT           (sizeof(int) * 8 - 1)
  36. #define MAX_IDR_BIT             (1U << MAX_IDR_SHIFT)
  37.  
  38. /* Leave the possibility of an incomplete final layer */
  39. #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
  40.  
  41. /* Number of id_layer structs to leave in free list */
  42. #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
  43.  
  44. static struct idr_layer *idr_preload_head;
  45. static int idr_preload_cnt;
  46.  
  47. static DEFINE_SPINLOCK(simple_ida_lock);
  48.  
  49. /* the maximum ID which can be allocated given idr->layers */
  50. static int idr_max(int layers)
  51. {
  52.         int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
  53.  
  54.         return (1 << bits) - 1;
  55. }
  56.  
  57. /*
  58.  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
  59.  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
  60.  * so on.
  61.  */
  62. static int idr_layer_prefix_mask(int layer)
  63. {
  64.         return ~idr_max(layer + 1);
  65. }
  66.  
  67. static struct idr_layer *get_from_free_list(struct idr *idp)
  68. {
  69.         struct idr_layer *p;
  70.         unsigned long flags;
  71.  
  72.         spin_lock_irqsave(&idp->lock, flags);
  73.         if ((p = idp->id_free)) {
  74.                 idp->id_free = p->ary[0];
  75.                 idp->id_free_cnt--;
  76.                 p->ary[0] = NULL;
  77.         }
  78.         spin_unlock_irqrestore(&idp->lock, flags);
  79.         return(p);
  80. }
  81.  
  82. /**
  83.  * idr_layer_alloc - allocate a new idr_layer
  84.  * @gfp_mask: allocation mask
  85.  * @layer_idr: optional idr to allocate from
  86.  *
  87.  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
  88.  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
  89.  * an idr_layer from @idr->id_free.
  90.  *
  91.  * @layer_idr is to maintain backward compatibility with the old alloc
  92.  * interface - idr_pre_get() and idr_get_new*() - and will be removed
  93.  * together with per-pool preload buffer.
  94.  */
  95. static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
  96. {
  97.         struct idr_layer *new;
  98.  
  99.         /* this is the old path, bypass to get_from_free_list() */
  100.         if (layer_idr)
  101.                 return get_from_free_list(layer_idr);
  102.  
  103.         /* try to allocate directly from kmem_cache */
  104.         new = kzalloc(sizeof(struct idr_layer), gfp_mask);
  105.         if (new)
  106.                 return new;
  107.  
  108.  
  109.         new = idr_preload_head;
  110.         if (new) {
  111.                 idr_preload_head = new->ary[0];
  112.                 idr_preload_cnt--;
  113.                 new->ary[0] = NULL;
  114.         }
  115.         preempt_enable();
  116.         return new;
  117. }
  118.  
  119. static void idr_layer_rcu_free(struct rcu_head *head)
  120. {
  121.         struct idr_layer *layer;
  122.  
  123.     layer = container_of(head, struct idr_layer, rcu_head);
  124.     kfree(layer);
  125. }
  126.  
  127. static inline void free_layer(struct idr *idr, struct idr_layer *p)
  128. {
  129.         if (idr->hint == p)
  130.                 RCU_INIT_POINTER(idr->hint, NULL);
  131.         call_rcu(&p->rcu_head, idr_layer_rcu_free);
  132. }
  133.  
  134. /* only called when idp->lock is held */
  135. static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
  136. {
  137.         p->ary[0] = idp->id_free;
  138.         idp->id_free = p;
  139.         idp->id_free_cnt++;
  140. }
  141.  
  142. static void move_to_free_list(struct idr *idp, struct idr_layer *p)
  143. {
  144.         unsigned long flags;
  145.  
  146.         /*
  147.          * Depends on the return element being zeroed.
  148.          */
  149.         spin_lock_irqsave(&idp->lock, flags);
  150.         __move_to_free_list(idp, p);
  151.         spin_unlock_irqrestore(&idp->lock, flags);
  152. }
  153.  
  154. static void idr_mark_full(struct idr_layer **pa, int id)
  155. {
  156.         struct idr_layer *p = pa[0];
  157.         int l = 0;
  158.  
  159.         __set_bit(id & IDR_MASK, p->bitmap);
  160.         /*
  161.          * If this layer is full mark the bit in the layer above to
  162.          * show that this part of the radix tree is full.  This may
  163.          * complete the layer above and require walking up the radix
  164.          * tree.
  165.          */
  166.         while (bitmap_full(p->bitmap, IDR_SIZE)) {
  167.                 if (!(p = pa[++l]))
  168.                         break;
  169.                 id = id >> IDR_BITS;
  170.                 __set_bit((id & IDR_MASK), p->bitmap);
  171.         }
  172. }
  173.  
  174. static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
  175. {
  176.         while (idp->id_free_cnt < MAX_IDR_FREE) {
  177.        struct idr_layer *new;
  178.        new = kzalloc(sizeof(struct idr_layer), gfp_mask);
  179.        if (new == NULL)
  180.            return (0);
  181.        move_to_free_list(idp, new);
  182.    }
  183.    return 1;
  184. }
  185.  
  186. /**
  187.  * sub_alloc - try to allocate an id without growing the tree depth
  188.  * @idp: idr handle
  189.  * @starting_id: id to start search at
  190.  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
  191.  * @gfp_mask: allocation mask for idr_layer_alloc()
  192.  * @layer_idr: optional idr passed to idr_layer_alloc()
  193.  *
  194.  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
  195.  * growing its depth.  Returns
  196.  *
  197.  *  the allocated id >= 0 if successful,
  198.  *  -EAGAIN if the tree needs to grow for allocation to succeed,
  199.  *  -ENOSPC if the id space is exhausted,
  200.  *  -ENOMEM if more idr_layers need to be allocated.
  201.  */
  202. static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
  203.                      gfp_t gfp_mask, struct idr *layer_idr)
  204. {
  205.         int n, m, sh;
  206.         struct idr_layer *p, *new;
  207.         int l, id, oid;
  208.  
  209.         id = *starting_id;
  210.  restart:
  211.         p = idp->top;
  212.         l = idp->layers;
  213.         pa[l--] = NULL;
  214.         while (1) {
  215.                 /*
  216.                  * We run around this while until we reach the leaf node...
  217.                  */
  218.                 n = (id >> (IDR_BITS*l)) & IDR_MASK;
  219.                 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
  220.                 if (m == IDR_SIZE) {
  221.                         /* no space available go back to previous layer. */
  222.                         l++;
  223.                         oid = id;
  224.                         id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
  225.  
  226.                         /* if already at the top layer, we need to grow */
  227.                         if (id > idr_max(idp->layers)) {
  228.                                 *starting_id = id;
  229.                                 return -EAGAIN;
  230.                         }
  231.                         p = pa[l];
  232.                         BUG_ON(!p);
  233.  
  234.                         /* If we need to go up one layer, continue the
  235.                          * loop; otherwise, restart from the top.
  236.                          */
  237.                         sh = IDR_BITS * (l + 1);
  238.                         if (oid >> sh == id >> sh)
  239.                                 continue;
  240.                         else
  241.                                 goto restart;
  242.                 }
  243.                 if (m != n) {
  244.                         sh = IDR_BITS*l;
  245.                         id = ((id >> sh) ^ n ^ m) << sh;
  246.                 }
  247.                 if ((id >= MAX_IDR_BIT) || (id < 0))
  248.                         return -ENOSPC;
  249.                 if (l == 0)
  250.                         break;
  251.                 /*
  252.                  * Create the layer below if it is missing.
  253.                  */
  254.                 if (!p->ary[m]) {
  255.                         new = idr_layer_alloc(gfp_mask, layer_idr);
  256.                         if (!new)
  257.                                 return -ENOMEM;
  258.                         new->layer = l-1;
  259.                         new->prefix = id & idr_layer_prefix_mask(new->layer);
  260.                         rcu_assign_pointer(p->ary[m], new);
  261.                         p->count++;
  262.                 }
  263.                 pa[l--] = p;
  264.                 p = p->ary[m];
  265.         }
  266.  
  267.         pa[l] = p;
  268.         return id;
  269. }
  270.  
  271. static int idr_get_empty_slot(struct idr *idp, int starting_id,
  272.                               struct idr_layer **pa, gfp_t gfp_mask,
  273.                               struct idr *layer_idr)
  274. {
  275.         struct idr_layer *p, *new;
  276.         int layers, v, id;
  277.         unsigned long flags;
  278.  
  279.         id = starting_id;
  280. build_up:
  281.         p = idp->top;
  282.         layers = idp->layers;
  283.         if (unlikely(!p)) {
  284.                 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
  285.                         return -ENOMEM;
  286.                 p->layer = 0;
  287.                 layers = 1;
  288.         }
  289.         /*
  290.          * Add a new layer to the top of the tree if the requested
  291.          * id is larger than the currently allocated space.
  292.          */
  293.         while (id > idr_max(layers)) {
  294.                 layers++;
  295.                 if (!p->count) {
  296.                         /* special case: if the tree is currently empty,
  297.                          * then we grow the tree by moving the top node
  298.                          * upwards.
  299.                          */
  300.                         p->layer++;
  301.                         WARN_ON_ONCE(p->prefix);
  302.                         continue;
  303.                 }
  304.                 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
  305.                         /*
  306.                          * The allocation failed.  If we built part of
  307.                          * the structure tear it down.
  308.                          */
  309.                         spin_lock_irqsave(&idp->lock, flags);
  310.                         for (new = p; p && p != idp->top; new = p) {
  311.                                 p = p->ary[0];
  312.                                 new->ary[0] = NULL;
  313.                                 new->count = 0;
  314.                                 bitmap_clear(new->bitmap, 0, IDR_SIZE);
  315.                                 __move_to_free_list(idp, new);
  316.                         }
  317.                         spin_unlock_irqrestore(&idp->lock, flags);
  318.                         return -ENOMEM;
  319.                 }
  320.                 new->ary[0] = p;
  321.                 new->count = 1;
  322.                 new->layer = layers-1;
  323.                 new->prefix = id & idr_layer_prefix_mask(new->layer);
  324.                 if (bitmap_full(p->bitmap, IDR_SIZE))
  325.                         __set_bit(0, new->bitmap);
  326.                 p = new;
  327.         }
  328.         rcu_assign_pointer(idp->top, p);
  329.         idp->layers = layers;
  330.         v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
  331.         if (v == -EAGAIN)
  332.                 goto build_up;
  333.         return(v);
  334. }
  335.  
  336. /*
  337.  * @id and @pa are from a successful allocation from idr_get_empty_slot().
  338.  * Install the user pointer @ptr and mark the slot full.
  339.  */
  340. static void idr_fill_slot(struct idr *idr, void *ptr, int id,
  341.                           struct idr_layer **pa)
  342. {
  343.         /* update hint used for lookup, cleared from free_layer() */
  344.         rcu_assign_pointer(idr->hint, pa[0]);
  345.  
  346.         rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
  347.                 pa[0]->count++;
  348.                 idr_mark_full(pa, id);
  349. }
  350.  
  351.  
  352. /**
  353.  * idr_preload - preload for idr_alloc()
  354.  * @gfp_mask: allocation mask to use for preloading
  355.  *
  356.  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
  357.  * process context and each idr_preload() invocation should be matched with
  358.  * idr_preload_end().  Note that preemption is disabled while preloaded.
  359.  *
  360.  * The first idr_alloc() in the preloaded section can be treated as if it
  361.  * were invoked with @gfp_mask used for preloading.  This allows using more
  362.  * permissive allocation masks for idrs protected by spinlocks.
  363.  *
  364.  * For example, if idr_alloc() below fails, the failure can be treated as
  365.  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
  366.  *
  367.  *      idr_preload(GFP_KERNEL);
  368.  *      spin_lock(lock);
  369.  *
  370.  *      id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
  371.  *
  372.  *      spin_unlock(lock);
  373.  *      idr_preload_end();
  374.  *      if (id < 0)
  375.  *              error;
  376.  */
  377. void idr_preload(gfp_t gfp_mask)
  378. {
  379.  
  380.         /*
  381.          * idr_alloc() is likely to succeed w/o full idr_layer buffer and
  382.          * return value from idr_alloc() needs to be checked for failure
  383.          * anyway.  Silently give up if allocation fails.  The caller can
  384.          * treat failures from idr_alloc() as if idr_alloc() were called
  385.          * with @gfp_mask which should be enough.
  386.          */
  387.         while (idr_preload_cnt < MAX_IDR_FREE) {
  388.                 struct idr_layer *new;
  389.  
  390.                 new = kzalloc(sizeof(struct idr_layer), gfp_mask);
  391.                 if (!new)
  392.                         break;
  393.  
  394.                 /* link the new one to per-cpu preload list */
  395.                 new->ary[0] = idr_preload_head;
  396.                 idr_preload_head = new;
  397.                 idr_preload_cnt++;
  398.         }
  399. }
  400. EXPORT_SYMBOL(idr_preload);
  401.  
  402. /**
  403.  * idr_alloc - allocate new idr entry
  404.  * @idr: the (initialized) idr
  405.  * @ptr: pointer to be associated with the new id
  406.  * @start: the minimum id (inclusive)
  407.  * @end: the maximum id (exclusive, <= 0 for max)
  408.  * @gfp_mask: memory allocation flags
  409.  *
  410.  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
  411.  * available in the specified range, returns -ENOSPC.  On memory allocation
  412.  * failure, returns -ENOMEM.
  413.  *
  414.  * Note that @end is treated as max when <= 0.  This is to always allow
  415.  * using @start + N as @end as long as N is inside integer range.
  416.  *
  417.  * The user is responsible for exclusively synchronizing all operations
  418.  * which may modify @idr.  However, read-only accesses such as idr_find()
  419.  * or iteration can be performed under RCU read lock provided the user
  420.  * destroys @ptr in RCU-safe way after removal from idr.
  421.  */
  422. int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
  423. {
  424.         int max = end > 0 ? end - 1 : INT_MAX;  /* inclusive upper limit */
  425.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  426.         int id;
  427.  
  428.         /* sanity checks */
  429.         if (WARN_ON_ONCE(start < 0))
  430.                 return -EINVAL;
  431.         if (unlikely(max < start))
  432.                 return -ENOSPC;
  433.  
  434.         /* allocate id */
  435.         id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
  436.         if (unlikely(id < 0))
  437.                 return id;
  438.         if (unlikely(id > max))
  439.                 return -ENOSPC;
  440.  
  441.         idr_fill_slot(idr, ptr, id, pa);
  442.         return id;
  443. }
  444. EXPORT_SYMBOL_GPL(idr_alloc);
  445.  
  446. /**
  447.  * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
  448.  * @idr: the (initialized) idr
  449.  * @ptr: pointer to be associated with the new id
  450.  * @start: the minimum id (inclusive)
  451.  * @end: the maximum id (exclusive, <= 0 for max)
  452.  * @gfp_mask: memory allocation flags
  453.  *
  454.  * Essentially the same as idr_alloc, but prefers to allocate progressively
  455.  * higher ids if it can. If the "cur" counter wraps, then it will start again
  456.  * at the "start" end of the range and allocate one that has already been used.
  457.  */
  458. int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
  459.                         gfp_t gfp_mask)
  460. {
  461.         int id;
  462.  
  463.         id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
  464.         if (id == -ENOSPC)
  465.                 id = idr_alloc(idr, ptr, start, end, gfp_mask);
  466.  
  467.         if (likely(id >= 0))
  468.                 idr->cur = id + 1;
  469.         return id;
  470. }
  471. EXPORT_SYMBOL(idr_alloc_cyclic);
  472.  
  473. static void idr_remove_warning(int id)
  474. {
  475.         WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
  476. }
  477.  
  478. static void sub_remove(struct idr *idp, int shift, int id)
  479. {
  480.         struct idr_layer *p = idp->top;
  481.         struct idr_layer **pa[MAX_IDR_LEVEL + 1];
  482.         struct idr_layer ***paa = &pa[0];
  483.         struct idr_layer *to_free;
  484.         int n;
  485.  
  486.         *paa = NULL;
  487.         *++paa = &idp->top;
  488.  
  489.         while ((shift > 0) && p) {
  490.                 n = (id >> shift) & IDR_MASK;
  491.                 __clear_bit(n, p->bitmap);
  492.                 *++paa = &p->ary[n];
  493.                 p = p->ary[n];
  494.                 shift -= IDR_BITS;
  495.         }
  496.         n = id & IDR_MASK;
  497.         if (likely(p != NULL && test_bit(n, p->bitmap))) {
  498.                 __clear_bit(n, p->bitmap);
  499.                 RCU_INIT_POINTER(p->ary[n], NULL);
  500.                 to_free = NULL;
  501.                 while(*paa && ! --((**paa)->count)){
  502.                         if (to_free)
  503.                                 free_layer(idp, to_free);
  504.                         to_free = **paa;
  505.                         **paa-- = NULL;
  506.                 }
  507.                 if (!*paa)
  508.                         idp->layers = 0;
  509.                 if (to_free)
  510.                         free_layer(idp, to_free);
  511.         } else
  512.                 idr_remove_warning(id);
  513. }
  514.  
  515. /**
  516.  * idr_remove - remove the given id and free its slot
  517.  * @idp: idr handle
  518.  * @id: unique key
  519.  */
  520. void idr_remove(struct idr *idp, int id)
  521. {
  522.         struct idr_layer *p;
  523.         struct idr_layer *to_free;
  524.  
  525.         if (id < 0)
  526.                 return;
  527.  
  528.         if (id > idr_max(idp->layers)) {
  529.                 idr_remove_warning(id);
  530.                 return;
  531.         }
  532.  
  533.         sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
  534.         if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
  535.             idp->top->ary[0]) {
  536.                 /*
  537.                  * Single child at leftmost slot: we can shrink the tree.
  538.                  * This level is not needed anymore since when layers are
  539.                  * inserted, they are inserted at the top of the existing
  540.                  * tree.
  541.                  */
  542.                 to_free = idp->top;
  543.                 p = idp->top->ary[0];
  544.                 rcu_assign_pointer(idp->top, p);
  545.                 --idp->layers;
  546.                 to_free->count = 0;
  547.                 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
  548.                 free_layer(idp, to_free);
  549.         }
  550. }
  551. EXPORT_SYMBOL(idr_remove);
  552.  
  553. static void __idr_remove_all(struct idr *idp)
  554. {
  555.         int n, id, max;
  556.         int bt_mask;
  557.         struct idr_layer *p;
  558.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  559.         struct idr_layer **paa = &pa[0];
  560.  
  561.         n = idp->layers * IDR_BITS;
  562.         *paa = idp->top;
  563.         RCU_INIT_POINTER(idp->top, NULL);
  564.         max = idr_max(idp->layers);
  565.  
  566.         id = 0;
  567.         while (id >= 0 && id <= max) {
  568.                 p = *paa;
  569.                 while (n > IDR_BITS && p) {
  570.                         n -= IDR_BITS;
  571.                         p = p->ary[(id >> n) & IDR_MASK];
  572.                         *++paa = p;
  573.                 }
  574.  
  575.                 bt_mask = id;
  576.                 id += 1 << n;
  577.                 /* Get the highest bit that the above add changed from 0->1. */
  578.                 while (n < fls(id ^ bt_mask)) {
  579.                         if (*paa)
  580.                                 free_layer(idp, *paa);
  581.                         n += IDR_BITS;
  582.                         --paa;
  583.                 }
  584.         }
  585.         idp->layers = 0;
  586. }
  587.  
  588. /**
  589.  * idr_destroy - release all cached layers within an idr tree
  590.  * @idp: idr handle
  591.  *
  592.  * Free all id mappings and all idp_layers.  After this function, @idp is
  593.  * completely unused and can be freed / recycled.  The caller is
  594.  * responsible for ensuring that no one else accesses @idp during or after
  595.  * idr_destroy().
  596.  *
  597.  * A typical clean-up sequence for objects stored in an idr tree will use
  598.  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
  599.  * free up the id mappings and cached idr_layers.
  600.  */
  601. void idr_destroy(struct idr *idp)
  602. {
  603.         __idr_remove_all(idp);
  604.  
  605.         while (idp->id_free_cnt) {
  606.                 struct idr_layer *p = get_from_free_list(idp);
  607.         kfree(p);
  608.         }
  609. }
  610. EXPORT_SYMBOL(idr_destroy);
  611.  
  612. void *idr_find_slowpath(struct idr *idp, int id)
  613. {
  614.         int n;
  615.         struct idr_layer *p;
  616.  
  617.         if (id < 0)
  618.                 return NULL;
  619.  
  620.         p = rcu_dereference_raw(idp->top);
  621.         if (!p)
  622.                 return NULL;
  623.         n = (p->layer+1) * IDR_BITS;
  624.  
  625.         if (id > idr_max(p->layer + 1))
  626.                 return NULL;
  627.         BUG_ON(n == 0);
  628.  
  629.         while (n > 0 && p) {
  630.                 n -= IDR_BITS;
  631.                 BUG_ON(n != p->layer*IDR_BITS);
  632.                 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  633.         }
  634.         return((void *)p);
  635. }
  636. EXPORT_SYMBOL(idr_find_slowpath);
  637.  
  638. /**
  639.  * idr_for_each - iterate through all stored pointers
  640.  * @idp: idr handle
  641.  * @fn: function to be called for each pointer
  642.  * @data: data passed back to callback function
  643.  *
  644.  * Iterate over the pointers registered with the given idr.  The
  645.  * callback function will be called for each pointer currently
  646.  * registered, passing the id, the pointer and the data pointer passed
  647.  * to this function.  It is not safe to modify the idr tree while in
  648.  * the callback, so functions such as idr_get_new and idr_remove are
  649.  * not allowed.
  650.  *
  651.  * We check the return of @fn each time. If it returns anything other
  652.  * than %0, we break out and return that value.
  653.  *
  654.  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
  655.  */
  656. int idr_for_each(struct idr *idp,
  657.                  int (*fn)(int id, void *p, void *data), void *data)
  658. {
  659.         int n, id, max, error = 0;
  660.         struct idr_layer *p;
  661.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  662.         struct idr_layer **paa = &pa[0];
  663.  
  664.         n = idp->layers * IDR_BITS;
  665.         *paa = rcu_dereference_raw(idp->top);
  666.         max = idr_max(idp->layers);
  667.  
  668.         id = 0;
  669.         while (id >= 0 && id <= max) {
  670.                 p = *paa;
  671.                 while (n > 0 && p) {
  672.                         n -= IDR_BITS;
  673.                         p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  674.                         *++paa = p;
  675.                 }
  676.  
  677.                 if (p) {
  678.                         error = fn(id, (void *)p, data);
  679.                         if (error)
  680.                                 break;
  681.                 }
  682.  
  683.                 id += 1 << n;
  684.                 while (n < fls(id)) {
  685.                         n += IDR_BITS;
  686.                         --paa;
  687.                 }
  688.         }
  689.  
  690.         return error;
  691. }
  692. EXPORT_SYMBOL(idr_for_each);
  693.  
  694. /**
  695.  * idr_get_next - lookup next object of id to given id.
  696.  * @idp: idr handle
  697.  * @nextidp:  pointer to lookup key
  698.  *
  699.  * Returns pointer to registered object with id, which is next number to
  700.  * given id. After being looked up, *@nextidp will be updated for the next
  701.  * iteration.
  702.  *
  703.  * This function can be called under rcu_read_lock(), given that the leaf
  704.  * pointers lifetimes are correctly managed.
  705.  */
  706. void *idr_get_next(struct idr *idp, int *nextidp)
  707. {
  708.         struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
  709.         struct idr_layer **paa = &pa[0];
  710.         int id = *nextidp;
  711.         int n, max;
  712.  
  713.         /* find first ent */
  714.         p = *paa = rcu_dereference_raw(idp->top);
  715.         if (!p)
  716.                 return NULL;
  717.         n = (p->layer + 1) * IDR_BITS;
  718.         max = idr_max(p->layer + 1);
  719.  
  720.         while (id >= 0 && id <= max) {
  721.                 p = *paa;
  722.                 while (n > 0 && p) {
  723.                         n -= IDR_BITS;
  724.                         p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  725.                         *++paa = p;
  726.                 }
  727.  
  728.                 if (p) {
  729.                         *nextidp = id;
  730.                         return p;
  731.                 }
  732.  
  733.                 /*
  734.                  * Proceed to the next layer at the current level.  Unlike
  735.                  * idr_for_each(), @id isn't guaranteed to be aligned to
  736.                  * layer boundary at this point and adding 1 << n may
  737.                  * incorrectly skip IDs.  Make sure we jump to the
  738.                  * beginning of the next layer using round_up().
  739.                  */
  740.                 id = round_up(id + 1, 1 << n);
  741.                 while (n < fls(id)) {
  742.                         n += IDR_BITS;
  743.                         --paa;
  744.                 }
  745.         }
  746.         return NULL;
  747. }
  748. EXPORT_SYMBOL(idr_get_next);
  749.  
  750.  
  751. /**
  752.  * idr_replace - replace pointer for given id
  753.  * @idp: idr handle
  754.  * @ptr: pointer you want associated with the id
  755.  * @id: lookup key
  756.  *
  757.  * Replace the pointer registered with an id and return the old value.
  758.  * A %-ENOENT return indicates that @id was not found.
  759.  * A %-EINVAL return indicates that @id was not within valid constraints.
  760.  *
  761.  * The caller must serialize with writers.
  762.  */
  763. void *idr_replace(struct idr *idp, void *ptr, int id)
  764. {
  765.         int n;
  766.         struct idr_layer *p, *old_p;
  767.  
  768.         if (id < 0)
  769.                 return ERR_PTR(-EINVAL);
  770.  
  771.         p = idp->top;
  772.         if (!p)
  773.                 return ERR_PTR(-ENOENT);
  774.  
  775.         if (id > idr_max(p->layer + 1))
  776.                 return ERR_PTR(-ENOENT);
  777.  
  778.         n = p->layer * IDR_BITS;
  779.         while ((n > 0) && p) {
  780.                 p = p->ary[(id >> n) & IDR_MASK];
  781.                 n -= IDR_BITS;
  782.         }
  783.  
  784.         n = id & IDR_MASK;
  785.         if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
  786.                 return ERR_PTR(-ENOENT);
  787.  
  788.         old_p = p->ary[n];
  789.         rcu_assign_pointer(p->ary[n], ptr);
  790.  
  791.         return old_p;
  792. }
  793. EXPORT_SYMBOL(idr_replace);
  794.  
  795. void __init idr_init_cache(void)
  796. {
  797.     //idr_layer_cache = kmem_cache_create("idr_layer_cache",
  798.     //           sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
  799. }
  800.  
  801. /**
  802.  * idr_init - initialize idr handle
  803.  * @idp:        idr handle
  804.  *
  805.  * This function is use to set up the handle (@idp) that you will pass
  806.  * to the rest of the functions.
  807.  */
  808. void idr_init(struct idr *idp)
  809. {
  810.         memset(idp, 0, sizeof(struct idr));
  811.         spin_lock_init(&idp->lock);
  812. }
  813. EXPORT_SYMBOL(idr_init);
  814.  
  815. static int idr_has_entry(int id, void *p, void *data)
  816. {
  817.         return 1;
  818. }
  819.  
  820. bool idr_is_empty(struct idr *idp)
  821. {
  822.         return !idr_for_each(idp, idr_has_entry, NULL);
  823. }
  824. EXPORT_SYMBOL(idr_is_empty);
  825.  
  826. /**
  827.  * DOC: IDA description
  828.  * IDA - IDR based ID allocator
  829.  *
  830.  * This is id allocator without id -> pointer translation.  Memory
  831.  * usage is much lower than full blown idr because each id only
  832.  * occupies a bit.  ida uses a custom leaf node which contains
  833.  * IDA_BITMAP_BITS slots.
  834.  *
  835.  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
  836.  */
  837.  
  838. static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
  839. {
  840.         unsigned long flags;
  841.  
  842.         if (!ida->free_bitmap) {
  843.                 spin_lock_irqsave(&ida->idr.lock, flags);
  844.                 if (!ida->free_bitmap) {
  845.                         ida->free_bitmap = bitmap;
  846.                         bitmap = NULL;
  847.                 }
  848.                 spin_unlock_irqrestore(&ida->idr.lock, flags);
  849.         }
  850.  
  851.         kfree(bitmap);
  852. }
  853.  
  854. /**
  855.  * ida_pre_get - reserve resources for ida allocation
  856.  * @ida:        ida handle
  857.  * @gfp_mask:   memory allocation flag
  858.  *
  859.  * This function should be called prior to locking and calling the
  860.  * following function.  It preallocates enough memory to satisfy the
  861.  * worst possible allocation.
  862.  *
  863.  * If the system is REALLY out of memory this function returns %0,
  864.  * otherwise %1.
  865.  */
  866. int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
  867. {
  868.         /* allocate idr_layers */
  869.         if (!__idr_pre_get(&ida->idr, gfp_mask))
  870.                 return 0;
  871.  
  872.         /* allocate free_bitmap */
  873.         if (!ida->free_bitmap) {
  874.                 struct ida_bitmap *bitmap;
  875.  
  876.                 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
  877.                 if (!bitmap)
  878.                         return 0;
  879.  
  880.                 free_bitmap(ida, bitmap);
  881.         }
  882.  
  883.         return 1;
  884. }
  885. EXPORT_SYMBOL(ida_pre_get);
  886.  
  887. /**
  888.  * ida_get_new_above - allocate new ID above or equal to a start id
  889.  * @ida:        ida handle
  890.  * @starting_id: id to start search at
  891.  * @p_id:       pointer to the allocated handle
  892.  *
  893.  * Allocate new ID above or equal to @starting_id.  It should be called
  894.  * with any required locks.
  895.  *
  896.  * If memory is required, it will return %-EAGAIN, you should unlock
  897.  * and go back to the ida_pre_get() call.  If the ida is full, it will
  898.  * return %-ENOSPC.
  899.  *
  900.  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
  901.  */
  902. int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
  903. {
  904.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  905.         struct ida_bitmap *bitmap;
  906.         unsigned long flags;
  907.         int idr_id = starting_id / IDA_BITMAP_BITS;
  908.         int offset = starting_id % IDA_BITMAP_BITS;
  909.         int t, id;
  910.  
  911.  restart:
  912.         /* get vacant slot */
  913.         t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
  914.         if (t < 0)
  915.                 return t == -ENOMEM ? -EAGAIN : t;
  916.  
  917.         if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
  918.                 return -ENOSPC;
  919.  
  920.         if (t != idr_id)
  921.                 offset = 0;
  922.         idr_id = t;
  923.  
  924.         /* if bitmap isn't there, create a new one */
  925.         bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
  926.         if (!bitmap) {
  927.                 spin_lock_irqsave(&ida->idr.lock, flags);
  928.                 bitmap = ida->free_bitmap;
  929.                 ida->free_bitmap = NULL;
  930.                 spin_unlock_irqrestore(&ida->idr.lock, flags);
  931.  
  932.                 if (!bitmap)
  933.                         return -EAGAIN;
  934.  
  935.                 memset(bitmap, 0, sizeof(struct ida_bitmap));
  936.                 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
  937.                                 (void *)bitmap);
  938.                 pa[0]->count++;
  939.         }
  940.  
  941.         /* lookup for empty slot */
  942.         t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
  943.         if (t == IDA_BITMAP_BITS) {
  944.                 /* no empty slot after offset, continue to the next chunk */
  945.                 idr_id++;
  946.                 offset = 0;
  947.                 goto restart;
  948.         }
  949.  
  950.         id = idr_id * IDA_BITMAP_BITS + t;
  951.         if (id >= MAX_IDR_BIT)
  952.                 return -ENOSPC;
  953.  
  954.         __set_bit(t, bitmap->bitmap);
  955.         if (++bitmap->nr_busy == IDA_BITMAP_BITS)
  956.                 idr_mark_full(pa, idr_id);
  957.  
  958.         *p_id = id;
  959.  
  960.         /* Each leaf node can handle nearly a thousand slots and the
  961.          * whole idea of ida is to have small memory foot print.
  962.          * Throw away extra resources one by one after each successful
  963.          * allocation.
  964.          */
  965.         if (ida->idr.id_free_cnt || ida->free_bitmap) {
  966.                 struct idr_layer *p = get_from_free_list(&ida->idr);
  967.                 if (p)
  968.                         kfree(p);
  969.         }
  970.  
  971.         return 0;
  972. }
  973. EXPORT_SYMBOL(ida_get_new_above);
  974.  
  975. /**
  976.  * ida_remove - remove the given ID
  977.  * @ida:        ida handle
  978.  * @id:         ID to free
  979.  */
  980. void ida_remove(struct ida *ida, int id)
  981. {
  982.         struct idr_layer *p = ida->idr.top;
  983.         int shift = (ida->idr.layers - 1) * IDR_BITS;
  984.         int idr_id = id / IDA_BITMAP_BITS;
  985.         int offset = id % IDA_BITMAP_BITS;
  986.         int n;
  987.         struct ida_bitmap *bitmap;
  988.  
  989.         if (idr_id > idr_max(ida->idr.layers))
  990.                 goto err;
  991.  
  992.         /* clear full bits while looking up the leaf idr_layer */
  993.         while ((shift > 0) && p) {
  994.                 n = (idr_id >> shift) & IDR_MASK;
  995.                 __clear_bit(n, p->bitmap);
  996.                 p = p->ary[n];
  997.                 shift -= IDR_BITS;
  998.         }
  999.  
  1000.         if (p == NULL)
  1001.                 goto err;
  1002.  
  1003.         n = idr_id & IDR_MASK;
  1004.         __clear_bit(n, p->bitmap);
  1005.  
  1006.         bitmap = (void *)p->ary[n];
  1007.         if (!bitmap || !test_bit(offset, bitmap->bitmap))
  1008.                 goto err;
  1009.  
  1010.         /* update bitmap and remove it if empty */
  1011.         __clear_bit(offset, bitmap->bitmap);
  1012.         if (--bitmap->nr_busy == 0) {
  1013.                 __set_bit(n, p->bitmap);        /* to please idr_remove() */
  1014.                 idr_remove(&ida->idr, idr_id);
  1015.                 free_bitmap(ida, bitmap);
  1016.         }
  1017.  
  1018.         return;
  1019.  
  1020.  err:
  1021.         WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
  1022. }
  1023. EXPORT_SYMBOL(ida_remove);
  1024.  
  1025. /**
  1026.  * ida_destroy - release all cached layers within an ida tree
  1027.  * @ida:                ida handle
  1028.  */
  1029. void ida_destroy(struct ida *ida)
  1030. {
  1031.         idr_destroy(&ida->idr);
  1032.         kfree(ida->free_bitmap);
  1033. }
  1034. EXPORT_SYMBOL(ida_destroy);
  1035.  
  1036. /**
  1037.  * ida_simple_get - get a new id.
  1038.  * @ida: the (initialized) ida.
  1039.  * @start: the minimum id (inclusive, < 0x8000000)
  1040.  * @end: the maximum id (exclusive, < 0x8000000 or 0)
  1041.  * @gfp_mask: memory allocation flags
  1042.  *
  1043.  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
  1044.  * On memory allocation failure, returns -ENOMEM.
  1045.  *
  1046.  * Use ida_simple_remove() to get rid of an id.
  1047.  */
  1048. int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
  1049.                    gfp_t gfp_mask)
  1050. {
  1051.         int ret, id;
  1052.         unsigned int max;
  1053.         unsigned long flags;
  1054.  
  1055.         BUG_ON((int)start < 0);
  1056.         BUG_ON((int)end < 0);
  1057.  
  1058.         if (end == 0)
  1059.                 max = 0x80000000;
  1060.         else {
  1061.                 BUG_ON(end < start);
  1062.                 max = end - 1;
  1063.         }
  1064.  
  1065. again:
  1066.         if (!ida_pre_get(ida, gfp_mask))
  1067.                 return -ENOMEM;
  1068.  
  1069.         spin_lock_irqsave(&simple_ida_lock, flags);
  1070.         ret = ida_get_new_above(ida, start, &id);
  1071.         if (!ret) {
  1072.                 if (id > max) {
  1073.                         ida_remove(ida, id);
  1074.                         ret = -ENOSPC;
  1075.                 } else {
  1076.                         ret = id;
  1077.                 }
  1078.         }
  1079.         spin_unlock_irqrestore(&simple_ida_lock, flags);
  1080.  
  1081.         if (unlikely(ret == -EAGAIN))
  1082.                 goto again;
  1083.  
  1084.         return ret;
  1085. }
  1086. EXPORT_SYMBOL(ida_simple_get);
  1087.  
  1088. /**
  1089.  * ida_simple_remove - remove an allocated id.
  1090.  * @ida: the (initialized) ida.
  1091.  * @id: the id returned by ida_simple_get.
  1092.  */
  1093. void ida_simple_remove(struct ida *ida, unsigned int id)
  1094. {
  1095.         unsigned long flags;
  1096.  
  1097.         BUG_ON((int)id < 0);
  1098.         spin_lock_irqsave(&simple_ida_lock, flags);
  1099.         ida_remove(ida, id);
  1100.         spin_unlock_irqrestore(&simple_ida_lock, flags);
  1101. }
  1102. EXPORT_SYMBOL(ida_simple_remove);
  1103.  
  1104. /**
  1105.  * ida_init - initialize ida handle
  1106.  * @ida:        ida handle
  1107.  *
  1108.  * This function is use to set up the handle (@ida) that you will pass
  1109.  * to the rest of the functions.
  1110.  */
  1111. void ida_init(struct ida *ida)
  1112. {
  1113.         memset(ida, 0, sizeof(struct ida));
  1114.         idr_init(&ida->idr);
  1115.  
  1116. }
  1117. EXPORT_SYMBOL(ida_init);
  1118.