Subversion Repositories Kolibri OS

Rev

Rev 4872 | Blame | Compare with Previous | Last modification | View Log | RSS feed

  1.  
  2. /* @(#)k_rem_pio2.c 5.1 93/09/24 */
  3. /*
  4.  * ====================================================
  5.  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  6.  *
  7.  * Developed at SunPro, a Sun Microsystems, Inc. business.
  8.  * Permission to use, copy, modify, and distribute this
  9.  * software is freely granted, provided that this notice
  10.  * is preserved.
  11.  * ====================================================
  12.  */
  13.  
  14. /*
  15.  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
  16.  * double x[],y[]; int e0,nx,prec; int ipio2[];
  17.  *
  18.  * __kernel_rem_pio2 return the last three digits of N with
  19.  *              y = x - N*pi/2
  20.  * so that |y| < pi/2.
  21.  *
  22.  * The method is to compute the integer (mod 8) and fraction parts of
  23.  * (2/pi)*x without doing the full multiplication. In general we
  24.  * skip the part of the product that are known to be a huge integer (
  25.  * more accurately, = 0 mod 8 ). Thus the number of operations are
  26.  * independent of the exponent of the input.
  27.  *
  28.  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
  29.  *
  30.  * Input parameters:
  31.  *      x[]     The input value (must be positive) is broken into nx
  32.  *              pieces of 24-bit integers in double precision format.
  33.  *              x[i] will be the i-th 24 bit of x. The scaled exponent
  34.  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
  35.  *              match x's up to 24 bits.
  36.  *
  37.  *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
  38.  *                      e0 = ilogb(z)-23
  39.  *                      z  = scalbn(z,-e0)
  40.  *              for i = 0,1,2
  41.  *                      x[i] = floor(z)
  42.  *                      z    = (z-x[i])*2**24
  43.  *
  44.  *
  45.  *      y[]     ouput result in an array of double precision numbers.
  46.  *              The dimension of y[] is:
  47.  *                      24-bit  precision       1
  48.  *                      53-bit  precision       2
  49.  *                      64-bit  precision       2
  50.  *                      113-bit precision       3
  51.  *              The actual value is the sum of them. Thus for 113-bit
  52.  *              precison, one may have to do something like:
  53.  *
  54.  *              long double t,w,r_head, r_tail;
  55.  *              t = (long double)y[2] + (long double)y[1];
  56.  *              w = (long double)y[0];
  57.  *              r_head = t+w;
  58.  *              r_tail = w - (r_head - t);
  59.  *
  60.  *      e0      The exponent of x[0]
  61.  *
  62.  *      nx      dimension of x[]
  63.  *
  64.  *      prec    an integer indicating the precision:
  65.  *                      0       24  bits (single)
  66.  *                      1       53  bits (double)
  67.  *                      2       64  bits (extended)
  68.  *                      3       113 bits (quad)
  69.  *
  70.  *      ipio2[]
  71.  *              integer array, contains the (24*i)-th to (24*i+23)-th
  72.  *              bit of 2/pi after binary point. The corresponding
  73.  *              floating value is
  74.  *
  75.  *                      ipio2[i] * 2^(-24(i+1)).
  76.  *
  77.  * External function:
  78.  *      double scalbn(), floor();
  79.  *
  80.  *
  81.  * Here is the description of some local variables:
  82.  *
  83.  *      jk      jk+1 is the initial number of terms of ipio2[] needed
  84.  *              in the computation. The recommended value is 2,3,4,
  85.  *              6 for single, double, extended,and quad.
  86.  *
  87.  *      jz      local integer variable indicating the number of
  88.  *              terms of ipio2[] used.
  89.  *
  90.  *      jx      nx - 1
  91.  *
  92.  *      jv      index for pointing to the suitable ipio2[] for the
  93.  *              computation. In general, we want
  94.  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
  95.  *              is an integer. Thus
  96.  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
  97.  *              Hence jv = max(0,(e0-3)/24).
  98.  *
  99.  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
  100.  *
  101.  *      q[]     double array with integral value, representing the
  102.  *              24-bits chunk of the product of x and 2/pi.
  103.  *
  104.  *      q0      the corresponding exponent of q[0]. Note that the
  105.  *              exponent for q[i] would be q0-24*i.
  106.  *
  107.  *      PIo2[]  double precision array, obtained by cutting pi/2
  108.  *              into 24 bits chunks.
  109.  *
  110.  *      f[]     ipio2[] in floating point
  111.  *
  112.  *      iq[]    integer array by breaking up q[] in 24-bits chunk.
  113.  *
  114.  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
  115.  *
  116.  *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
  117.  *              it also indicates the *sign* of the result.
  118.  *
  119.  */
  120.  
  121.  
  122. /*
  123.  * Constants:
  124.  * The hexadecimal values are the intended ones for the following
  125.  * constants. The decimal values may be used, provided that the
  126.  * compiler will convert from decimal to binary accurately enough
  127.  * to produce the hexadecimal values shown.
  128.  */
  129.  
  130. #include "fdlibm.h"
  131.  
  132. #ifndef _DOUBLE_IS_32BITS
  133.  
  134. #ifdef __STDC__
  135. static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
  136. #else
  137. static int init_jk[] = {2,3,4,6};
  138. #endif
  139.  
  140. #ifdef __STDC__
  141. static const double PIo2[] = {
  142. #else
  143. static double PIo2[] = {
  144. #endif
  145.   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
  146.   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
  147.   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
  148.   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
  149.   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
  150.   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
  151.   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
  152.   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
  153. };
  154.  
  155. #ifdef __STDC__
  156. static const double                    
  157. #else
  158. static double                  
  159. #endif
  160. zero   = 0.0,
  161. one    = 1.0,
  162. two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
  163. twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
  164.  
  165. #ifdef __STDC__
  166.         int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const __int32_t *ipio2)
  167. #else
  168.         int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)    
  169.         double x[], y[]; int e0,nx,prec; __int32_t ipio2[];
  170. #endif
  171. {
  172.         __int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
  173.         double z,fw,f[20],fq[20],q[20];
  174.  
  175.     /* initialize jk*/
  176.         jk = init_jk[prec];
  177.         jp = jk;
  178.  
  179.     /* determine jx,jv,q0, note that 3>q0 */
  180.         jx =  nx-1;
  181.         jv = (e0-3)/24; if(jv<0) jv=0;
  182.         q0 =  e0-24*(jv+1);
  183.  
  184.     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
  185.         j = jv-jx; m = jx+jk;
  186.         for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
  187.  
  188.     /* compute q[0],q[1],...q[jk] */
  189.         for (i=0;i<=jk;i++) {
  190.             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
  191.         }
  192.  
  193.         jz = jk;
  194. recompute:
  195.     /* distill q[] into iq[] reversingly */
  196.         for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
  197.             fw    =  (double)((__int32_t)(twon24* z));
  198.             iq[i] =  (__int32_t)(z-two24*fw);
  199.             z     =  q[j-1]+fw;
  200.         }
  201.  
  202.     /* compute n */
  203.         z  = scalbn(z,(int)q0);         /* actual value of z */
  204.         z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
  205.         n  = (__int32_t) z;
  206.         z -= (double)n;
  207.         ih = 0;
  208.         if(q0>0) {      /* need iq[jz-1] to determine n */
  209.             i  = (iq[jz-1]>>(24-q0)); n += i;
  210.             iq[jz-1] -= i<<(24-q0);
  211.             ih = iq[jz-1]>>(23-q0);
  212.         }
  213.         else if(q0==0) ih = iq[jz-1]>>23;
  214.         else if(z>=0.5) ih=2;
  215.  
  216.         if(ih>0) {      /* q > 0.5 */
  217.             n += 1; carry = 0;
  218.             for(i=0;i<jz ;i++) {        /* compute 1-q */
  219.                 j = iq[i];
  220.                 if(carry==0) {
  221.                     if(j!=0) {
  222.                         carry = 1; iq[i] = 0x1000000- j;
  223.                     }
  224.                 } else  iq[i] = 0xffffff - j;
  225.             }
  226.             if(q0>0) {          /* rare case: chance is 1 in 12 */
  227.                 switch(q0) {
  228.                 case 1:
  229.                    iq[jz-1] &= 0x7fffff; break;
  230.                 case 2:
  231.                    iq[jz-1] &= 0x3fffff; break;
  232.                 }
  233.             }
  234.             if(ih==2) {
  235.                 z = one - z;
  236.                 if(carry!=0) z -= scalbn(one,(int)q0);
  237.             }
  238.         }
  239.  
  240.     /* check if recomputation is needed */
  241.         if(z==zero) {
  242.             j = 0;
  243.             for (i=jz-1;i>=jk;i--) j |= iq[i];
  244.             if(j==0) { /* need recomputation */
  245.                 for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
  246.  
  247.                 for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
  248.                     f[jx+i] = (double) ipio2[jv+i];
  249.                     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
  250.                     q[i] = fw;
  251.                 }
  252.                 jz += k;
  253.                 goto recompute;
  254.             }
  255.         }
  256.  
  257.     /* chop off zero terms */
  258.         if(z==0.0) {
  259.             jz -= 1; q0 -= 24;
  260.             while(iq[jz]==0) { jz--; q0-=24;}
  261.         } else { /* break z into 24-bit if necessary */
  262.             z = scalbn(z,-(int)q0);
  263.             if(z>=two24) {
  264.                 fw = (double)((__int32_t)(twon24*z));
  265.                 iq[jz] = (__int32_t)(z-two24*fw);
  266.                 jz += 1; q0 += 24;
  267.                 iq[jz] = (__int32_t) fw;
  268.             } else iq[jz] = (__int32_t) z ;
  269.         }
  270.  
  271.     /* convert integer "bit" chunk to floating-point value */
  272.         fw = scalbn(one,(int)q0);
  273.         for(i=jz;i>=0;i--) {
  274.             q[i] = fw*(double)iq[i]; fw*=twon24;
  275.         }
  276.  
  277.     /* compute PIo2[0,...,jp]*q[jz,...,0] */
  278.         for(i=jz;i>=0;i--) {
  279.             for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
  280.             fq[jz-i] = fw;
  281.         }
  282.  
  283.     /* compress fq[] into y[] */
  284.         switch(prec) {
  285.             case 0:
  286.                 fw = 0.0;
  287.                 for (i=jz;i>=0;i--) fw += fq[i];
  288.                 y[0] = (ih==0)? fw: -fw;
  289.                 break;
  290.             case 1:
  291.             case 2:
  292.                 fw = 0.0;
  293.                 for (i=jz;i>=0;i--) fw += fq[i];
  294.                 y[0] = (ih==0)? fw: -fw;
  295.                 fw = fq[0]-fw;
  296.                 for (i=1;i<=jz;i++) fw += fq[i];
  297.                 y[1] = (ih==0)? fw: -fw;
  298.                 break;
  299.             case 3:     /* painful */
  300.                 for (i=jz;i>0;i--) {
  301.                     fw      = fq[i-1]+fq[i];
  302.                     fq[i]  += fq[i-1]-fw;
  303.                     fq[i-1] = fw;
  304.                 }
  305.                 for (i=jz;i>1;i--) {
  306.                     fw      = fq[i-1]+fq[i];
  307.                     fq[i]  += fq[i-1]-fw;
  308.                     fq[i-1] = fw;
  309.                 }
  310.                 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
  311.                 if(ih==0) {
  312.                     y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
  313.                 } else {
  314.                     y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
  315.                 }
  316.         }
  317.         return n&7;
  318. }
  319.  
  320. #endif /* defined(_DOUBLE_IS_32BITS) */
  321.