Subversion Repositories Kolibri OS

Rev

Rev 3391 | Rev 5270 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * lib/bitmap.c
  3.  * Helper functions for bitmap.h.
  4.  *
  5.  * This source code is licensed under the GNU General Public License,
  6.  * Version 2.  See the file COPYING for more details.
  7.  */
  8. #include <syscall.h>
  9. #include <linux/export.h>
  10. //#include <linux/thread_info.h>
  11. #include <linux/ctype.h>
  12. #include <linux/errno.h>
  13. #include <linux/bitmap.h>
  14. #include <linux/bitops.h>
  15. #include <linux/bug.h>
  16. //#include <asm/uaccess.h>
  17.  
  18. /*
  19.  * bitmaps provide an array of bits, implemented using an an
  20.  * array of unsigned longs.  The number of valid bits in a
  21.  * given bitmap does _not_ need to be an exact multiple of
  22.  * BITS_PER_LONG.
  23.  *
  24.  * The possible unused bits in the last, partially used word
  25.  * of a bitmap are 'don't care'.  The implementation makes
  26.  * no particular effort to keep them zero.  It ensures that
  27.  * their value will not affect the results of any operation.
  28.  * The bitmap operations that return Boolean (bitmap_empty,
  29.  * for example) or scalar (bitmap_weight, for example) results
  30.  * carefully filter out these unused bits from impacting their
  31.  * results.
  32.  *
  33.  * These operations actually hold to a slightly stronger rule:
  34.  * if you don't input any bitmaps to these ops that have some
  35.  * unused bits set, then they won't output any set unused bits
  36.  * in output bitmaps.
  37.  *
  38.  * The byte ordering of bitmaps is more natural on little
  39.  * endian architectures.  See the big-endian headers
  40.  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  41.  * for the best explanations of this ordering.
  42.  */
  43.  
  44. int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
  45. {
  46.         unsigned int k, lim = bits/BITS_PER_LONG;
  47.         for (k = 0; k < lim; ++k)
  48.                 if (bitmap[k])
  49.                         return 0;
  50.  
  51.         if (bits % BITS_PER_LONG)
  52.                 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  53.                         return 0;
  54.  
  55.         return 1;
  56. }
  57. EXPORT_SYMBOL(__bitmap_empty);
  58.  
  59. int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
  60. {
  61.         unsigned int k, lim = bits/BITS_PER_LONG;
  62.         for (k = 0; k < lim; ++k)
  63.                 if (~bitmap[k])
  64.                         return 0;
  65.  
  66.         if (bits % BITS_PER_LONG)
  67.                 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  68.                         return 0;
  69.  
  70.         return 1;
  71. }
  72. EXPORT_SYMBOL(__bitmap_full);
  73.  
  74. int __bitmap_equal(const unsigned long *bitmap1,
  75.                 const unsigned long *bitmap2, unsigned int bits)
  76. {
  77.         unsigned int k, lim = bits/BITS_PER_LONG;
  78.         for (k = 0; k < lim; ++k)
  79.                 if (bitmap1[k] != bitmap2[k])
  80.                         return 0;
  81.  
  82.         if (bits % BITS_PER_LONG)
  83.                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  84.                         return 0;
  85.  
  86.         return 1;
  87. }
  88. EXPORT_SYMBOL(__bitmap_equal);
  89.  
  90. void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  91. {
  92.         unsigned int k, lim = bits/BITS_PER_LONG;
  93.         for (k = 0; k < lim; ++k)
  94.                 dst[k] = ~src[k];
  95.  
  96.         if (bits % BITS_PER_LONG)
  97.                 dst[k] = ~src[k];
  98. }
  99. EXPORT_SYMBOL(__bitmap_complement);
  100.  
  101. /**
  102.  * __bitmap_shift_right - logical right shift of the bits in a bitmap
  103.  *   @dst : destination bitmap
  104.  *   @src : source bitmap
  105.  *   @shift : shift by this many bits
  106.  *   @bits : bitmap size, in bits
  107.  *
  108.  * Shifting right (dividing) means moving bits in the MS -> LS bit
  109.  * direction.  Zeros are fed into the vacated MS positions and the
  110.  * LS bits shifted off the bottom are lost.
  111.  */
  112. void __bitmap_shift_right(unsigned long *dst,
  113.                         const unsigned long *src, int shift, int bits)
  114. {
  115.         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  116.         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  117.         unsigned long mask = (1UL << left) - 1;
  118.         for (k = 0; off + k < lim; ++k) {
  119.                 unsigned long upper, lower;
  120.  
  121.                 /*
  122.                  * If shift is not word aligned, take lower rem bits of
  123.                  * word above and make them the top rem bits of result.
  124.                  */
  125.                 if (!rem || off + k + 1 >= lim)
  126.                         upper = 0;
  127.                 else {
  128.                         upper = src[off + k + 1];
  129.                         if (off + k + 1 == lim - 1 && left)
  130.                                 upper &= mask;
  131.                 }
  132.                 lower = src[off + k];
  133.                 if (left && off + k == lim - 1)
  134.                         lower &= mask;
  135.                 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
  136.                 if (left && k == lim - 1)
  137.                         dst[k] &= mask;
  138.         }
  139.         if (off)
  140.                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  141. }
  142. EXPORT_SYMBOL(__bitmap_shift_right);
  143.  
  144.  
  145. /**
  146.  * __bitmap_shift_left - logical left shift of the bits in a bitmap
  147.  *   @dst : destination bitmap
  148.  *   @src : source bitmap
  149.  *   @shift : shift by this many bits
  150.  *   @bits : bitmap size, in bits
  151.  *
  152.  * Shifting left (multiplying) means moving bits in the LS -> MS
  153.  * direction.  Zeros are fed into the vacated LS bit positions
  154.  * and those MS bits shifted off the top are lost.
  155.  */
  156.  
  157. void __bitmap_shift_left(unsigned long *dst,
  158.                         const unsigned long *src, int shift, int bits)
  159. {
  160.         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  161.         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  162.         for (k = lim - off - 1; k >= 0; --k) {
  163.                 unsigned long upper, lower;
  164.  
  165.                 /*
  166.                  * If shift is not word aligned, take upper rem bits of
  167.                  * word below and make them the bottom rem bits of result.
  168.                  */
  169.                 if (rem && k > 0)
  170.                         lower = src[k - 1];
  171.                 else
  172.                         lower = 0;
  173.                 upper = src[k];
  174.                 if (left && k == lim - 1)
  175.                         upper &= (1UL << left) - 1;
  176.                 dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
  177.                 if (left && k + off == lim - 1)
  178.                         dst[k + off] &= (1UL << left) - 1;
  179.         }
  180.         if (off)
  181.                 memset(dst, 0, off*sizeof(unsigned long));
  182. }
  183. EXPORT_SYMBOL(__bitmap_shift_left);
  184.  
  185. int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  186.                                 const unsigned long *bitmap2, unsigned int bits)
  187. {
  188.         unsigned int k;
  189.         unsigned int lim = bits/BITS_PER_LONG;
  190.         unsigned long result = 0;
  191.  
  192.         for (k = 0; k < lim; k++)
  193.                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
  194.         if (bits % BITS_PER_LONG)
  195.                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
  196.                            BITMAP_LAST_WORD_MASK(bits));
  197.         return result != 0;
  198. }
  199. EXPORT_SYMBOL(__bitmap_and);
  200.  
  201. void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  202.                                 const unsigned long *bitmap2, unsigned int bits)
  203. {
  204.         unsigned int k;
  205.         unsigned int nr = BITS_TO_LONGS(bits);
  206.  
  207.         for (k = 0; k < nr; k++)
  208.                 dst[k] = bitmap1[k] | bitmap2[k];
  209. }
  210. EXPORT_SYMBOL(__bitmap_or);
  211.  
  212. void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  213.                                 const unsigned long *bitmap2, unsigned int bits)
  214. {
  215.         unsigned int k;
  216.         unsigned int nr = BITS_TO_LONGS(bits);
  217.  
  218.         for (k = 0; k < nr; k++)
  219.                 dst[k] = bitmap1[k] ^ bitmap2[k];
  220. }
  221. EXPORT_SYMBOL(__bitmap_xor);
  222.  
  223. int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  224.                                 const unsigned long *bitmap2, unsigned int bits)
  225. {
  226.         unsigned int k;
  227.         unsigned int lim = bits/BITS_PER_LONG;
  228.         unsigned long result = 0;
  229.  
  230.         for (k = 0; k < lim; k++)
  231.                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
  232.         if (bits % BITS_PER_LONG)
  233.                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
  234.                            BITMAP_LAST_WORD_MASK(bits));
  235.         return result != 0;
  236. }
  237. EXPORT_SYMBOL(__bitmap_andnot);
  238.  
  239. int __bitmap_intersects(const unsigned long *bitmap1,
  240.                         const unsigned long *bitmap2, unsigned int bits)
  241. {
  242.         unsigned int k, lim = bits/BITS_PER_LONG;
  243.         for (k = 0; k < lim; ++k)
  244.                 if (bitmap1[k] & bitmap2[k])
  245.                         return 1;
  246.  
  247.         if (bits % BITS_PER_LONG)
  248.                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  249.                         return 1;
  250.         return 0;
  251. }
  252. EXPORT_SYMBOL(__bitmap_intersects);
  253.  
  254. int __bitmap_subset(const unsigned long *bitmap1,
  255.                     const unsigned long *bitmap2, unsigned int bits)
  256. {
  257.         unsigned int k, lim = bits/BITS_PER_LONG;
  258.         for (k = 0; k < lim; ++k)
  259.                 if (bitmap1[k] & ~bitmap2[k])
  260.                         return 0;
  261.  
  262.         if (bits % BITS_PER_LONG)
  263.                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  264.                         return 0;
  265.         return 1;
  266. }
  267. EXPORT_SYMBOL(__bitmap_subset);
  268.  
  269. int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
  270. {
  271.         unsigned int k, lim = bits/BITS_PER_LONG;
  272.         int w = 0;
  273.  
  274.         for (k = 0; k < lim; k++)
  275.                 w += hweight_long(bitmap[k]);
  276.  
  277.         if (bits % BITS_PER_LONG)
  278.                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  279.  
  280.         return w;
  281. }
  282. EXPORT_SYMBOL(__bitmap_weight);
  283.  
  284. void bitmap_set(unsigned long *map, unsigned int start, int len)
  285. {
  286.         unsigned long *p = map + BIT_WORD(start);
  287.         const unsigned int size = start + len;
  288.         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  289.         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  290.  
  291.         while (len - bits_to_set >= 0) {
  292.                 *p |= mask_to_set;
  293.                 len -= bits_to_set;
  294.                 bits_to_set = BITS_PER_LONG;
  295.                 mask_to_set = ~0UL;
  296.                 p++;
  297.         }
  298.         if (len) {
  299.                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
  300.                 *p |= mask_to_set;
  301.         }
  302. }
  303. EXPORT_SYMBOL(bitmap_set);
  304.  
  305. void bitmap_clear(unsigned long *map, unsigned int start, int len)
  306. {
  307.         unsigned long *p = map + BIT_WORD(start);
  308.         const unsigned int size = start + len;
  309.         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
  310.         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
  311.  
  312.         while (len - bits_to_clear >= 0) {
  313.                 *p &= ~mask_to_clear;
  314.                 len -= bits_to_clear;
  315.                 bits_to_clear = BITS_PER_LONG;
  316.                 mask_to_clear = ~0UL;
  317.                 p++;
  318.         }
  319.         if (len) {
  320.                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
  321.                 *p &= ~mask_to_clear;
  322.         }
  323. }
  324. EXPORT_SYMBOL(bitmap_clear);
  325.  
  326. /*
  327.  * bitmap_find_next_zero_area - find a contiguous aligned zero area
  328.  * @map: The address to base the search on
  329.  * @size: The bitmap size in bits
  330.  * @start: The bitnumber to start searching at
  331.  * @nr: The number of zeroed bits we're looking for
  332.  * @align_mask: Alignment mask for zero area
  333.  *
  334.  * The @align_mask should be one less than a power of 2; the effect is that
  335.  * the bit offset of all zero areas this function finds is multiples of that
  336.  * power of 2. A @align_mask of 0 means no alignment is required.
  337.  */
  338. unsigned long bitmap_find_next_zero_area(unsigned long *map,
  339.                                          unsigned long size,
  340.                                          unsigned long start,
  341.                                          unsigned int nr,
  342.                                          unsigned long align_mask)
  343. {
  344.         unsigned long index, end, i;
  345. again:
  346.         index = find_next_zero_bit(map, size, start);
  347.  
  348.         /* Align allocation */
  349.         index = __ALIGN_MASK(index, align_mask);
  350.  
  351.         end = index + nr;
  352.         if (end > size)
  353.                 return end;
  354.         i = find_next_bit(map, end, index);
  355.         if (i < end) {
  356.                 start = i + 1;
  357.                 goto again;
  358.         }
  359.         return index;
  360. }
  361. EXPORT_SYMBOL(bitmap_find_next_zero_area);
  362.  
  363. /*
  364.  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
  365.  * second version by Paul Jackson, third by Joe Korty.
  366.  */
  367.  
  368. #define CHUNKSZ                         32
  369. #define nbits_to_hold_value(val)        fls(val)
  370. #define BASEDEC 10              /* fancier cpuset lists input in decimal */
  371.  
  372.  
  373.  
  374.  
  375.  
  376. /**
  377.  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
  378.  *      @buf: pointer to a bitmap
  379.  *      @pos: a bit position in @buf (0 <= @pos < @bits)
  380.  *      @bits: number of valid bit positions in @buf
  381.  *
  382.  * Map the bit at position @pos in @buf (of length @bits) to the
  383.  * ordinal of which set bit it is.  If it is not set or if @pos
  384.  * is not a valid bit position, map to -1.
  385.  *
  386.  * If for example, just bits 4 through 7 are set in @buf, then @pos
  387.  * values 4 through 7 will get mapped to 0 through 3, respectively,
  388.  * and other @pos values will get mapped to -1.  When @pos value 7
  389.  * gets mapped to (returns) @ord value 3 in this example, that means
  390.  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  391.  *
  392.  * The bit positions 0 through @bits are valid positions in @buf.
  393.  */
  394. static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
  395. {
  396.         int i, ord;
  397.  
  398.         if (pos < 0 || pos >= bits || !test_bit(pos, buf))
  399.                 return -1;
  400.  
  401.         i = find_first_bit(buf, bits);
  402.         ord = 0;
  403.         while (i < pos) {
  404.                 i = find_next_bit(buf, bits, i + 1);
  405.                 ord++;
  406.         }
  407.         BUG_ON(i != pos);
  408.  
  409.         return ord;
  410. }
  411.  
  412. /**
  413.  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
  414.  *      @buf: pointer to bitmap
  415.  *      @ord: ordinal bit position (n-th set bit, n >= 0)
  416.  *      @bits: number of valid bit positions in @buf
  417.  *
  418.  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  419.  * Value of @ord should be in range 0 <= @ord < weight(buf), else
  420.  * results are undefined.
  421.  *
  422.  * If for example, just bits 4 through 7 are set in @buf, then @ord
  423.  * values 0 through 3 will get mapped to 4 through 7, respectively,
  424.  * and all other @ord values return undefined values.  When @ord value 3
  425.  * gets mapped to (returns) @pos value 7 in this example, that means
  426.  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  427.  *
  428.  * The bit positions 0 through @bits are valid positions in @buf.
  429.  */
  430. int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
  431. {
  432.         int pos = 0;
  433.  
  434.         if (ord >= 0 && ord < bits) {
  435.                 int i;
  436.  
  437.                 for (i = find_first_bit(buf, bits);
  438.                      i < bits && ord > 0;
  439.                      i = find_next_bit(buf, bits, i + 1))
  440.                         ord--;
  441.                 if (i < bits && ord == 0)
  442.                         pos = i;
  443.         }
  444.  
  445.         return pos;
  446. }
  447.  
  448. /**
  449.  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  450.  *      @dst: remapped result
  451.  *      @src: subset to be remapped
  452.  *      @old: defines domain of map
  453.  *      @new: defines range of map
  454.  *      @bits: number of bits in each of these bitmaps
  455.  *
  456.  * Let @old and @new define a mapping of bit positions, such that
  457.  * whatever position is held by the n-th set bit in @old is mapped
  458.  * to the n-th set bit in @new.  In the more general case, allowing
  459.  * for the possibility that the weight 'w' of @new is less than the
  460.  * weight of @old, map the position of the n-th set bit in @old to
  461.  * the position of the m-th set bit in @new, where m == n % w.
  462.  *
  463.  * If either of the @old and @new bitmaps are empty, or if @src and
  464.  * @dst point to the same location, then this routine copies @src
  465.  * to @dst.
  466.  *
  467.  * The positions of unset bits in @old are mapped to themselves
  468.  * (the identify map).
  469.  *
  470.  * Apply the above specified mapping to @src, placing the result in
  471.  * @dst, clearing any bits previously set in @dst.
  472.  *
  473.  * For example, lets say that @old has bits 4 through 7 set, and
  474.  * @new has bits 12 through 15 set.  This defines the mapping of bit
  475.  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  476.  * bit positions unchanged.  So if say @src comes into this routine
  477.  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  478.  * 13 and 15 set.
  479.  */
  480. void bitmap_remap(unsigned long *dst, const unsigned long *src,
  481.                 const unsigned long *old, const unsigned long *new,
  482.                 int bits)
  483. {
  484.         int oldbit, w;
  485.  
  486.         if (dst == src)         /* following doesn't handle inplace remaps */
  487.                 return;
  488.         bitmap_zero(dst, bits);
  489.  
  490.         w = bitmap_weight(new, bits);
  491.         for_each_set_bit(oldbit, src, bits) {
  492.                 int n = bitmap_pos_to_ord(old, oldbit, bits);
  493.  
  494.                 if (n < 0 || w == 0)
  495.                         set_bit(oldbit, dst);   /* identity map */
  496.                 else
  497.                         set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
  498.         }
  499. }
  500. EXPORT_SYMBOL(bitmap_remap);
  501.  
  502. /**
  503.  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  504.  *      @oldbit: bit position to be mapped
  505.  *      @old: defines domain of map
  506.  *      @new: defines range of map
  507.  *      @bits: number of bits in each of these bitmaps
  508.  *
  509.  * Let @old and @new define a mapping of bit positions, such that
  510.  * whatever position is held by the n-th set bit in @old is mapped
  511.  * to the n-th set bit in @new.  In the more general case, allowing
  512.  * for the possibility that the weight 'w' of @new is less than the
  513.  * weight of @old, map the position of the n-th set bit in @old to
  514.  * the position of the m-th set bit in @new, where m == n % w.
  515.  *
  516.  * The positions of unset bits in @old are mapped to themselves
  517.  * (the identify map).
  518.  *
  519.  * Apply the above specified mapping to bit position @oldbit, returning
  520.  * the new bit position.
  521.  *
  522.  * For example, lets say that @old has bits 4 through 7 set, and
  523.  * @new has bits 12 through 15 set.  This defines the mapping of bit
  524.  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  525.  * bit positions unchanged.  So if say @oldbit is 5, then this routine
  526.  * returns 13.
  527.  */
  528. int bitmap_bitremap(int oldbit, const unsigned long *old,
  529.                                 const unsigned long *new, int bits)
  530. {
  531.         int w = bitmap_weight(new, bits);
  532.         int n = bitmap_pos_to_ord(old, oldbit, bits);
  533.         if (n < 0 || w == 0)
  534.                 return oldbit;
  535.         else
  536.                 return bitmap_ord_to_pos(new, n % w, bits);
  537. }
  538. EXPORT_SYMBOL(bitmap_bitremap);
  539.  
  540. /**
  541.  * bitmap_onto - translate one bitmap relative to another
  542.  *      @dst: resulting translated bitmap
  543.  *      @orig: original untranslated bitmap
  544.  *      @relmap: bitmap relative to which translated
  545.  *      @bits: number of bits in each of these bitmaps
  546.  *
  547.  * Set the n-th bit of @dst iff there exists some m such that the
  548.  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
  549.  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
  550.  * (If you understood the previous sentence the first time your
  551.  * read it, you're overqualified for your current job.)
  552.  *
  553.  * In other words, @orig is mapped onto (surjectively) @dst,
  554.  * using the the map { <n, m> | the n-th bit of @relmap is the
  555.  * m-th set bit of @relmap }.
  556.  *
  557.  * Any set bits in @orig above bit number W, where W is the
  558.  * weight of (number of set bits in) @relmap are mapped nowhere.
  559.  * In particular, if for all bits m set in @orig, m >= W, then
  560.  * @dst will end up empty.  In situations where the possibility
  561.  * of such an empty result is not desired, one way to avoid it is
  562.  * to use the bitmap_fold() operator, below, to first fold the
  563.  * @orig bitmap over itself so that all its set bits x are in the
  564.  * range 0 <= x < W.  The bitmap_fold() operator does this by
  565.  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
  566.  *
  567.  * Example [1] for bitmap_onto():
  568.  *  Let's say @relmap has bits 30-39 set, and @orig has bits
  569.  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
  570.  *  @dst will have bits 31, 33, 35, 37 and 39 set.
  571.  *
  572.  *  When bit 0 is set in @orig, it means turn on the bit in
  573.  *  @dst corresponding to whatever is the first bit (if any)
  574.  *  that is turned on in @relmap.  Since bit 0 was off in the
  575.  *  above example, we leave off that bit (bit 30) in @dst.
  576.  *
  577.  *  When bit 1 is set in @orig (as in the above example), it
  578.  *  means turn on the bit in @dst corresponding to whatever
  579.  *  is the second bit that is turned on in @relmap.  The second
  580.  *  bit in @relmap that was turned on in the above example was
  581.  *  bit 31, so we turned on bit 31 in @dst.
  582.  *
  583.  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
  584.  *  because they were the 4th, 6th, 8th and 10th set bits
  585.  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
  586.  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
  587.  *
  588.  *  When bit 11 is set in @orig, it means turn on the bit in
  589.  *  @dst corresponding to whatever is the twelfth bit that is
  590.  *  turned on in @relmap.  In the above example, there were
  591.  *  only ten bits turned on in @relmap (30..39), so that bit
  592.  *  11 was set in @orig had no affect on @dst.
  593.  *
  594.  * Example [2] for bitmap_fold() + bitmap_onto():
  595.  *  Let's say @relmap has these ten bits set:
  596.  *              40 41 42 43 45 48 53 61 74 95
  597.  *  (for the curious, that's 40 plus the first ten terms of the
  598.  *  Fibonacci sequence.)
  599.  *
  600.  *  Further lets say we use the following code, invoking
  601.  *  bitmap_fold() then bitmap_onto, as suggested above to
  602.  *  avoid the possitility of an empty @dst result:
  603.  *
  604.  *      unsigned long *tmp;     // a temporary bitmap's bits
  605.  *
  606.  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
  607.  *      bitmap_onto(dst, tmp, relmap, bits);
  608.  *
  609.  *  Then this table shows what various values of @dst would be, for
  610.  *  various @orig's.  I list the zero-based positions of each set bit.
  611.  *  The tmp column shows the intermediate result, as computed by
  612.  *  using bitmap_fold() to fold the @orig bitmap modulo ten
  613.  *  (the weight of @relmap).
  614.  *
  615.  *      @orig           tmp            @dst
  616.  *      0                0             40
  617.  *      1                1             41
  618.  *      9                9             95
  619.  *      10               0             40 (*)
  620.  *      1 3 5 7          1 3 5 7       41 43 48 61
  621.  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
  622.  *      0 9 18 27        0 9 8 7       40 61 74 95
  623.  *      0 10 20 30       0             40
  624.  *      0 11 22 33       0 1 2 3       40 41 42 43
  625.  *      0 12 24 36       0 2 4 6       40 42 45 53
  626.  *      78 102 211       1 2 8         41 42 74 (*)
  627.  *
  628.  * (*) For these marked lines, if we hadn't first done bitmap_fold()
  629.  *     into tmp, then the @dst result would have been empty.
  630.  *
  631.  * If either of @orig or @relmap is empty (no set bits), then @dst
  632.  * will be returned empty.
  633.  *
  634.  * If (as explained above) the only set bits in @orig are in positions
  635.  * m where m >= W, (where W is the weight of @relmap) then @dst will
  636.  * once again be returned empty.
  637.  *
  638.  * All bits in @dst not set by the above rule are cleared.
  639.  */
  640. void bitmap_onto(unsigned long *dst, const unsigned long *orig,
  641.                         const unsigned long *relmap, int bits)
  642. {
  643.         int n, m;               /* same meaning as in above comment */
  644.  
  645.         if (dst == orig)        /* following doesn't handle inplace mappings */
  646.                 return;
  647.         bitmap_zero(dst, bits);
  648.  
  649.         /*
  650.          * The following code is a more efficient, but less
  651.          * obvious, equivalent to the loop:
  652.          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
  653.          *              n = bitmap_ord_to_pos(orig, m, bits);
  654.          *              if (test_bit(m, orig))
  655.          *                      set_bit(n, dst);
  656.          *      }
  657.          */
  658.  
  659.         m = 0;
  660.         for_each_set_bit(n, relmap, bits) {
  661.                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
  662.                 if (test_bit(m, orig))
  663.                         set_bit(n, dst);
  664.                 m++;
  665.         }
  666. }
  667. EXPORT_SYMBOL(bitmap_onto);
  668.  
  669. /**
  670.  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
  671.  *      @dst: resulting smaller bitmap
  672.  *      @orig: original larger bitmap
  673.  *      @sz: specified size
  674.  *      @bits: number of bits in each of these bitmaps
  675.  *
  676.  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
  677.  * Clear all other bits in @dst.  See further the comment and
  678.  * Example [2] for bitmap_onto() for why and how to use this.
  679.  */
  680. void bitmap_fold(unsigned long *dst, const unsigned long *orig,
  681.                         int sz, int bits)
  682. {
  683.         int oldbit;
  684.  
  685.         if (dst == orig)        /* following doesn't handle inplace mappings */
  686.                 return;
  687.         bitmap_zero(dst, bits);
  688.  
  689.         for_each_set_bit(oldbit, orig, bits)
  690.                 set_bit(oldbit % sz, dst);
  691. }
  692. EXPORT_SYMBOL(bitmap_fold);
  693.  
  694. /*
  695.  * Common code for bitmap_*_region() routines.
  696.  *      bitmap: array of unsigned longs corresponding to the bitmap
  697.  *      pos: the beginning of the region
  698.  *      order: region size (log base 2 of number of bits)
  699.  *      reg_op: operation(s) to perform on that region of bitmap
  700.  *
  701.  * Can set, verify and/or release a region of bits in a bitmap,
  702.  * depending on which combination of REG_OP_* flag bits is set.
  703.  *
  704.  * A region of a bitmap is a sequence of bits in the bitmap, of
  705.  * some size '1 << order' (a power of two), aligned to that same
  706.  * '1 << order' power of two.
  707.  *
  708.  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
  709.  * Returns 0 in all other cases and reg_ops.
  710.  */
  711.  
  712. enum {
  713.         REG_OP_ISFREE,          /* true if region is all zero bits */
  714.         REG_OP_ALLOC,           /* set all bits in region */
  715.         REG_OP_RELEASE,         /* clear all bits in region */
  716. };
  717.  
  718. static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
  719. {
  720.         int nbits_reg;          /* number of bits in region */
  721.         int index;              /* index first long of region in bitmap */
  722.         int offset;             /* bit offset region in bitmap[index] */
  723.         int nlongs_reg;         /* num longs spanned by region in bitmap */
  724.         int nbitsinlong;        /* num bits of region in each spanned long */
  725.         unsigned long mask;     /* bitmask for one long of region */
  726.         int i;                  /* scans bitmap by longs */
  727.         int ret = 0;            /* return value */
  728.  
  729.         /*
  730.          * Either nlongs_reg == 1 (for small orders that fit in one long)
  731.          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
  732.          */
  733.         nbits_reg = 1 << order;
  734.         index = pos / BITS_PER_LONG;
  735.         offset = pos - (index * BITS_PER_LONG);
  736.         nlongs_reg = BITS_TO_LONGS(nbits_reg);
  737.         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
  738.  
  739.         /*
  740.          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
  741.          * overflows if nbitsinlong == BITS_PER_LONG.
  742.          */
  743.         mask = (1UL << (nbitsinlong - 1));
  744.         mask += mask - 1;
  745.         mask <<= offset;
  746.  
  747.         switch (reg_op) {
  748.         case REG_OP_ISFREE:
  749.                 for (i = 0; i < nlongs_reg; i++) {
  750.                         if (bitmap[index + i] & mask)
  751.                                 goto done;
  752.                 }
  753.                 ret = 1;        /* all bits in region free (zero) */
  754.                 break;
  755.  
  756.         case REG_OP_ALLOC:
  757.                 for (i = 0; i < nlongs_reg; i++)
  758.                         bitmap[index + i] |= mask;
  759.                 break;
  760.  
  761.         case REG_OP_RELEASE:
  762.                 for (i = 0; i < nlongs_reg; i++)
  763.                         bitmap[index + i] &= ~mask;
  764.                 break;
  765.         }
  766. done:
  767.         return ret;
  768. }
  769.  
  770. /**
  771.  * bitmap_find_free_region - find a contiguous aligned mem region
  772.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  773.  *      @bits: number of bits in the bitmap
  774.  *      @order: region size (log base 2 of number of bits) to find
  775.  *
  776.  * Find a region of free (zero) bits in a @bitmap of @bits bits and
  777.  * allocate them (set them to one).  Only consider regions of length
  778.  * a power (@order) of two, aligned to that power of two, which
  779.  * makes the search algorithm much faster.
  780.  *
  781.  * Return the bit offset in bitmap of the allocated region,
  782.  * or -errno on failure.
  783.  */
  784. int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
  785. {
  786.         unsigned int pos, end;          /* scans bitmap by regions of size order */
  787.  
  788.         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
  789.                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  790.                         continue;
  791.                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  792.                 return pos;
  793.         }
  794.         return -ENOMEM;
  795. }
  796. EXPORT_SYMBOL(bitmap_find_free_region);
  797.  
  798. /**
  799.  * bitmap_release_region - release allocated bitmap region
  800.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  801.  *      @pos: beginning of bit region to release
  802.  *      @order: region size (log base 2 of number of bits) to release
  803.  *
  804.  * This is the complement to __bitmap_find_free_region() and releases
  805.  * the found region (by clearing it in the bitmap).
  806.  *
  807.  * No return value.
  808.  */
  809. void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
  810. {
  811.         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
  812. }
  813. EXPORT_SYMBOL(bitmap_release_region);
  814.  
  815. /**
  816.  * bitmap_allocate_region - allocate bitmap region
  817.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  818.  *      @pos: beginning of bit region to allocate
  819.  *      @order: region size (log base 2 of number of bits) to allocate
  820.  *
  821.  * Allocate (set bits in) a specified region of a bitmap.
  822.  *
  823.  * Return 0 on success, or %-EBUSY if specified region wasn't
  824.  * free (not all bits were zero).
  825.  */
  826. int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
  827. {
  828.         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  829.                 return -EBUSY;
  830.         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  831. }
  832. EXPORT_SYMBOL(bitmap_allocate_region);
  833.  
  834. /**
  835.  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
  836.  * @dst:   destination buffer
  837.  * @src:   bitmap to copy
  838.  * @nbits: number of bits in the bitmap
  839.  *
  840.  * Require nbits % BITS_PER_LONG == 0.
  841.  */
  842. void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
  843. {
  844.         unsigned long *d = dst;
  845.         int i;
  846.  
  847.         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
  848.                 if (BITS_PER_LONG == 64)
  849.                         d[i] = cpu_to_le64(src[i]);
  850.                 else
  851.                         d[i] = cpu_to_le32(src[i]);
  852.         }
  853. }
  854. EXPORT_SYMBOL(bitmap_copy_le);
  855.