Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /* Copyright (C) 2007-2015 Free Software Foundation, Inc.
  2.  
  3. This file is part of GCC.
  4.  
  5. GCC is free software; you can redistribute it and/or modify it under
  6. the terms of the GNU General Public License as published by the Free
  7. Software Foundation; either version 3, or (at your option) any later
  8. version.
  9.  
  10. GCC is distributed in the hope that it will be useful, but WITHOUT ANY
  11. WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13. for more details.
  14.  
  15. Under Section 7 of GPL version 3, you are granted additional
  16. permissions described in the GCC Runtime Library Exception, version
  17. 3.1, as published by the Free Software Foundation.
  18.  
  19. You should have received a copy of the GNU General Public License and
  20. a copy of the GCC Runtime Library Exception along with this program;
  21. see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  22. <http://www.gnu.org/licenses/>.  */
  23.  
  24. #define BID_128RES
  25. #include "bid_internal.h"
  26.  
  27. BID128_FUNCTION_ARG2 (bid128_quantize, x, y)
  28.  
  29.      UINT256 CT;
  30.      UINT128 CX, CY, T, CX2, CR, Stemp, res, REM_H, C2N;
  31.      UINT64 sign_x, sign_y, remainder_h, carry, CY64, valid_x;
  32.      int_float tempx;
  33.      int exponent_x, exponent_y, digits_x, extra_digits, amount;
  34.      int expon_diff, total_digits, bin_expon_cx, rmode, status;
  35.  
  36. valid_x = unpack_BID128_value (&sign_x, &exponent_x, &CX, x);
  37.  
  38.   // unpack arguments, check for NaN or Infinity
  39. if (!unpack_BID128_value (&sign_y, &exponent_y, &CY, y)) {
  40.     // y is Inf. or NaN
  41. #ifdef SET_STATUS_FLAGS
  42. if ((x.w[1] & SNAN_MASK64) == SNAN_MASK64)      // y is sNaN
  43.   __set_status_flags (pfpsf, INVALID_EXCEPTION);
  44. #endif
  45.  
  46.     // test if y is NaN
  47. if ((y.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
  48. #ifdef SET_STATUS_FLAGS
  49.   if ((y.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull) {
  50.     // set status flags
  51.     __set_status_flags (pfpsf, INVALID_EXCEPTION);
  52.   }
  53. #endif
  54.   if ((x.w[1] & 0x7c00000000000000ull) != 0x7c00000000000000ull) {
  55.     res.w[1] = CY.w[1] & QUIET_MASK64;
  56.     res.w[0] = CY.w[0];
  57.   } else {
  58.     res.w[1] = CX.w[1] & QUIET_MASK64;
  59.     res.w[0] = CX.w[0];
  60.   }
  61.   BID_RETURN (res);
  62. }
  63.     // y is Infinity?
  64. if ((y.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
  65.   // check if x is not Inf.
  66.   if (((x.w[1] & 0x7c00000000000000ull) < 0x7800000000000000ull)) {
  67.     // return NaN
  68. #ifdef SET_STATUS_FLAGS
  69.     // set status flags
  70.     __set_status_flags (pfpsf, INVALID_EXCEPTION);
  71. #endif
  72.     res.w[1] = 0x7c00000000000000ull;
  73.     res.w[0] = 0;
  74.     BID_RETURN (res);
  75.   } else
  76.     if (((x.w[1] & 0x7c00000000000000ull) <= 0x7800000000000000ull)) {
  77.     res.w[1] = CX.w[1] & QUIET_MASK64;
  78.     res.w[0] = CX.w[0];
  79.     BID_RETURN (res);
  80.   }
  81. }
  82.  
  83. }
  84.  
  85. if (!valid_x) {
  86.   // test if x is NaN or Inf
  87.   if ((x.w[1] & 0x7c00000000000000ull) == 0x7800000000000000ull) {
  88. #ifdef SET_STATUS_FLAGS
  89.     // set status flags
  90.     __set_status_flags (pfpsf, INVALID_EXCEPTION);
  91. #endif
  92.     res.w[1] = 0x7c00000000000000ull;
  93.     res.w[0] = 0;
  94.     BID_RETURN (res);
  95.   } else if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
  96.     if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull) {
  97. #ifdef SET_STATUS_FLAGS
  98.       // set status flags
  99.       __set_status_flags (pfpsf, INVALID_EXCEPTION);
  100. #endif
  101.     }
  102.     res.w[1] = CX.w[1] & QUIET_MASK64;
  103.     res.w[0] = CX.w[0];
  104.     BID_RETURN (res);
  105.   }
  106.   if (!CX.w[1] && !CX.w[0]) {
  107.     get_BID128_very_fast (&res, sign_x, exponent_y, CX);
  108.     BID_RETURN (res);
  109.   }
  110. }
  111.   // get number of decimal digits in coefficient_x
  112. if (CX.w[1]) {
  113.   tempx.d = (float) CX.w[1];
  114.   bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f + 64;
  115. } else {
  116.   tempx.d = (float) CX.w[0];
  117.   bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
  118. }
  119.  
  120. digits_x = estimate_decimal_digits[bin_expon_cx];
  121. if (CX.w[1] > power10_table_128[digits_x].w[1]
  122.     || (CX.w[1] == power10_table_128[digits_x].w[1]
  123.         && CX.w[0] >= power10_table_128[digits_x].w[0]))
  124.   digits_x++;
  125.  
  126. expon_diff = exponent_x - exponent_y;
  127. total_digits = digits_x + expon_diff;
  128.  
  129. if ((UINT32) total_digits <= 34) {
  130.   if (expon_diff >= 0) {
  131.     T = power10_table_128[expon_diff];
  132.     __mul_128x128_low (CX2, T, CX);
  133.     get_BID128_very_fast (&res, sign_x, exponent_y, CX2);
  134.     BID_RETURN (res);
  135.   }
  136. #ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  137. #ifndef IEEE_ROUND_NEAREST
  138.   rmode = rnd_mode;
  139.   if (sign_x && (unsigned) (rmode - 1) < 2)
  140.     rmode = 3 - rmode;
  141. #else
  142.   rmode = 0;
  143. #endif
  144. #else
  145.   rmode = 0;
  146. #endif
  147.   // must round off -expon_diff digits
  148.   extra_digits = -expon_diff;
  149.   __add_128_128 (CX, CX, round_const_table_128[rmode][extra_digits]);
  150.  
  151.   // get P*(2^M[extra_digits])/10^extra_digits
  152.   __mul_128x128_to_256 (CT, CX, reciprocals10_128[extra_digits]);
  153.  
  154.   // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
  155.   amount = recip_scale[extra_digits];
  156.   CX2.w[0] = CT.w[2];
  157.   CX2.w[1] = CT.w[3];
  158.   if (amount >= 64) {
  159.     CR.w[1] = 0;
  160.     CR.w[0] = CX2.w[1] >> (amount - 64);
  161.   } else {
  162.     __shr_128 (CR, CX2, amount);
  163.   }
  164.  
  165. #ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  166. #ifndef IEEE_ROUND_NEAREST
  167.   if (rnd_mode == 0)
  168. #endif
  169.     if (CR.w[0] & 1) {
  170.       // check whether fractional part of initial_P/10^extra_digits is
  171.       // exactly .5 this is the same as fractional part of
  172.       // (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
  173.  
  174.       // get remainder
  175.       if (amount >= 64) {
  176.         remainder_h = CX2.w[0] | (CX2.w[1] << (128 - amount));
  177.       } else
  178.         remainder_h = CX2.w[0] << (64 - amount);
  179.  
  180.       // test whether fractional part is 0
  181.       if (!remainder_h
  182.           && (CT.w[1] < reciprocals10_128[extra_digits].w[1]
  183.               || (CT.w[1] == reciprocals10_128[extra_digits].w[1]
  184.                   && CT.w[0] < reciprocals10_128[extra_digits].w[0]))) {
  185.         CR.w[0]--;
  186.       }
  187.     }
  188. #endif
  189.  
  190. #ifdef SET_STATUS_FLAGS
  191.   status = INEXACT_EXCEPTION;
  192.  
  193.   // get remainder
  194.   if (amount >= 64) {
  195.     REM_H.w[1] = (CX2.w[1] << (128 - amount));
  196.     REM_H.w[0] = CX2.w[0];
  197.   } else {
  198.     REM_H.w[1] = CX2.w[0] << (64 - amount);
  199.     REM_H.w[0] = 0;
  200.   }
  201.  
  202.   switch (rmode) {
  203.   case ROUNDING_TO_NEAREST:
  204.   case ROUNDING_TIES_AWAY:
  205.     // test whether fractional part is 0
  206.     if (REM_H.w[1] == 0x8000000000000000ull && !REM_H.w[0]
  207.         && (CT.w[1] < reciprocals10_128[extra_digits].w[1]
  208.             || (CT.w[1] == reciprocals10_128[extra_digits].w[1]
  209.                 && CT.w[0] < reciprocals10_128[extra_digits].w[0])))
  210.       status = EXACT_STATUS;
  211.     break;
  212.   case ROUNDING_DOWN:
  213.   case ROUNDING_TO_ZERO:
  214.     if (!(REM_H.w[1] | REM_H.w[0])
  215.         && (CT.w[1] < reciprocals10_128[extra_digits].w[1]
  216.             || (CT.w[1] == reciprocals10_128[extra_digits].w[1]
  217.                 && CT.w[0] < reciprocals10_128[extra_digits].w[0])))
  218.       status = EXACT_STATUS;
  219.     break;
  220.   default:
  221.     // round up
  222.     __add_carry_out (Stemp.w[0], CY64, CT.w[0],
  223.                      reciprocals10_128[extra_digits].w[0]);
  224.     __add_carry_in_out (Stemp.w[1], carry, CT.w[1],
  225.                         reciprocals10_128[extra_digits].w[1], CY64);
  226.     if (amount < 64) {
  227.       C2N.w[1] = 0;
  228.       C2N.w[0] = ((UINT64) 1) << amount;
  229.       REM_H.w[0] = REM_H.w[1] >> (64 - amount);
  230.       REM_H.w[1] = 0;
  231.     } else {
  232.       C2N.w[1] = ((UINT64) 1) << (amount - 64);
  233.       C2N.w[0] = 0;
  234.       REM_H.w[1] >>= (128 - amount);
  235.     }
  236.     REM_H.w[0] += carry;
  237.     if (REM_H.w[0] < carry)
  238.       REM_H.w[1]++;
  239.     if (__unsigned_compare_ge_128 (REM_H, C2N))
  240.       status = EXACT_STATUS;
  241.   }
  242.  
  243.   __set_status_flags (pfpsf, status);
  244.  
  245. #endif
  246.   get_BID128_very_fast (&res, sign_x, exponent_y, CR);
  247.   BID_RETURN (res);
  248. }
  249. if (total_digits < 0) {
  250.   CR.w[1] = CR.w[0] = 0;
  251. #ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  252. #ifndef IEEE_ROUND_NEAREST
  253.   rmode = rnd_mode;
  254.   if (sign_x && (unsigned) (rmode - 1) < 2)
  255.     rmode = 3 - rmode;
  256.   if (rmode == ROUNDING_UP)
  257.     CR.w[0] = 1;
  258. #endif
  259. #endif
  260. #ifdef SET_STATUS_FLAGS
  261.   __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  262. #endif
  263.   get_BID128_very_fast (&res, sign_x, exponent_y, CR);
  264.   BID_RETURN (res);
  265. }
  266.   // else  more than 34 digits in coefficient
  267. #ifdef SET_STATUS_FLAGS
  268. __set_status_flags (pfpsf, INVALID_EXCEPTION);
  269. #endif
  270. res.w[1] = 0x7c00000000000000ull;
  271. res.w[0] = 0;
  272. BID_RETURN (res);
  273.  
  274. }
  275.