Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. // Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
  2.  
  3. // Copyright (C) 2010-2015 Free Software Foundation, Inc.
  4. //
  5. // This file is part of the GNU ISO C++ Library.  This library is free
  6. // software; you can redistribute it and/or modify it under the
  7. // terms of the GNU General Public License as published by the
  8. // Free Software Foundation; either version 3, or (at your option)
  9. // any later version.
  10.  
  11. // This library is distributed in the hope that it will be useful,
  12. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14. // GNU General Public License for more details.
  15.  
  16. // Under Section 7 of GPL version 3, you are granted additional
  17. // permissions described in the GCC Runtime Library Exception, version
  18. // 3.1, as published by the Free Software Foundation.
  19.  
  20. // You should have received a copy of the GNU General Public License and
  21. // a copy of the GCC Runtime Library Exception along with this program;
  22. // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  23. // <http://www.gnu.org/licenses/>.
  24.  
  25. /** @file tr1/hashtable_policy.h
  26.  *  This is an internal header file, included by other library headers.
  27.  *  Do not attempt to use it directly.
  28.  *  @headername{tr1/unordered_map, tr1/unordered_set}
  29.  */
  30.  
  31. namespace std _GLIBCXX_VISIBILITY(default)
  32. {
  33. namespace tr1
  34. {
  35. namespace __detail
  36. {
  37. _GLIBCXX_BEGIN_NAMESPACE_VERSION
  38.  
  39.   // Helper function: return distance(first, last) for forward
  40.   // iterators, or 0 for input iterators.
  41.   template<class _Iterator>
  42.     inline typename std::iterator_traits<_Iterator>::difference_type
  43.     __distance_fw(_Iterator __first, _Iterator __last,
  44.                   std::input_iterator_tag)
  45.     { return 0; }
  46.  
  47.   template<class _Iterator>
  48.     inline typename std::iterator_traits<_Iterator>::difference_type
  49.     __distance_fw(_Iterator __first, _Iterator __last,
  50.                   std::forward_iterator_tag)
  51.     { return std::distance(__first, __last); }
  52.  
  53.   template<class _Iterator>
  54.     inline typename std::iterator_traits<_Iterator>::difference_type
  55.     __distance_fw(_Iterator __first, _Iterator __last)
  56.     {
  57.       typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
  58.       return __distance_fw(__first, __last, _Tag());
  59.     }
  60.  
  61.   // Auxiliary types used for all instantiations of _Hashtable: nodes
  62.   // and iterators.
  63.  
  64.   // Nodes, used to wrap elements stored in the hash table.  A policy
  65.   // template parameter of class template _Hashtable controls whether
  66.   // nodes also store a hash code. In some cases (e.g. strings) this
  67.   // may be a performance win.
  68.   template<typename _Value, bool __cache_hash_code>
  69.     struct _Hash_node;
  70.  
  71.   template<typename _Value>
  72.     struct _Hash_node<_Value, true>
  73.     {
  74.       _Value       _M_v;
  75.       std::size_t  _M_hash_code;
  76.       _Hash_node*  _M_next;
  77.     };
  78.  
  79.   template<typename _Value>
  80.     struct _Hash_node<_Value, false>
  81.     {
  82.       _Value       _M_v;
  83.       _Hash_node*  _M_next;
  84.     };
  85.  
  86.   // Local iterators, used to iterate within a bucket but not between
  87.   // buckets.
  88.   template<typename _Value, bool __cache>
  89.     struct _Node_iterator_base
  90.     {
  91.       _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
  92.       : _M_cur(__p) { }
  93.      
  94.       void
  95.       _M_incr()
  96.       { _M_cur = _M_cur->_M_next; }
  97.  
  98.       _Hash_node<_Value, __cache>*  _M_cur;
  99.     };
  100.  
  101.   template<typename _Value, bool __cache>
  102.     inline bool
  103.     operator==(const _Node_iterator_base<_Value, __cache>& __x,
  104.                const _Node_iterator_base<_Value, __cache>& __y)
  105.     { return __x._M_cur == __y._M_cur; }
  106.  
  107.   template<typename _Value, bool __cache>
  108.     inline bool
  109.     operator!=(const _Node_iterator_base<_Value, __cache>& __x,
  110.                const _Node_iterator_base<_Value, __cache>& __y)
  111.     { return __x._M_cur != __y._M_cur; }
  112.  
  113.   template<typename _Value, bool __constant_iterators, bool __cache>
  114.     struct _Node_iterator
  115.     : public _Node_iterator_base<_Value, __cache>
  116.     {
  117.       typedef _Value                                   value_type;
  118.       typedef typename
  119.       __gnu_cxx::__conditional_type<__constant_iterators,
  120.                                     const _Value*, _Value*>::__type
  121.                                                        pointer;
  122.       typedef typename
  123.       __gnu_cxx::__conditional_type<__constant_iterators,
  124.                                     const _Value&, _Value&>::__type
  125.                                                        reference;
  126.       typedef std::ptrdiff_t                           difference_type;
  127.       typedef std::forward_iterator_tag                iterator_category;
  128.  
  129.       _Node_iterator()
  130.       : _Node_iterator_base<_Value, __cache>(0) { }
  131.  
  132.       explicit
  133.       _Node_iterator(_Hash_node<_Value, __cache>* __p)
  134.       : _Node_iterator_base<_Value, __cache>(__p) { }
  135.  
  136.       reference
  137.       operator*() const
  138.       { return this->_M_cur->_M_v; }
  139.  
  140.       pointer
  141.       operator->() const
  142.       { return std::__addressof(this->_M_cur->_M_v); }
  143.  
  144.       _Node_iterator&
  145.       operator++()
  146.       {
  147.         this->_M_incr();
  148.         return *this;
  149.       }
  150.  
  151.       _Node_iterator
  152.       operator++(int)
  153.       {
  154.         _Node_iterator __tmp(*this);
  155.         this->_M_incr();
  156.         return __tmp;
  157.       }
  158.     };
  159.  
  160.   template<typename _Value, bool __constant_iterators, bool __cache>
  161.     struct _Node_const_iterator
  162.     : public _Node_iterator_base<_Value, __cache>
  163.     {
  164.       typedef _Value                                   value_type;
  165.       typedef const _Value*                            pointer;
  166.       typedef const _Value&                            reference;
  167.       typedef std::ptrdiff_t                           difference_type;
  168.       typedef std::forward_iterator_tag                iterator_category;
  169.  
  170.       _Node_const_iterator()
  171.       : _Node_iterator_base<_Value, __cache>(0) { }
  172.  
  173.       explicit
  174.       _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
  175.       : _Node_iterator_base<_Value, __cache>(__p) { }
  176.  
  177.       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
  178.                            __cache>& __x)
  179.       : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
  180.  
  181.       reference
  182.       operator*() const
  183.       { return this->_M_cur->_M_v; }
  184.  
  185.       pointer
  186.       operator->() const
  187.       { return std::__addressof(this->_M_cur->_M_v); }
  188.  
  189.       _Node_const_iterator&
  190.       operator++()
  191.       {
  192.         this->_M_incr();
  193.         return *this;
  194.       }
  195.  
  196.       _Node_const_iterator
  197.       operator++(int)
  198.       {
  199.         _Node_const_iterator __tmp(*this);
  200.         this->_M_incr();
  201.         return __tmp;
  202.       }
  203.     };
  204.  
  205.   template<typename _Value, bool __cache>
  206.     struct _Hashtable_iterator_base
  207.     {
  208.       _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
  209.                                _Hash_node<_Value, __cache>** __bucket)
  210.       : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
  211.  
  212.       void
  213.       _M_incr()
  214.       {
  215.         _M_cur_node = _M_cur_node->_M_next;
  216.         if (!_M_cur_node)
  217.           _M_incr_bucket();
  218.       }
  219.  
  220.       void
  221.       _M_incr_bucket();
  222.  
  223.       _Hash_node<_Value, __cache>*   _M_cur_node;
  224.       _Hash_node<_Value, __cache>**  _M_cur_bucket;
  225.     };
  226.  
  227.   // Global iterators, used for arbitrary iteration within a hash
  228.   // table.  Larger and more expensive than local iterators.
  229.   template<typename _Value, bool __cache>
  230.     void
  231.     _Hashtable_iterator_base<_Value, __cache>::
  232.     _M_incr_bucket()
  233.     {
  234.       ++_M_cur_bucket;
  235.  
  236.       // This loop requires the bucket array to have a non-null sentinel.
  237.       while (!*_M_cur_bucket)
  238.         ++_M_cur_bucket;
  239.       _M_cur_node = *_M_cur_bucket;
  240.     }
  241.  
  242.   template<typename _Value, bool __cache>
  243.     inline bool
  244.     operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
  245.                const _Hashtable_iterator_base<_Value, __cache>& __y)
  246.     { return __x._M_cur_node == __y._M_cur_node; }
  247.  
  248.   template<typename _Value, bool __cache>
  249.     inline bool
  250.     operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
  251.                const _Hashtable_iterator_base<_Value, __cache>& __y)
  252.     { return __x._M_cur_node != __y._M_cur_node; }
  253.  
  254.   template<typename _Value, bool __constant_iterators, bool __cache>
  255.     struct _Hashtable_iterator
  256.     : public _Hashtable_iterator_base<_Value, __cache>
  257.     {
  258.       typedef _Value                                   value_type;
  259.       typedef typename
  260.       __gnu_cxx::__conditional_type<__constant_iterators,
  261.                                     const _Value*, _Value*>::__type
  262.                                                        pointer;
  263.       typedef typename
  264.       __gnu_cxx::__conditional_type<__constant_iterators,
  265.                                     const _Value&, _Value&>::__type
  266.                                                        reference;
  267.       typedef std::ptrdiff_t                           difference_type;
  268.       typedef std::forward_iterator_tag                iterator_category;
  269.  
  270.       _Hashtable_iterator()
  271.       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
  272.  
  273.       _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
  274.                           _Hash_node<_Value, __cache>** __b)
  275.       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
  276.  
  277.       explicit
  278.       _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
  279.       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
  280.  
  281.       reference
  282.       operator*() const
  283.       { return this->_M_cur_node->_M_v; }
  284.  
  285.       pointer
  286.       operator->() const
  287.       { return std::__addressof(this->_M_cur_node->_M_v); }
  288.  
  289.       _Hashtable_iterator&
  290.       operator++()
  291.       {
  292.         this->_M_incr();
  293.         return *this;
  294.       }
  295.  
  296.       _Hashtable_iterator
  297.       operator++(int)
  298.       {
  299.         _Hashtable_iterator __tmp(*this);
  300.         this->_M_incr();
  301.         return __tmp;
  302.       }
  303.     };
  304.  
  305.   template<typename _Value, bool __constant_iterators, bool __cache>
  306.     struct _Hashtable_const_iterator
  307.     : public _Hashtable_iterator_base<_Value, __cache>
  308.     {
  309.       typedef _Value                                   value_type;
  310.       typedef const _Value*                            pointer;
  311.       typedef const _Value&                            reference;
  312.       typedef std::ptrdiff_t                           difference_type;
  313.       typedef std::forward_iterator_tag                iterator_category;
  314.  
  315.       _Hashtable_const_iterator()
  316.       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
  317.  
  318.       _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
  319.                                 _Hash_node<_Value, __cache>** __b)
  320.       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
  321.  
  322.       explicit
  323.       _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
  324.       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
  325.  
  326.       _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
  327.                                 __constant_iterators, __cache>& __x)
  328.       : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
  329.                                                   __x._M_cur_bucket) { }
  330.  
  331.       reference
  332.       operator*() const
  333.       { return this->_M_cur_node->_M_v; }
  334.  
  335.       pointer
  336.       operator->() const
  337.       { return std::__addressof(this->_M_cur_node->_M_v); }
  338.  
  339.       _Hashtable_const_iterator&
  340.       operator++()
  341.       {
  342.         this->_M_incr();
  343.         return *this;
  344.       }
  345.  
  346.       _Hashtable_const_iterator
  347.       operator++(int)
  348.       {
  349.         _Hashtable_const_iterator __tmp(*this);
  350.         this->_M_incr();
  351.         return __tmp;
  352.       }
  353.     };
  354.  
  355.  
  356.   // Many of class template _Hashtable's template parameters are policy
  357.   // classes.  These are defaults for the policies.
  358.  
  359.   // Default range hashing function: use division to fold a large number
  360.   // into the range [0, N).
  361.   struct _Mod_range_hashing
  362.   {
  363.     typedef std::size_t first_argument_type;
  364.     typedef std::size_t second_argument_type;
  365.     typedef std::size_t result_type;
  366.  
  367.     result_type
  368.     operator()(first_argument_type __num, second_argument_type __den) const
  369.     { return __num % __den; }
  370.   };
  371.  
  372.   // Default ranged hash function H.  In principle it should be a
  373.   // function object composed from objects of type H1 and H2 such that
  374.   // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
  375.   // h1 and h2.  So instead we'll just use a tag to tell class template
  376.   // hashtable to do that composition.
  377.   struct _Default_ranged_hash { };
  378.  
  379.   // Default value for rehash policy.  Bucket size is (usually) the
  380.   // smallest prime that keeps the load factor small enough.
  381.   struct _Prime_rehash_policy
  382.   {
  383.     _Prime_rehash_policy(float __z = 1.0)
  384.     : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
  385.  
  386.     float
  387.     max_load_factor() const
  388.     { return _M_max_load_factor; }      
  389.  
  390.     // Return a bucket size no smaller than n.
  391.     std::size_t
  392.     _M_next_bkt(std::size_t __n) const;
  393.    
  394.     // Return a bucket count appropriate for n elements
  395.     std::size_t
  396.     _M_bkt_for_elements(std::size_t __n) const;
  397.    
  398.     // __n_bkt is current bucket count, __n_elt is current element count,
  399.     // and __n_ins is number of elements to be inserted.  Do we need to
  400.     // increase bucket count?  If so, return make_pair(true, n), where n
  401.     // is the new bucket count.  If not, return make_pair(false, 0).
  402.     std::pair<bool, std::size_t>
  403.     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
  404.                    std::size_t __n_ins) const;
  405.  
  406.     enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
  407.  
  408.     float                _M_max_load_factor;
  409.     float                _M_growth_factor;
  410.     mutable std::size_t  _M_next_resize;
  411.   };
  412.  
  413.   extern const unsigned long __prime_list[];
  414.  
  415.   // XXX This is a hack.  There's no good reason for any of
  416.   // _Prime_rehash_policy's member functions to be inline.  
  417.  
  418.   // Return a prime no smaller than n.
  419.   inline std::size_t
  420.   _Prime_rehash_policy::
  421.   _M_next_bkt(std::size_t __n) const
  422.   {
  423.     const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
  424.                                                 + _S_n_primes, __n);
  425.     _M_next_resize =
  426.       static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
  427.     return *__p;
  428.   }
  429.  
  430.   // Return the smallest prime p such that alpha p >= n, where alpha
  431.   // is the load factor.
  432.   inline std::size_t
  433.   _Prime_rehash_policy::
  434.   _M_bkt_for_elements(std::size_t __n) const
  435.   {
  436.     const float __min_bkts = __n / _M_max_load_factor;
  437.     const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
  438.                                                 + _S_n_primes, __min_bkts);
  439.     _M_next_resize =
  440.       static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
  441.     return *__p;
  442.   }
  443.  
  444.   // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
  445.   // If p > __n_bkt, return make_pair(true, p); otherwise return
  446.   // make_pair(false, 0).  In principle this isn't very different from
  447.   // _M_bkt_for_elements.
  448.  
  449.   // The only tricky part is that we're caching the element count at
  450.   // which we need to rehash, so we don't have to do a floating-point
  451.   // multiply for every insertion.
  452.  
  453.   inline std::pair<bool, std::size_t>
  454.   _Prime_rehash_policy::
  455.   _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
  456.                  std::size_t __n_ins) const
  457.   {
  458.     if (__n_elt + __n_ins > _M_next_resize)
  459.       {
  460.         float __min_bkts = ((float(__n_ins) + float(__n_elt))
  461.                             / _M_max_load_factor);
  462.         if (__min_bkts > __n_bkt)
  463.           {
  464.             __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
  465.             const unsigned long* __p =
  466.               std::lower_bound(__prime_list, __prime_list + _S_n_primes,
  467.                                __min_bkts);
  468.             _M_next_resize = static_cast<std::size_t>
  469.               (__builtin_ceil(*__p * _M_max_load_factor));
  470.             return std::make_pair(true, *__p);
  471.           }
  472.         else
  473.           {
  474.             _M_next_resize = static_cast<std::size_t>
  475.               (__builtin_ceil(__n_bkt * _M_max_load_factor));
  476.             return std::make_pair(false, 0);
  477.           }
  478.       }
  479.     else
  480.       return std::make_pair(false, 0);
  481.   }
  482.  
  483.   // Base classes for std::tr1::_Hashtable.  We define these base
  484.   // classes because in some cases we want to do different things
  485.   // depending on the value of a policy class.  In some cases the
  486.   // policy class affects which member functions and nested typedefs
  487.   // are defined; we handle that by specializing base class templates.
  488.   // Several of the base class templates need to access other members
  489.   // of class template _Hashtable, so we use the "curiously recurring
  490.   // template pattern" for them.
  491.  
  492.   // class template _Map_base.  If the hashtable has a value type of the
  493.   // form pair<T1, T2> and a key extraction policy that returns the
  494.   // first part of the pair, the hashtable gets a mapped_type typedef.
  495.   // If it satisfies those criteria and also has unique keys, then it
  496.   // also gets an operator[].  
  497.   template<typename _Key, typename _Value, typename _Ex, bool __unique,
  498.            typename _Hashtable>
  499.     struct _Map_base { };
  500.          
  501.   template<typename _Key, typename _Pair, typename _Hashtable>
  502.     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
  503.     {
  504.       typedef typename _Pair::second_type mapped_type;
  505.     };
  506.  
  507.   template<typename _Key, typename _Pair, typename _Hashtable>
  508.     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
  509.     {
  510.       typedef typename _Pair::second_type mapped_type;
  511.      
  512.       mapped_type&
  513.       operator[](const _Key& __k);
  514.     };
  515.  
  516.   template<typename _Key, typename _Pair, typename _Hashtable>
  517.     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
  518.                        true, _Hashtable>::mapped_type&
  519.     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
  520.     operator[](const _Key& __k)
  521.     {
  522.       _Hashtable* __h = static_cast<_Hashtable*>(this);
  523.       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
  524.       std::size_t __n = __h->_M_bucket_index(__k, __code,
  525.                                              __h->_M_bucket_count);
  526.  
  527.       typename _Hashtable::_Node* __p =
  528.         __h->_M_find_node(__h->_M_buckets[__n], __k, __code);
  529.       if (!__p)
  530.         return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
  531.                                      __n, __code)->second;
  532.       return (__p->_M_v).second;
  533.     }
  534.  
  535.   // class template _Rehash_base.  Give hashtable the max_load_factor
  536.   // functions iff the rehash policy is _Prime_rehash_policy.
  537.   template<typename _RehashPolicy, typename _Hashtable>
  538.     struct _Rehash_base { };
  539.  
  540.   template<typename _Hashtable>
  541.     struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
  542.     {
  543.       float
  544.       max_load_factor() const
  545.       {
  546.         const _Hashtable* __this = static_cast<const _Hashtable*>(this);
  547.         return __this->__rehash_policy().max_load_factor();
  548.       }
  549.  
  550.       void
  551.       max_load_factor(float __z)
  552.       {
  553.         _Hashtable* __this = static_cast<_Hashtable*>(this);
  554.         __this->__rehash_policy(_Prime_rehash_policy(__z));
  555.       }
  556.     };
  557.  
  558.   // Class template _Hash_code_base.  Encapsulates two policy issues that
  559.   // aren't quite orthogonal.
  560.   //   (1) the difference between using a ranged hash function and using
  561.   //       the combination of a hash function and a range-hashing function.
  562.   //       In the former case we don't have such things as hash codes, so
  563.   //       we have a dummy type as placeholder.
  564.   //   (2) Whether or not we cache hash codes.  Caching hash codes is
  565.   //       meaningless if we have a ranged hash function.
  566.   // We also put the key extraction and equality comparison function
  567.   // objects here, for convenience.
  568.  
  569.   // Primary template: unused except as a hook for specializations.  
  570.   template<typename _Key, typename _Value,
  571.            typename _ExtractKey, typename _Equal,
  572.            typename _H1, typename _H2, typename _Hash,
  573.            bool __cache_hash_code>
  574.     struct _Hash_code_base;
  575.  
  576.   // Specialization: ranged hash function, no caching hash codes.  H1
  577.   // and H2 are provided but ignored.  We define a dummy hash code type.
  578.   template<typename _Key, typename _Value,
  579.            typename _ExtractKey, typename _Equal,
  580.            typename _H1, typename _H2, typename _Hash>
  581.     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
  582.                            _Hash, false>
  583.     {
  584.     protected:
  585.       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
  586.                       const _H1&, const _H2&, const _Hash& __h)
  587.       : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
  588.  
  589.       typedef void* _Hash_code_type;
  590.  
  591.       _Hash_code_type
  592.       _M_hash_code(const _Key& __key) const
  593.       { return 0; }
  594.  
  595.       std::size_t
  596.       _M_bucket_index(const _Key& __k, _Hash_code_type,
  597.                       std::size_t __n) const
  598.       { return _M_ranged_hash(__k, __n); }
  599.  
  600.       std::size_t
  601.       _M_bucket_index(const _Hash_node<_Value, false>* __p,
  602.                       std::size_t __n) const
  603.       { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
  604.  
  605.       bool
  606.       _M_compare(const _Key& __k, _Hash_code_type,
  607.                  _Hash_node<_Value, false>* __n) const
  608.       { return _M_eq(__k, _M_extract(__n->_M_v)); }
  609.  
  610.       void
  611.       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
  612.       { }
  613.  
  614.       void
  615.       _M_copy_code(_Hash_node<_Value, false>*,
  616.                    const _Hash_node<_Value, false>*) const
  617.       { }
  618.      
  619.       void
  620.       _M_swap(_Hash_code_base& __x)
  621.       {
  622.         std::swap(_M_extract, __x._M_extract);
  623.         std::swap(_M_eq, __x._M_eq);
  624.         std::swap(_M_ranged_hash, __x._M_ranged_hash);
  625.       }
  626.  
  627.     protected:
  628.       _ExtractKey  _M_extract;
  629.       _Equal       _M_eq;
  630.       _Hash        _M_ranged_hash;
  631.     };
  632.  
  633.  
  634.   // No specialization for ranged hash function while caching hash codes.
  635.   // That combination is meaningless, and trying to do it is an error.
  636.  
  637.  
  638.   // Specialization: ranged hash function, cache hash codes.  This
  639.   // combination is meaningless, so we provide only a declaration
  640.   // and no definition.  
  641.   template<typename _Key, typename _Value,
  642.            typename _ExtractKey, typename _Equal,
  643.            typename _H1, typename _H2, typename _Hash>
  644.     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
  645.                            _Hash, true>;
  646.  
  647.   // Specialization: hash function and range-hashing function, no
  648.   // caching of hash codes.  H is provided but ignored.  Provides
  649.   // typedef and accessor required by TR1.  
  650.   template<typename _Key, typename _Value,
  651.            typename _ExtractKey, typename _Equal,
  652.            typename _H1, typename _H2>
  653.     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
  654.                            _Default_ranged_hash, false>
  655.     {
  656.       typedef _H1 hasher;
  657.  
  658.       hasher
  659.       hash_function() const
  660.       { return _M_h1; }
  661.  
  662.     protected:
  663.       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
  664.                       const _H1& __h1, const _H2& __h2,
  665.                       const _Default_ranged_hash&)
  666.       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
  667.  
  668.       typedef std::size_t _Hash_code_type;
  669.  
  670.       _Hash_code_type
  671.       _M_hash_code(const _Key& __k) const
  672.       { return _M_h1(__k); }
  673.      
  674.       std::size_t
  675.       _M_bucket_index(const _Key&, _Hash_code_type __c,
  676.                       std::size_t __n) const
  677.       { return _M_h2(__c, __n); }
  678.  
  679.       std::size_t
  680.       _M_bucket_index(const _Hash_node<_Value, false>* __p,
  681.                       std::size_t __n) const
  682.       { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
  683.  
  684.       bool
  685.       _M_compare(const _Key& __k, _Hash_code_type,
  686.                  _Hash_node<_Value, false>* __n) const
  687.       { return _M_eq(__k, _M_extract(__n->_M_v)); }
  688.  
  689.       void
  690.       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
  691.       { }
  692.  
  693.       void
  694.       _M_copy_code(_Hash_node<_Value, false>*,
  695.                    const _Hash_node<_Value, false>*) const
  696.       { }
  697.  
  698.       void
  699.       _M_swap(_Hash_code_base& __x)
  700.       {
  701.         std::swap(_M_extract, __x._M_extract);
  702.         std::swap(_M_eq, __x._M_eq);
  703.         std::swap(_M_h1, __x._M_h1);
  704.         std::swap(_M_h2, __x._M_h2);
  705.       }
  706.  
  707.     protected:
  708.       _ExtractKey  _M_extract;
  709.       _Equal       _M_eq;
  710.       _H1          _M_h1;
  711.       _H2          _M_h2;
  712.     };
  713.  
  714.   // Specialization: hash function and range-hashing function,
  715.   // caching hash codes.  H is provided but ignored.  Provides
  716.   // typedef and accessor required by TR1.
  717.   template<typename _Key, typename _Value,
  718.            typename _ExtractKey, typename _Equal,
  719.            typename _H1, typename _H2>
  720.     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
  721.                            _Default_ranged_hash, true>
  722.     {
  723.       typedef _H1 hasher;
  724.      
  725.       hasher
  726.       hash_function() const
  727.       { return _M_h1; }
  728.  
  729.     protected:
  730.       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
  731.                       const _H1& __h1, const _H2& __h2,
  732.                       const _Default_ranged_hash&)
  733.       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
  734.  
  735.       typedef std::size_t _Hash_code_type;
  736.  
  737.       _Hash_code_type
  738.       _M_hash_code(const _Key& __k) const
  739.       { return _M_h1(__k); }
  740.  
  741.       std::size_t
  742.       _M_bucket_index(const _Key&, _Hash_code_type __c,
  743.                       std::size_t __n) const
  744.       { return _M_h2(__c, __n); }
  745.  
  746.       std::size_t
  747.       _M_bucket_index(const _Hash_node<_Value, true>* __p,
  748.                       std::size_t __n) const
  749.       { return _M_h2(__p->_M_hash_code, __n); }
  750.  
  751.       bool
  752.       _M_compare(const _Key& __k, _Hash_code_type __c,
  753.                  _Hash_node<_Value, true>* __n) const
  754.       { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
  755.  
  756.       void
  757.       _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
  758.       { __n->_M_hash_code = __c; }
  759.  
  760.       void
  761.       _M_copy_code(_Hash_node<_Value, true>* __to,
  762.                    const _Hash_node<_Value, true>* __from) const
  763.       { __to->_M_hash_code = __from->_M_hash_code; }
  764.  
  765.       void
  766.       _M_swap(_Hash_code_base& __x)
  767.       {
  768.         std::swap(_M_extract, __x._M_extract);
  769.         std::swap(_M_eq, __x._M_eq);
  770.         std::swap(_M_h1, __x._M_h1);
  771.         std::swap(_M_h2, __x._M_h2);
  772.       }
  773.      
  774.     protected:
  775.       _ExtractKey  _M_extract;
  776.       _Equal       _M_eq;
  777.       _H1          _M_h1;
  778.       _H2          _M_h2;
  779.     };
  780. _GLIBCXX_END_NAMESPACE_VERSION
  781. } // namespace __detail
  782. }
  783. }
  784.