Subversion Repositories Kolibri OS

Rev

Rev 4872 | Blame | Compare with Previous | Last modification | View Log | RSS feed

  1.  
  2. /* @(#)s_expm1.c 5.1 93/09/24 */
  3. /*
  4.  * ====================================================
  5.  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  6.  *
  7.  * Developed at SunPro, a Sun Microsystems, Inc. business.
  8.  * Permission to use, copy, modify, and distribute this
  9.  * software is freely granted, provided that this notice
  10.  * is preserved.
  11.  * ====================================================
  12.  */
  13.  
  14. /*
  15. FUNCTION
  16.         <<expm1>>, <<expm1f>>---exponential minus 1
  17. INDEX
  18.         expm1
  19. INDEX
  20.         expm1f
  21.  
  22. ANSI_SYNOPSIS
  23.         #include <math.h>
  24.         double expm1(double <[x]>);
  25.         float expm1f(float <[x]>);
  26.  
  27. TRAD_SYNOPSIS
  28.         #include <math.h>
  29.         double expm1(<[x]>);
  30.         double <[x]>;
  31.  
  32.         float expm1f(<[x]>);
  33.         float <[x]>;
  34.  
  35. DESCRIPTION
  36.         <<expm1>> and <<expm1f>> calculate the exponential of <[x]>
  37.         and subtract 1, that is,
  38.         @ifnottex
  39.         e raised to the power <[x]> minus 1 (where e
  40.         @end ifnottex
  41.         @tex
  42.         $e^x - 1$ (where $e$
  43.         @end tex
  44.         is the base of the natural system of logarithms, approximately
  45.         2.71828).  The result is accurate even for small values of
  46.         <[x]>, where using <<exp(<[x]>)-1>> would lose many
  47.         significant digits.
  48.  
  49. RETURNS
  50.         e raised to the power <[x]>, minus 1.
  51.  
  52. PORTABILITY
  53.         Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
  54.         the System V Interface Definition (Issue 2).
  55. */
  56.  
  57. /* expm1(x)
  58.  * Returns exp(x)-1, the exponential of x minus 1.
  59.  *
  60.  * Method
  61.  *   1. Argument reduction:
  62.  *      Given x, find r and integer k such that
  63.  *
  64.  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658  
  65.  *
  66.  *      Here a correction term c will be computed to compensate
  67.  *      the error in r when rounded to a floating-point number.
  68.  *
  69.  *   2. Approximating expm1(r) by a special rational function on
  70.  *      the interval [0,0.34658]:
  71.  *      Since
  72.  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
  73.  *      we define R1(r*r) by
  74.  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
  75.  *      That is,
  76.  *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
  77.  *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
  78.  *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
  79.  *      We use a special Reme algorithm on [0,0.347] to generate
  80.  *      a polynomial of degree 5 in r*r to approximate R1. The
  81.  *      maximum error of this polynomial approximation is bounded
  82.  *      by 2**-61. In other words,
  83.  *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
  84.  *      where   Q1  =  -1.6666666666666567384E-2,
  85.  *              Q2  =   3.9682539681370365873E-4,
  86.  *              Q3  =  -9.9206344733435987357E-6,
  87.  *              Q4  =   2.5051361420808517002E-7,
  88.  *              Q5  =  -6.2843505682382617102E-9;
  89.  *      (where z=r*r, and the values of Q1 to Q5 are listed below)
  90.  *      with error bounded by
  91.  *          |                  5           |     -61
  92.  *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
  93.  *          |                              |
  94.  *     
  95.  *      expm1(r) = exp(r)-1 is then computed by the following
  96.  *      specific way which minimize the accumulation rounding error:
  97.  *                             2     3
  98.  *                            r     r    [ 3 - (R1 + R1*r/2)  ]
  99.  *            expm1(r) = r + --- + --- * [--------------------]
  100.  *                            2     2    [ 6 - r*(3 - R1*r/2) ]
  101.  *     
  102.  *      To compensate the error in the argument reduction, we use
  103.  *              expm1(r+c) = expm1(r) + c + expm1(r)*c
  104.  *                         ~ expm1(r) + c + r*c
  105.  *      Thus c+r*c will be added in as the correction terms for
  106.  *      expm1(r+c). Now rearrange the term to avoid optimization
  107.  *      screw up:
  108.  *                      (      2                                    2 )
  109.  *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
  110.  *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
  111.  *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
  112.  *                      (                                             )
  113.  *     
  114.  *                 = r - E
  115.  *   3. Scale back to obtain expm1(x):
  116.  *      From step 1, we have
  117.  *         expm1(x) = either 2^k*[expm1(r)+1] - 1
  118.  *                  = or     2^k*[expm1(r) + (1-2^-k)]
  119.  *   4. Implementation notes:
  120.  *      (A). To save one multiplication, we scale the coefficient Qi
  121.  *           to Qi*2^i, and replace z by (x^2)/2.
  122.  *      (B). To achieve maximum accuracy, we compute expm1(x) by
  123.  *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
  124.  *        (ii)  if k=0, return r-E
  125.  *        (iii) if k=-1, return 0.5*(r-E)-0.5
  126.  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
  127.  *                     else          return  1.0+2.0*(r-E);
  128.  *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
  129.  *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
  130.  *        (vii) return 2^k(1-((E+2^-k)-r))
  131.  *
  132.  * Special cases:
  133.  *      expm1(INF) is INF, expm1(NaN) is NaN;
  134.  *      expm1(-INF) is -1, and
  135.  *      for finite argument, only expm1(0)=0 is exact.
  136.  *
  137.  * Accuracy:
  138.  *      according to an error analysis, the error is always less than
  139.  *      1 ulp (unit in the last place).
  140.  *
  141.  * Misc. info.
  142.  *      For IEEE double
  143.  *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
  144.  *
  145.  * Constants:
  146.  * The hexadecimal values are the intended ones for the following
  147.  * constants. The decimal values may be used, provided that the
  148.  * compiler will convert from decimal to binary accurately enough
  149.  * to produce the hexadecimal values shown.
  150.  */
  151.  
  152. #include "fdlibm.h"
  153.  
  154. #ifndef _DOUBLE_IS_32BITS
  155.  
  156. #ifdef __STDC__
  157. static const double
  158. #else
  159. static double
  160. #endif
  161. one             = 1.0,
  162. huge            = 1.0e+300,
  163. tiny            = 1.0e-300,
  164. o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
  165. ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
  166. ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
  167. invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
  168.         /* scaled coefficients related to expm1 */
  169. Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
  170. Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
  171. Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
  172. Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
  173. Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
  174.  
  175. #ifdef __STDC__
  176.         double expm1(double x)
  177. #else
  178.         double expm1(x)
  179.         double x;
  180. #endif
  181. {
  182.         double y,hi,lo,c,t,e,hxs,hfx,r1;
  183.         __int32_t k,xsb;
  184.         __uint32_t hx;
  185.  
  186.         GET_HIGH_WORD(hx,x);
  187.         xsb = hx&0x80000000;            /* sign bit of x */
  188.         if(xsb==0) y=x; else y= -x;     /* y = |x| */
  189.         hx &= 0x7fffffff;               /* high word of |x| */
  190.  
  191.     /* filter out huge and non-finite argument */
  192.         if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */
  193.             if(hx >= 0x40862E42) {              /* if |x|>=709.78... */
  194.                 if(hx>=0x7ff00000) {
  195.                     __uint32_t low;
  196.                     GET_LOW_WORD(low,x);
  197.                     if(((hx&0xfffff)|low)!=0)
  198.                          return x+x;     /* NaN */
  199.                     else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
  200.                 }
  201.                 if(x > o_threshold) return huge*huge; /* overflow */
  202.             }
  203.             if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
  204.                 if(x+tiny<0.0)          /* raise inexact */
  205.                 return tiny-one;        /* return -1 */
  206.             }
  207.         }
  208.  
  209.     /* argument reduction */
  210.         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
  211.             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
  212.                 if(xsb==0)
  213.                     {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
  214.                 else
  215.                     {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
  216.             } else {
  217.                 k  = invln2*x+((xsb==0)?0.5:-0.5);
  218.                 t  = k;
  219.                 hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
  220.                 lo = t*ln2_lo;
  221.             }
  222.             x  = hi - lo;
  223.             c  = (hi-x)-lo;
  224.         }
  225.         else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
  226.             t = huge+x; /* return x with inexact flags when x!=0 */
  227.             return x - (t-(huge+x));   
  228.         }
  229.         else k = 0;
  230.  
  231.     /* x is now in primary range */
  232.         hfx = 0.5*x;
  233.         hxs = x*hfx;
  234.         r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
  235.         t  = 3.0-r1*hfx;
  236.         e  = hxs*((r1-t)/(6.0 - x*t));
  237.         if(k==0) return x - (x*e-hxs);          /* c is 0 */
  238.         else {
  239.             e  = (x*(e-c)-c);
  240.             e -= hxs;
  241.             if(k== -1) return 0.5*(x-e)-0.5;
  242.           if(k==1) {
  243.                 if(x < -0.25) return -2.0*(e-(x+0.5));
  244.                 else          return  one+2.0*(x-e);
  245.           }
  246.             if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
  247.                 __uint32_t high;
  248.                 y = one-(e-x);
  249.                 GET_HIGH_WORD(high,y);
  250.                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
  251.                 return y-one;
  252.             }
  253.             t = one;
  254.             if(k<20) {
  255.                 __uint32_t high;
  256.                 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
  257.                 y = t-(e-x);
  258.                 GET_HIGH_WORD(high,y);
  259.                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
  260.            } else {
  261.                 __uint32_t high;
  262.                 SET_HIGH_WORD(t,((0x3ff-k)<<20));       /* 2^-k */
  263.                 y = x-(e+t);
  264.                 y += one;
  265.                 GET_HIGH_WORD(high,y);
  266.                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
  267.             }
  268.         }
  269.         return y;
  270. }
  271.  
  272. #endif /* _DOUBLE_IS_32BITS */
  273.