Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

  1. // Vector implementation -*- C++ -*-
  2.  
  3. // Copyright (C) 2001-2013 Free Software Foundation, Inc.
  4. //
  5. // This file is part of the GNU ISO C++ Library.  This library is free
  6. // software; you can redistribute it and/or modify it under the
  7. // terms of the GNU General Public License as published by the
  8. // Free Software Foundation; either version 3, or (at your option)
  9. // any later version.
  10.  
  11. // This library is distributed in the hope that it will be useful,
  12. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14. // GNU General Public License for more details.
  15.  
  16. // Under Section 7 of GPL version 3, you are granted additional
  17. // permissions described in the GCC Runtime Library Exception, version
  18. // 3.1, as published by the Free Software Foundation.
  19.  
  20. // You should have received a copy of the GNU General Public License and
  21. // a copy of the GCC Runtime Library Exception along with this program;
  22. // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  23. // <http://www.gnu.org/licenses/>.
  24.  
  25. /*
  26.  *
  27.  * Copyright (c) 1994
  28.  * Hewlett-Packard Company
  29.  *
  30.  * Permission to use, copy, modify, distribute and sell this software
  31.  * and its documentation for any purpose is hereby granted without fee,
  32.  * provided that the above copyright notice appear in all copies and
  33.  * that both that copyright notice and this permission notice appear
  34.  * in supporting documentation.  Hewlett-Packard Company makes no
  35.  * representations about the suitability of this software for any
  36.  * purpose.  It is provided "as is" without express or implied warranty.
  37.  *
  38.  *
  39.  * Copyright (c) 1996
  40.  * Silicon Graphics Computer Systems, Inc.
  41.  *
  42.  * Permission to use, copy, modify, distribute and sell this software
  43.  * and its documentation for any purpose is hereby granted without fee,
  44.  * provided that the above copyright notice appear in all copies and
  45.  * that both that copyright notice and this permission notice appear
  46.  * in supporting documentation.  Silicon Graphics makes no
  47.  * representations about the suitability of this  software for any
  48.  * purpose.  It is provided "as is" without express or implied warranty.
  49.  */
  50.  
  51. /** @file bits/stl_vector.h
  52.  *  This is an internal header file, included by other library headers.
  53.  *  Do not attempt to use it directly. @headername{vector}
  54.  */
  55.  
  56. #ifndef _STL_VECTOR_H
  57. #define _STL_VECTOR_H 1
  58.  
  59. #include <bits/stl_iterator_base_funcs.h>
  60. #include <bits/functexcept.h>
  61. #include <bits/concept_check.h>
  62. #if __cplusplus >= 201103L
  63. #include <initializer_list>
  64. #endif
  65.  
  66. namespace std _GLIBCXX_VISIBILITY(default)
  67. {
  68. _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
  69.  
  70.   /// See bits/stl_deque.h's _Deque_base for an explanation.
  71.   template<typename _Tp, typename _Alloc>
  72.     struct _Vector_base
  73.     {
  74.       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
  75.         rebind<_Tp>::other _Tp_alloc_type;
  76.       typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
  77.         pointer;
  78.  
  79.       struct _Vector_impl
  80.       : public _Tp_alloc_type
  81.       {
  82.         pointer _M_start;
  83.         pointer _M_finish;
  84.         pointer _M_end_of_storage;
  85.  
  86.         _Vector_impl()
  87.         : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
  88.         { }
  89.  
  90.         _Vector_impl(_Tp_alloc_type const& __a)
  91.         : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
  92.         { }
  93.  
  94. #if __cplusplus >= 201103L
  95.         _Vector_impl(_Tp_alloc_type&& __a)
  96.         : _Tp_alloc_type(std::move(__a)),
  97.           _M_start(0), _M_finish(0), _M_end_of_storage(0)
  98.         { }
  99. #endif
  100.  
  101.         void _M_swap_data(_Vector_impl& __x)
  102.         {
  103.           std::swap(_M_start, __x._M_start);
  104.           std::swap(_M_finish, __x._M_finish);
  105.           std::swap(_M_end_of_storage, __x._M_end_of_storage);
  106.         }
  107.       };
  108.      
  109.     public:
  110.       typedef _Alloc allocator_type;
  111.  
  112.       _Tp_alloc_type&
  113.       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
  114.       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
  115.  
  116.       const _Tp_alloc_type&
  117.       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
  118.       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
  119.  
  120.       allocator_type
  121.       get_allocator() const _GLIBCXX_NOEXCEPT
  122.       { return allocator_type(_M_get_Tp_allocator()); }
  123.  
  124.       _Vector_base()
  125.       : _M_impl() { }
  126.  
  127.       _Vector_base(const allocator_type& __a)
  128.       : _M_impl(__a) { }
  129.  
  130.       _Vector_base(size_t __n)
  131.       : _M_impl()
  132.       { _M_create_storage(__n); }
  133.  
  134.       _Vector_base(size_t __n, const allocator_type& __a)
  135.       : _M_impl(__a)
  136.       { _M_create_storage(__n); }
  137.  
  138. #if __cplusplus >= 201103L
  139.       _Vector_base(_Tp_alloc_type&& __a)
  140.       : _M_impl(std::move(__a)) { }
  141.  
  142.       _Vector_base(_Vector_base&& __x)
  143.       : _M_impl(std::move(__x._M_get_Tp_allocator()))
  144.       { this->_M_impl._M_swap_data(__x._M_impl); }
  145.  
  146.       _Vector_base(_Vector_base&& __x, const allocator_type& __a)
  147.       : _M_impl(__a)
  148.       {
  149.         if (__x.get_allocator() == __a)
  150.           this->_M_impl._M_swap_data(__x._M_impl);
  151.         else
  152.           {
  153.             size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
  154.             _M_create_storage(__n);
  155.           }
  156.       }
  157. #endif
  158.  
  159.       ~_Vector_base()
  160.       { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
  161.                       - this->_M_impl._M_start); }
  162.  
  163.     public:
  164.       _Vector_impl _M_impl;
  165.  
  166.       pointer
  167.       _M_allocate(size_t __n)
  168.       { return __n != 0 ? _M_impl.allocate(__n) : 0; }
  169.  
  170.       void
  171.       _M_deallocate(pointer __p, size_t __n)
  172.       {
  173.         if (__p)
  174.           _M_impl.deallocate(__p, __n);
  175.       }
  176.  
  177.     private:
  178.       void
  179.       _M_create_storage(size_t __n)
  180.       {
  181.         this->_M_impl._M_start = this->_M_allocate(__n);
  182.         this->_M_impl._M_finish = this->_M_impl._M_start;
  183.         this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
  184.       }
  185.     };
  186.  
  187.  
  188.   /**
  189.    *  @brief A standard container which offers fixed time access to
  190.    *  individual elements in any order.
  191.    *
  192.    *  @ingroup sequences
  193.    *
  194.    *  @tparam _Tp  Type of element.
  195.    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
  196.    *
  197.    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
  198.    *  <a href="tables.html#66">reversible container</a>, and a
  199.    *  <a href="tables.html#67">sequence</a>, including the
  200.    *  <a href="tables.html#68">optional sequence requirements</a> with the
  201.    *  %exception of @c push_front and @c pop_front.
  202.    *
  203.    *  In some terminology a %vector can be described as a dynamic
  204.    *  C-style array, it offers fast and efficient access to individual
  205.    *  elements in any order and saves the user from worrying about
  206.    *  memory and size allocation.  Subscripting ( @c [] ) access is
  207.    *  also provided as with C-style arrays.
  208.   */
  209.   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
  210.     class vector : protected _Vector_base<_Tp, _Alloc>
  211.     {
  212.       // Concept requirements.
  213.       typedef typename _Alloc::value_type                _Alloc_value_type;
  214.       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
  215.       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
  216.      
  217.       typedef _Vector_base<_Tp, _Alloc>                  _Base;
  218.       typedef typename _Base::_Tp_alloc_type             _Tp_alloc_type;
  219.       typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>  _Alloc_traits;
  220.  
  221.     public:
  222.       typedef _Tp                                        value_type;
  223.       typedef typename _Base::pointer                    pointer;
  224.       typedef typename _Alloc_traits::const_pointer      const_pointer;
  225.       typedef typename _Alloc_traits::reference          reference;
  226.       typedef typename _Alloc_traits::const_reference    const_reference;
  227.       typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
  228.       typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
  229.       const_iterator;
  230.       typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
  231.       typedef std::reverse_iterator<iterator>            reverse_iterator;
  232.       typedef size_t                                     size_type;
  233.       typedef ptrdiff_t                                  difference_type;
  234.       typedef _Alloc                                     allocator_type;
  235.  
  236.     protected:
  237.       using _Base::_M_allocate;
  238.       using _Base::_M_deallocate;
  239.       using _Base::_M_impl;
  240.       using _Base::_M_get_Tp_allocator;
  241.  
  242.     public:
  243.       // [23.2.4.1] construct/copy/destroy
  244.       // (assign() and get_allocator() are also listed in this section)
  245.       /**
  246.        *  @brief  Default constructor creates no elements.
  247.        */
  248.       vector()
  249.       : _Base() { }
  250.  
  251.       /**
  252.        *  @brief  Creates a %vector with no elements.
  253.        *  @param  __a  An allocator object.
  254.        */
  255.       explicit
  256.       vector(const allocator_type& __a)
  257.       : _Base(__a) { }
  258.  
  259. #if __cplusplus >= 201103L
  260.       /**
  261.        *  @brief  Creates a %vector with default constructed elements.
  262.        *  @param  __n  The number of elements to initially create.
  263.        *  @param  __a  An allocator.
  264.        *
  265.        *  This constructor fills the %vector with @a __n default
  266.        *  constructed elements.
  267.        */
  268.       explicit
  269.       vector(size_type __n, const allocator_type& __a = allocator_type())
  270.       : _Base(__n, __a)
  271.       { _M_default_initialize(__n); }
  272.  
  273.       /**
  274.        *  @brief  Creates a %vector with copies of an exemplar element.
  275.        *  @param  __n  The number of elements to initially create.
  276.        *  @param  __value  An element to copy.
  277.        *  @param  __a  An allocator.
  278.        *
  279.        *  This constructor fills the %vector with @a __n copies of @a __value.
  280.        */
  281.       vector(size_type __n, const value_type& __value,
  282.              const allocator_type& __a = allocator_type())
  283.       : _Base(__n, __a)
  284.       { _M_fill_initialize(__n, __value); }
  285. #else
  286.       /**
  287.        *  @brief  Creates a %vector with copies of an exemplar element.
  288.        *  @param  __n  The number of elements to initially create.
  289.        *  @param  __value  An element to copy.
  290.        *  @param  __a  An allocator.
  291.        *
  292.        *  This constructor fills the %vector with @a __n copies of @a __value.
  293.        */
  294.       explicit
  295.       vector(size_type __n, const value_type& __value = value_type(),
  296.              const allocator_type& __a = allocator_type())
  297.       : _Base(__n, __a)
  298.       { _M_fill_initialize(__n, __value); }
  299. #endif
  300.  
  301.       /**
  302.        *  @brief  %Vector copy constructor.
  303.        *  @param  __x  A %vector of identical element and allocator types.
  304.        *
  305.        *  The newly-created %vector uses a copy of the allocation
  306.        *  object used by @a __x.  All the elements of @a __x are copied,
  307.        *  but any extra memory in
  308.        *  @a __x (for fast expansion) will not be copied.
  309.        */
  310.       vector(const vector& __x)
  311.       : _Base(__x.size(),
  312.         _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
  313.       { this->_M_impl._M_finish =
  314.           std::__uninitialized_copy_a(__x.begin(), __x.end(),
  315.                                       this->_M_impl._M_start,
  316.                                       _M_get_Tp_allocator());
  317.       }
  318.  
  319. #if __cplusplus >= 201103L
  320.       /**
  321.        *  @brief  %Vector move constructor.
  322.        *  @param  __x  A %vector of identical element and allocator types.
  323.        *
  324.        *  The newly-created %vector contains the exact contents of @a __x.
  325.        *  The contents of @a __x are a valid, but unspecified %vector.
  326.        */
  327.       vector(vector&& __x) noexcept
  328.       : _Base(std::move(__x)) { }
  329.  
  330.       /// Copy constructor with alternative allocator
  331.       vector(const vector& __x, const allocator_type& __a)
  332.       : _Base(__x.size(), __a)
  333.       { this->_M_impl._M_finish =
  334.           std::__uninitialized_copy_a(__x.begin(), __x.end(),
  335.                                       this->_M_impl._M_start,
  336.                                       _M_get_Tp_allocator());
  337.       }
  338.  
  339.       /// Move constructor with alternative allocator
  340.       vector(vector&& __rv, const allocator_type& __m)
  341.       : _Base(std::move(__rv), __m)
  342.       {
  343.         if (__rv.get_allocator() != __m)
  344.           {
  345.             this->_M_impl._M_finish =
  346.               std::__uninitialized_move_a(__rv.begin(), __rv.end(),
  347.                                           this->_M_impl._M_start,
  348.                                           _M_get_Tp_allocator());
  349.             __rv.clear();
  350.           }
  351.       }
  352.  
  353.       /**
  354.        *  @brief  Builds a %vector from an initializer list.
  355.        *  @param  __l  An initializer_list.
  356.        *  @param  __a  An allocator.
  357.        *
  358.        *  Create a %vector consisting of copies of the elements in the
  359.        *  initializer_list @a __l.
  360.        *
  361.        *  This will call the element type's copy constructor N times
  362.        *  (where N is @a __l.size()) and do no memory reallocation.
  363.        */
  364.       vector(initializer_list<value_type> __l,
  365.              const allocator_type& __a = allocator_type())
  366.       : _Base(__a)
  367.       {
  368.         _M_range_initialize(__l.begin(), __l.end(),
  369.                             random_access_iterator_tag());
  370.       }
  371. #endif
  372.  
  373.       /**
  374.        *  @brief  Builds a %vector from a range.
  375.        *  @param  __first  An input iterator.
  376.        *  @param  __last  An input iterator.
  377.        *  @param  __a  An allocator.
  378.        *
  379.        *  Create a %vector consisting of copies of the elements from
  380.        *  [first,last).
  381.        *
  382.        *  If the iterators are forward, bidirectional, or
  383.        *  random-access, then this will call the elements' copy
  384.        *  constructor N times (where N is distance(first,last)) and do
  385.        *  no memory reallocation.  But if only input iterators are
  386.        *  used, then this will do at most 2N calls to the copy
  387.        *  constructor, and logN memory reallocations.
  388.        */
  389. #if __cplusplus >= 201103L
  390.       template<typename _InputIterator,
  391.                typename = std::_RequireInputIter<_InputIterator>>
  392.         vector(_InputIterator __first, _InputIterator __last,
  393.                const allocator_type& __a = allocator_type())
  394.         : _Base(__a)
  395.         { _M_initialize_dispatch(__first, __last, __false_type()); }
  396. #else
  397.       template<typename _InputIterator>
  398.         vector(_InputIterator __first, _InputIterator __last,
  399.                const allocator_type& __a = allocator_type())
  400.         : _Base(__a)
  401.         {
  402.           // Check whether it's an integral type.  If so, it's not an iterator.
  403.           typedef typename std::__is_integer<_InputIterator>::__type _Integral;
  404.           _M_initialize_dispatch(__first, __last, _Integral());
  405.         }
  406. #endif
  407.  
  408.       /**
  409.        *  The dtor only erases the elements, and note that if the
  410.        *  elements themselves are pointers, the pointed-to memory is
  411.        *  not touched in any way.  Managing the pointer is the user's
  412.        *  responsibility.
  413.        */
  414.       ~vector() _GLIBCXX_NOEXCEPT
  415.       { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
  416.                       _M_get_Tp_allocator()); }
  417.  
  418.       /**
  419.        *  @brief  %Vector assignment operator.
  420.        *  @param  __x  A %vector of identical element and allocator types.
  421.        *
  422.        *  All the elements of @a __x are copied, but any extra memory in
  423.        *  @a __x (for fast expansion) will not be copied.  Unlike the
  424.        *  copy constructor, the allocator object is not copied.
  425.        */
  426.       vector&
  427.       operator=(const vector& __x);
  428.  
  429. #if __cplusplus >= 201103L
  430.       /**
  431.        *  @brief  %Vector move assignment operator.
  432.        *  @param  __x  A %vector of identical element and allocator types.
  433.        *
  434.        *  The contents of @a __x are moved into this %vector (without copying,
  435.        *  if the allocators permit it).
  436.        *  @a __x is a valid, but unspecified %vector.
  437.        */
  438.       vector&
  439.       operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
  440.       {
  441.         constexpr bool __move_storage =
  442.           _Alloc_traits::_S_propagate_on_move_assign()
  443.           || _Alloc_traits::_S_always_equal();
  444.         _M_move_assign(std::move(__x),
  445.                        integral_constant<bool, __move_storage>());
  446.         return *this;
  447.       }
  448.  
  449.       /**
  450.        *  @brief  %Vector list assignment operator.
  451.        *  @param  __l  An initializer_list.
  452.        *
  453.        *  This function fills a %vector with copies of the elements in the
  454.        *  initializer list @a __l.
  455.        *
  456.        *  Note that the assignment completely changes the %vector and
  457.        *  that the resulting %vector's size is the same as the number
  458.        *  of elements assigned.  Old data may be lost.
  459.        */
  460.       vector&
  461.       operator=(initializer_list<value_type> __l)
  462.       {
  463.         this->assign(__l.begin(), __l.end());
  464.         return *this;
  465.       }
  466. #endif
  467.  
  468.       /**
  469.        *  @brief  Assigns a given value to a %vector.
  470.        *  @param  __n  Number of elements to be assigned.
  471.        *  @param  __val  Value to be assigned.
  472.        *
  473.        *  This function fills a %vector with @a __n copies of the given
  474.        *  value.  Note that the assignment completely changes the
  475.        *  %vector and that the resulting %vector's size is the same as
  476.        *  the number of elements assigned.  Old data may be lost.
  477.        */
  478.       void
  479.       assign(size_type __n, const value_type& __val)
  480.       { _M_fill_assign(__n, __val); }
  481.  
  482.       /**
  483.        *  @brief  Assigns a range to a %vector.
  484.        *  @param  __first  An input iterator.
  485.        *  @param  __last   An input iterator.
  486.        *
  487.        *  This function fills a %vector with copies of the elements in the
  488.        *  range [__first,__last).
  489.        *
  490.        *  Note that the assignment completely changes the %vector and
  491.        *  that the resulting %vector's size is the same as the number
  492.        *  of elements assigned.  Old data may be lost.
  493.        */
  494. #if __cplusplus >= 201103L
  495.       template<typename _InputIterator,
  496.                typename = std::_RequireInputIter<_InputIterator>>
  497.         void
  498.         assign(_InputIterator __first, _InputIterator __last)
  499.         { _M_assign_dispatch(__first, __last, __false_type()); }
  500. #else
  501.       template<typename _InputIterator>
  502.         void
  503.         assign(_InputIterator __first, _InputIterator __last)
  504.         {
  505.           // Check whether it's an integral type.  If so, it's not an iterator.
  506.           typedef typename std::__is_integer<_InputIterator>::__type _Integral;
  507.           _M_assign_dispatch(__first, __last, _Integral());
  508.         }
  509. #endif
  510.  
  511. #if __cplusplus >= 201103L
  512.       /**
  513.        *  @brief  Assigns an initializer list to a %vector.
  514.        *  @param  __l  An initializer_list.
  515.        *
  516.        *  This function fills a %vector with copies of the elements in the
  517.        *  initializer list @a __l.
  518.        *
  519.        *  Note that the assignment completely changes the %vector and
  520.        *  that the resulting %vector's size is the same as the number
  521.        *  of elements assigned.  Old data may be lost.
  522.        */
  523.       void
  524.       assign(initializer_list<value_type> __l)
  525.       { this->assign(__l.begin(), __l.end()); }
  526. #endif
  527.  
  528.       /// Get a copy of the memory allocation object.
  529.       using _Base::get_allocator;
  530.  
  531.       // iterators
  532.       /**
  533.        *  Returns a read/write iterator that points to the first
  534.        *  element in the %vector.  Iteration is done in ordinary
  535.        *  element order.
  536.        */
  537.       iterator
  538.       begin() _GLIBCXX_NOEXCEPT
  539.       { return iterator(this->_M_impl._M_start); }
  540.  
  541.       /**
  542.        *  Returns a read-only (constant) iterator that points to the
  543.        *  first element in the %vector.  Iteration is done in ordinary
  544.        *  element order.
  545.        */
  546.       const_iterator
  547.       begin() const _GLIBCXX_NOEXCEPT
  548.       { return const_iterator(this->_M_impl._M_start); }
  549.  
  550.       /**
  551.        *  Returns a read/write iterator that points one past the last
  552.        *  element in the %vector.  Iteration is done in ordinary
  553.        *  element order.
  554.        */
  555.       iterator
  556.       end() _GLIBCXX_NOEXCEPT
  557.       { return iterator(this->_M_impl._M_finish); }
  558.  
  559.       /**
  560.        *  Returns a read-only (constant) iterator that points one past
  561.        *  the last element in the %vector.  Iteration is done in
  562.        *  ordinary element order.
  563.        */
  564.       const_iterator
  565.       end() const _GLIBCXX_NOEXCEPT
  566.       { return const_iterator(this->_M_impl._M_finish); }
  567.  
  568.       /**
  569.        *  Returns a read/write reverse iterator that points to the
  570.        *  last element in the %vector.  Iteration is done in reverse
  571.        *  element order.
  572.        */
  573.       reverse_iterator
  574.       rbegin() _GLIBCXX_NOEXCEPT
  575.       { return reverse_iterator(end()); }
  576.  
  577.       /**
  578.        *  Returns a read-only (constant) reverse iterator that points
  579.        *  to the last element in the %vector.  Iteration is done in
  580.        *  reverse element order.
  581.        */
  582.       const_reverse_iterator
  583.       rbegin() const _GLIBCXX_NOEXCEPT
  584.       { return const_reverse_iterator(end()); }
  585.  
  586.       /**
  587.        *  Returns a read/write reverse iterator that points to one
  588.        *  before the first element in the %vector.  Iteration is done
  589.        *  in reverse element order.
  590.        */
  591.       reverse_iterator
  592.       rend() _GLIBCXX_NOEXCEPT
  593.       { return reverse_iterator(begin()); }
  594.  
  595.       /**
  596.        *  Returns a read-only (constant) reverse iterator that points
  597.        *  to one before the first element in the %vector.  Iteration
  598.        *  is done in reverse element order.
  599.        */
  600.       const_reverse_iterator
  601.       rend() const _GLIBCXX_NOEXCEPT
  602.       { return const_reverse_iterator(begin()); }
  603.  
  604. #if __cplusplus >= 201103L
  605.       /**
  606.        *  Returns a read-only (constant) iterator that points to the
  607.        *  first element in the %vector.  Iteration is done in ordinary
  608.        *  element order.
  609.        */
  610.       const_iterator
  611.       cbegin() const noexcept
  612.       { return const_iterator(this->_M_impl._M_start); }
  613.  
  614.       /**
  615.        *  Returns a read-only (constant) iterator that points one past
  616.        *  the last element in the %vector.  Iteration is done in
  617.        *  ordinary element order.
  618.        */
  619.       const_iterator
  620.       cend() const noexcept
  621.       { return const_iterator(this->_M_impl._M_finish); }
  622.  
  623.       /**
  624.        *  Returns a read-only (constant) reverse iterator that points
  625.        *  to the last element in the %vector.  Iteration is done in
  626.        *  reverse element order.
  627.        */
  628.       const_reverse_iterator
  629.       crbegin() const noexcept
  630.       { return const_reverse_iterator(end()); }
  631.  
  632.       /**
  633.        *  Returns a read-only (constant) reverse iterator that points
  634.        *  to one before the first element in the %vector.  Iteration
  635.        *  is done in reverse element order.
  636.        */
  637.       const_reverse_iterator
  638.       crend() const noexcept
  639.       { return const_reverse_iterator(begin()); }
  640. #endif
  641.  
  642.       // [23.2.4.2] capacity
  643.       /**  Returns the number of elements in the %vector.  */
  644.       size_type
  645.       size() const _GLIBCXX_NOEXCEPT
  646.       { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
  647.  
  648.       /**  Returns the size() of the largest possible %vector.  */
  649.       size_type
  650.       max_size() const _GLIBCXX_NOEXCEPT
  651.       { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
  652.  
  653. #if __cplusplus >= 201103L
  654.       /**
  655.        *  @brief  Resizes the %vector to the specified number of elements.
  656.        *  @param  __new_size  Number of elements the %vector should contain.
  657.        *
  658.        *  This function will %resize the %vector to the specified
  659.        *  number of elements.  If the number is smaller than the
  660.        *  %vector's current size the %vector is truncated, otherwise
  661.        *  default constructed elements are appended.
  662.        */
  663.       void
  664.       resize(size_type __new_size)
  665.       {
  666.         if (__new_size > size())
  667.           _M_default_append(__new_size - size());
  668.         else if (__new_size < size())
  669.           _M_erase_at_end(this->_M_impl._M_start + __new_size);
  670.       }
  671.  
  672.       /**
  673.        *  @brief  Resizes the %vector to the specified number of elements.
  674.        *  @param  __new_size  Number of elements the %vector should contain.
  675.        *  @param  __x  Data with which new elements should be populated.
  676.        *
  677.        *  This function will %resize the %vector to the specified
  678.        *  number of elements.  If the number is smaller than the
  679.        *  %vector's current size the %vector is truncated, otherwise
  680.        *  the %vector is extended and new elements are populated with
  681.        *  given data.
  682.        */
  683.       void
  684.       resize(size_type __new_size, const value_type& __x)
  685.       {
  686.         if (__new_size > size())
  687.           insert(end(), __new_size - size(), __x);
  688.         else if (__new_size < size())
  689.           _M_erase_at_end(this->_M_impl._M_start + __new_size);
  690.       }
  691. #else
  692.       /**
  693.        *  @brief  Resizes the %vector to the specified number of elements.
  694.        *  @param  __new_size  Number of elements the %vector should contain.
  695.        *  @param  __x  Data with which new elements should be populated.
  696.        *
  697.        *  This function will %resize the %vector to the specified
  698.        *  number of elements.  If the number is smaller than the
  699.        *  %vector's current size the %vector is truncated, otherwise
  700.        *  the %vector is extended and new elements are populated with
  701.        *  given data.
  702.        */
  703.       void
  704.       resize(size_type __new_size, value_type __x = value_type())
  705.       {
  706.         if (__new_size > size())
  707.           insert(end(), __new_size - size(), __x);
  708.         else if (__new_size < size())
  709.           _M_erase_at_end(this->_M_impl._M_start + __new_size);
  710.       }
  711. #endif
  712.  
  713. #if __cplusplus >= 201103L
  714.       /**  A non-binding request to reduce capacity() to size().  */
  715.       void
  716.       shrink_to_fit()
  717.       { _M_shrink_to_fit(); }
  718. #endif
  719.  
  720.       /**
  721.        *  Returns the total number of elements that the %vector can
  722.        *  hold before needing to allocate more memory.
  723.        */
  724.       size_type
  725.       capacity() const _GLIBCXX_NOEXCEPT
  726.       { return size_type(this->_M_impl._M_end_of_storage
  727.                          - this->_M_impl._M_start); }
  728.  
  729.       /**
  730.        *  Returns true if the %vector is empty.  (Thus begin() would
  731.        *  equal end().)
  732.        */
  733.       bool
  734.       empty() const _GLIBCXX_NOEXCEPT
  735.       { return begin() == end(); }
  736.  
  737.       /**
  738.        *  @brief  Attempt to preallocate enough memory for specified number of
  739.        *          elements.
  740.        *  @param  __n  Number of elements required.
  741.        *  @throw  std::length_error  If @a n exceeds @c max_size().
  742.        *
  743.        *  This function attempts to reserve enough memory for the
  744.        *  %vector to hold the specified number of elements.  If the
  745.        *  number requested is more than max_size(), length_error is
  746.        *  thrown.
  747.        *
  748.        *  The advantage of this function is that if optimal code is a
  749.        *  necessity and the user can determine the number of elements
  750.        *  that will be required, the user can reserve the memory in
  751.        *  %advance, and thus prevent a possible reallocation of memory
  752.        *  and copying of %vector data.
  753.        */
  754.       void
  755.       reserve(size_type __n);
  756.  
  757.       // element access
  758.       /**
  759.        *  @brief  Subscript access to the data contained in the %vector.
  760.        *  @param __n The index of the element for which data should be
  761.        *  accessed.
  762.        *  @return  Read/write reference to data.
  763.        *
  764.        *  This operator allows for easy, array-style, data access.
  765.        *  Note that data access with this operator is unchecked and
  766.        *  out_of_range lookups are not defined. (For checked lookups
  767.        *  see at().)
  768.        */
  769.       reference
  770.       operator[](size_type __n)
  771.       { return *(this->_M_impl._M_start + __n); }
  772.  
  773.       /**
  774.        *  @brief  Subscript access to the data contained in the %vector.
  775.        *  @param __n The index of the element for which data should be
  776.        *  accessed.
  777.        *  @return  Read-only (constant) reference to data.
  778.        *
  779.        *  This operator allows for easy, array-style, data access.
  780.        *  Note that data access with this operator is unchecked and
  781.        *  out_of_range lookups are not defined. (For checked lookups
  782.        *  see at().)
  783.        */
  784.       const_reference
  785.       operator[](size_type __n) const
  786.       { return *(this->_M_impl._M_start + __n); }
  787.  
  788.     protected:
  789.       /// Safety check used only from at().
  790.       void
  791.       _M_range_check(size_type __n) const
  792.       {
  793.         if (__n >= this->size())
  794.           __throw_out_of_range(__N("vector::_M_range_check"));
  795.       }
  796.  
  797.     public:
  798.       /**
  799.        *  @brief  Provides access to the data contained in the %vector.
  800.        *  @param __n The index of the element for which data should be
  801.        *  accessed.
  802.        *  @return  Read/write reference to data.
  803.        *  @throw  std::out_of_range  If @a __n is an invalid index.
  804.        *
  805.        *  This function provides for safer data access.  The parameter
  806.        *  is first checked that it is in the range of the vector.  The
  807.        *  function throws out_of_range if the check fails.
  808.        */
  809.       reference
  810.       at(size_type __n)
  811.       {
  812.         _M_range_check(__n);
  813.         return (*this)[__n];
  814.       }
  815.  
  816.       /**
  817.        *  @brief  Provides access to the data contained in the %vector.
  818.        *  @param __n The index of the element for which data should be
  819.        *  accessed.
  820.        *  @return  Read-only (constant) reference to data.
  821.        *  @throw  std::out_of_range  If @a __n is an invalid index.
  822.        *
  823.        *  This function provides for safer data access.  The parameter
  824.        *  is first checked that it is in the range of the vector.  The
  825.        *  function throws out_of_range if the check fails.
  826.        */
  827.       const_reference
  828.       at(size_type __n) const
  829.       {
  830.         _M_range_check(__n);
  831.         return (*this)[__n];
  832.       }
  833.  
  834.       /**
  835.        *  Returns a read/write reference to the data at the first
  836.        *  element of the %vector.
  837.        */
  838.       reference
  839.       front()
  840.       { return *begin(); }
  841.  
  842.       /**
  843.        *  Returns a read-only (constant) reference to the data at the first
  844.        *  element of the %vector.
  845.        */
  846.       const_reference
  847.       front() const
  848.       { return *begin(); }
  849.  
  850.       /**
  851.        *  Returns a read/write reference to the data at the last
  852.        *  element of the %vector.
  853.        */
  854.       reference
  855.       back()
  856.       { return *(end() - 1); }
  857.      
  858.       /**
  859.        *  Returns a read-only (constant) reference to the data at the
  860.        *  last element of the %vector.
  861.        */
  862.       const_reference
  863.       back() const
  864.       { return *(end() - 1); }
  865.  
  866.       // _GLIBCXX_RESOLVE_LIB_DEFECTS
  867.       // DR 464. Suggestion for new member functions in standard containers.
  868.       // data access
  869.       /**
  870.        *   Returns a pointer such that [data(), data() + size()) is a valid
  871.        *   range.  For a non-empty %vector, data() == &front().
  872.        */
  873. #if __cplusplus >= 201103L
  874.       _Tp*
  875. #else
  876.       pointer
  877. #endif
  878.       data() _GLIBCXX_NOEXCEPT
  879.       { return std::__addressof(front()); }
  880.  
  881. #if __cplusplus >= 201103L
  882.       const _Tp*
  883. #else
  884.       const_pointer
  885. #endif
  886.       data() const _GLIBCXX_NOEXCEPT
  887.       { return std::__addressof(front()); }
  888.  
  889.       // [23.2.4.3] modifiers
  890.       /**
  891.        *  @brief  Add data to the end of the %vector.
  892.        *  @param  __x  Data to be added.
  893.        *
  894.        *  This is a typical stack operation.  The function creates an
  895.        *  element at the end of the %vector and assigns the given data
  896.        *  to it.  Due to the nature of a %vector this operation can be
  897.        *  done in constant time if the %vector has preallocated space
  898.        *  available.
  899.        */
  900.       void
  901.       push_back(const value_type& __x)
  902.       {
  903.         if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
  904.           {
  905.             _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
  906.                                      __x);
  907.             ++this->_M_impl._M_finish;
  908.           }
  909.         else
  910. #if __cplusplus >= 201103L
  911.           _M_emplace_back_aux(__x);
  912. #else
  913.           _M_insert_aux(end(), __x);
  914. #endif
  915.       }
  916.  
  917. #if __cplusplus >= 201103L
  918.       void
  919.       push_back(value_type&& __x)
  920.       { emplace_back(std::move(__x)); }
  921.  
  922.       template<typename... _Args>
  923.         void
  924.         emplace_back(_Args&&... __args);
  925. #endif
  926.  
  927.       /**
  928.        *  @brief  Removes last element.
  929.        *
  930.        *  This is a typical stack operation. It shrinks the %vector by one.
  931.        *
  932.        *  Note that no data is returned, and if the last element's
  933.        *  data is needed, it should be retrieved before pop_back() is
  934.        *  called.
  935.        */
  936.       void
  937.       pop_back()
  938.       {
  939.         --this->_M_impl._M_finish;
  940.         _Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
  941.       }
  942.  
  943. #if __cplusplus >= 201103L
  944.       /**
  945.        *  @brief  Inserts an object in %vector before specified iterator.
  946.        *  @param  __position  An iterator into the %vector.
  947.        *  @param  __args  Arguments.
  948.        *  @return  An iterator that points to the inserted data.
  949.        *
  950.        *  This function will insert an object of type T constructed
  951.        *  with T(std::forward<Args>(args)...) before the specified location.
  952.        *  Note that this kind of operation could be expensive for a %vector
  953.        *  and if it is frequently used the user should consider using
  954.        *  std::list.
  955.        */
  956.       template<typename... _Args>
  957.         iterator
  958.         emplace(iterator __position, _Args&&... __args);
  959. #endif
  960.  
  961.       /**
  962.        *  @brief  Inserts given value into %vector before specified iterator.
  963.        *  @param  __position  An iterator into the %vector.
  964.        *  @param  __x  Data to be inserted.
  965.        *  @return  An iterator that points to the inserted data.
  966.        *
  967.        *  This function will insert a copy of the given value before
  968.        *  the specified location.  Note that this kind of operation
  969.        *  could be expensive for a %vector and if it is frequently
  970.        *  used the user should consider using std::list.
  971.        */
  972.       iterator
  973.       insert(iterator __position, const value_type& __x);
  974.  
  975. #if __cplusplus >= 201103L
  976.       /**
  977.        *  @brief  Inserts given rvalue into %vector before specified iterator.
  978.        *  @param  __position  An iterator into the %vector.
  979.        *  @param  __x  Data to be inserted.
  980.        *  @return  An iterator that points to the inserted data.
  981.        *
  982.        *  This function will insert a copy of the given rvalue before
  983.        *  the specified location.  Note that this kind of operation
  984.        *  could be expensive for a %vector and if it is frequently
  985.        *  used the user should consider using std::list.
  986.        */
  987.       iterator
  988.       insert(iterator __position, value_type&& __x)
  989.       { return emplace(__position, std::move(__x)); }
  990.  
  991.       /**
  992.        *  @brief  Inserts an initializer_list into the %vector.
  993.        *  @param  __position  An iterator into the %vector.
  994.        *  @param  __l  An initializer_list.
  995.        *
  996.        *  This function will insert copies of the data in the
  997.        *  initializer_list @a l into the %vector before the location
  998.        *  specified by @a position.
  999.        *
  1000.        *  Note that this kind of operation could be expensive for a
  1001.        *  %vector and if it is frequently used the user should
  1002.        *  consider using std::list.
  1003.        */
  1004.       void
  1005.       insert(iterator __position, initializer_list<value_type> __l)
  1006.       { this->insert(__position, __l.begin(), __l.end()); }
  1007. #endif
  1008.  
  1009.       /**
  1010.        *  @brief  Inserts a number of copies of given data into the %vector.
  1011.        *  @param  __position  An iterator into the %vector.
  1012.        *  @param  __n  Number of elements to be inserted.
  1013.        *  @param  __x  Data to be inserted.
  1014.        *
  1015.        *  This function will insert a specified number of copies of
  1016.        *  the given data before the location specified by @a position.
  1017.        *
  1018.        *  Note that this kind of operation could be expensive for a
  1019.        *  %vector and if it is frequently used the user should
  1020.        *  consider using std::list.
  1021.        */
  1022.       void
  1023.       insert(iterator __position, size_type __n, const value_type& __x)
  1024.       { _M_fill_insert(__position, __n, __x); }
  1025.  
  1026.       /**
  1027.        *  @brief  Inserts a range into the %vector.
  1028.        *  @param  __position  An iterator into the %vector.
  1029.        *  @param  __first  An input iterator.
  1030.        *  @param  __last   An input iterator.
  1031.        *
  1032.        *  This function will insert copies of the data in the range
  1033.        *  [__first,__last) into the %vector before the location specified
  1034.        *  by @a pos.
  1035.        *
  1036.        *  Note that this kind of operation could be expensive for a
  1037.        *  %vector and if it is frequently used the user should
  1038.        *  consider using std::list.
  1039.        */
  1040. #if __cplusplus >= 201103L
  1041.       template<typename _InputIterator,
  1042.                typename = std::_RequireInputIter<_InputIterator>>
  1043.         void
  1044.         insert(iterator __position, _InputIterator __first,
  1045.                _InputIterator __last)
  1046.         { _M_insert_dispatch(__position, __first, __last, __false_type()); }
  1047. #else
  1048.       template<typename _InputIterator>
  1049.         void
  1050.         insert(iterator __position, _InputIterator __first,
  1051.                _InputIterator __last)
  1052.         {
  1053.           // Check whether it's an integral type.  If so, it's not an iterator.
  1054.           typedef typename std::__is_integer<_InputIterator>::__type _Integral;
  1055.           _M_insert_dispatch(__position, __first, __last, _Integral());
  1056.         }
  1057. #endif
  1058.  
  1059.       /**
  1060.        *  @brief  Remove element at given position.
  1061.        *  @param  __position  Iterator pointing to element to be erased.
  1062.        *  @return  An iterator pointing to the next element (or end()).
  1063.        *
  1064.        *  This function will erase the element at the given position and thus
  1065.        *  shorten the %vector by one.
  1066.        *
  1067.        *  Note This operation could be expensive and if it is
  1068.        *  frequently used the user should consider using std::list.
  1069.        *  The user is also cautioned that this function only erases
  1070.        *  the element, and that if the element is itself a pointer,
  1071.        *  the pointed-to memory is not touched in any way.  Managing
  1072.        *  the pointer is the user's responsibility.
  1073.        */
  1074.       iterator
  1075.       erase(iterator __position);
  1076.  
  1077.       /**
  1078.        *  @brief  Remove a range of elements.
  1079.        *  @param  __first  Iterator pointing to the first element to be erased.
  1080.        *  @param  __last  Iterator pointing to one past the last element to be
  1081.        *                  erased.
  1082.        *  @return  An iterator pointing to the element pointed to by @a __last
  1083.        *           prior to erasing (or end()).
  1084.        *
  1085.        *  This function will erase the elements in the range
  1086.        *  [__first,__last) and shorten the %vector accordingly.
  1087.        *
  1088.        *  Note This operation could be expensive and if it is
  1089.        *  frequently used the user should consider using std::list.
  1090.        *  The user is also cautioned that this function only erases
  1091.        *  the elements, and that if the elements themselves are
  1092.        *  pointers, the pointed-to memory is not touched in any way.
  1093.        *  Managing the pointer is the user's responsibility.
  1094.        */
  1095.       iterator
  1096.       erase(iterator __first, iterator __last);
  1097.  
  1098.       /**
  1099.        *  @brief  Swaps data with another %vector.
  1100.        *  @param  __x  A %vector of the same element and allocator types.
  1101.        *
  1102.        *  This exchanges the elements between two vectors in constant time.
  1103.        *  (Three pointers, so it should be quite fast.)
  1104.        *  Note that the global std::swap() function is specialized such that
  1105.        *  std::swap(v1,v2) will feed to this function.
  1106.        */
  1107.       void
  1108.       swap(vector& __x)
  1109. #if __cplusplus >= 201103L
  1110.                         noexcept(_Alloc_traits::_S_nothrow_swap())
  1111. #endif
  1112.       {
  1113.         this->_M_impl._M_swap_data(__x._M_impl);
  1114.         _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
  1115.                                   __x._M_get_Tp_allocator());
  1116.       }
  1117.  
  1118.       /**
  1119.        *  Erases all the elements.  Note that this function only erases the
  1120.        *  elements, and that if the elements themselves are pointers, the
  1121.        *  pointed-to memory is not touched in any way.  Managing the pointer is
  1122.        *  the user's responsibility.
  1123.        */
  1124.       void
  1125.       clear() _GLIBCXX_NOEXCEPT
  1126.       { _M_erase_at_end(this->_M_impl._M_start); }
  1127.  
  1128.     protected:
  1129.       /**
  1130.        *  Memory expansion handler.  Uses the member allocation function to
  1131.        *  obtain @a n bytes of memory, and then copies [first,last) into it.
  1132.        */
  1133.       template<typename _ForwardIterator>
  1134.         pointer
  1135.         _M_allocate_and_copy(size_type __n,
  1136.                              _ForwardIterator __first, _ForwardIterator __last)
  1137.         {
  1138.           pointer __result = this->_M_allocate(__n);
  1139.           __try
  1140.             {
  1141.               std::__uninitialized_copy_a(__first, __last, __result,
  1142.                                           _M_get_Tp_allocator());
  1143.               return __result;
  1144.             }
  1145.           __catch(...)
  1146.             {
  1147.               _M_deallocate(__result, __n);
  1148.               __throw_exception_again;
  1149.             }
  1150.         }
  1151.  
  1152.  
  1153.       // Internal constructor functions follow.
  1154.  
  1155.       // Called by the range constructor to implement [23.1.1]/9
  1156.  
  1157.       // _GLIBCXX_RESOLVE_LIB_DEFECTS
  1158.       // 438. Ambiguity in the "do the right thing" clause
  1159.       template<typename _Integer>
  1160.         void
  1161.         _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
  1162.         {
  1163.           this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
  1164.           this->_M_impl._M_end_of_storage =
  1165.             this->_M_impl._M_start + static_cast<size_type>(__n);
  1166.           _M_fill_initialize(static_cast<size_type>(__n), __value);
  1167.         }
  1168.  
  1169.       // Called by the range constructor to implement [23.1.1]/9
  1170.       template<typename _InputIterator>
  1171.         void
  1172.         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
  1173.                                __false_type)
  1174.         {
  1175.           typedef typename std::iterator_traits<_InputIterator>::
  1176.             iterator_category _IterCategory;
  1177.           _M_range_initialize(__first, __last, _IterCategory());
  1178.         }
  1179.  
  1180.       // Called by the second initialize_dispatch above
  1181.       template<typename _InputIterator>
  1182.         void
  1183.         _M_range_initialize(_InputIterator __first,
  1184.                             _InputIterator __last, std::input_iterator_tag)
  1185.         {
  1186.           for (; __first != __last; ++__first)
  1187. #if __cplusplus >= 201103L
  1188.             emplace_back(*__first);
  1189. #else
  1190.             push_back(*__first);
  1191. #endif
  1192.         }
  1193.  
  1194.       // Called by the second initialize_dispatch above
  1195.       template<typename _ForwardIterator>
  1196.         void
  1197.         _M_range_initialize(_ForwardIterator __first,
  1198.                             _ForwardIterator __last, std::forward_iterator_tag)
  1199.         {
  1200.           const size_type __n = std::distance(__first, __last);
  1201.           this->_M_impl._M_start = this->_M_allocate(__n);
  1202.           this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
  1203.           this->_M_impl._M_finish =
  1204.             std::__uninitialized_copy_a(__first, __last,
  1205.                                         this->_M_impl._M_start,
  1206.                                         _M_get_Tp_allocator());
  1207.         }
  1208.  
  1209.       // Called by the first initialize_dispatch above and by the
  1210.       // vector(n,value,a) constructor.
  1211.       void
  1212.       _M_fill_initialize(size_type __n, const value_type& __value)
  1213.       {
  1214.         std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
  1215.                                       _M_get_Tp_allocator());
  1216.         this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
  1217.       }
  1218.  
  1219. #if __cplusplus >= 201103L
  1220.       // Called by the vector(n) constructor.
  1221.       void
  1222.       _M_default_initialize(size_type __n)
  1223.       {
  1224.         std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
  1225.                                          _M_get_Tp_allocator());
  1226.         this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
  1227.       }
  1228. #endif
  1229.  
  1230.       // Internal assign functions follow.  The *_aux functions do the actual
  1231.       // assignment work for the range versions.
  1232.  
  1233.       // Called by the range assign to implement [23.1.1]/9
  1234.  
  1235.       // _GLIBCXX_RESOLVE_LIB_DEFECTS
  1236.       // 438. Ambiguity in the "do the right thing" clause
  1237.       template<typename _Integer>
  1238.         void
  1239.         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
  1240.         { _M_fill_assign(__n, __val); }
  1241.  
  1242.       // Called by the range assign to implement [23.1.1]/9
  1243.       template<typename _InputIterator>
  1244.         void
  1245.         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
  1246.                            __false_type)
  1247.         {
  1248.           typedef typename std::iterator_traits<_InputIterator>::
  1249.             iterator_category _IterCategory;
  1250.           _M_assign_aux(__first, __last, _IterCategory());
  1251.         }
  1252.  
  1253.       // Called by the second assign_dispatch above
  1254.       template<typename _InputIterator>
  1255.         void
  1256.         _M_assign_aux(_InputIterator __first, _InputIterator __last,
  1257.                       std::input_iterator_tag);
  1258.  
  1259.       // Called by the second assign_dispatch above
  1260.       template<typename _ForwardIterator>
  1261.         void
  1262.         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
  1263.                       std::forward_iterator_tag);
  1264.  
  1265.       // Called by assign(n,t), and the range assign when it turns out
  1266.       // to be the same thing.
  1267.       void
  1268.       _M_fill_assign(size_type __n, const value_type& __val);
  1269.  
  1270.  
  1271.       // Internal insert functions follow.
  1272.  
  1273.       // Called by the range insert to implement [23.1.1]/9
  1274.  
  1275.       // _GLIBCXX_RESOLVE_LIB_DEFECTS
  1276.       // 438. Ambiguity in the "do the right thing" clause
  1277.       template<typename _Integer>
  1278.         void
  1279.         _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
  1280.                            __true_type)
  1281.         { _M_fill_insert(__pos, __n, __val); }
  1282.  
  1283.       // Called by the range insert to implement [23.1.1]/9
  1284.       template<typename _InputIterator>
  1285.         void
  1286.         _M_insert_dispatch(iterator __pos, _InputIterator __first,
  1287.                            _InputIterator __last, __false_type)
  1288.         {
  1289.           typedef typename std::iterator_traits<_InputIterator>::
  1290.             iterator_category _IterCategory;
  1291.           _M_range_insert(__pos, __first, __last, _IterCategory());
  1292.         }
  1293.  
  1294.       // Called by the second insert_dispatch above
  1295.       template<typename _InputIterator>
  1296.         void
  1297.         _M_range_insert(iterator __pos, _InputIterator __first,
  1298.                         _InputIterator __last, std::input_iterator_tag);
  1299.  
  1300.       // Called by the second insert_dispatch above
  1301.       template<typename _ForwardIterator>
  1302.         void
  1303.         _M_range_insert(iterator __pos, _ForwardIterator __first,
  1304.                         _ForwardIterator __last, std::forward_iterator_tag);
  1305.  
  1306.       // Called by insert(p,n,x), and the range insert when it turns out to be
  1307.       // the same thing.
  1308.       void
  1309.       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
  1310.  
  1311. #if __cplusplus >= 201103L
  1312.       // Called by resize(n).
  1313.       void
  1314.       _M_default_append(size_type __n);
  1315.  
  1316.       bool
  1317.       _M_shrink_to_fit();
  1318. #endif
  1319.  
  1320.       // Called by insert(p,x)
  1321. #if __cplusplus < 201103L
  1322.       void
  1323.       _M_insert_aux(iterator __position, const value_type& __x);
  1324. #else
  1325.       template<typename... _Args>
  1326.         void
  1327.         _M_insert_aux(iterator __position, _Args&&... __args);
  1328.  
  1329.       template<typename... _Args>
  1330.         void
  1331.         _M_emplace_back_aux(_Args&&... __args);
  1332. #endif
  1333.  
  1334.       // Called by the latter.
  1335.       size_type
  1336.       _M_check_len(size_type __n, const char* __s) const
  1337.       {
  1338.         if (max_size() - size() < __n)
  1339.           __throw_length_error(__N(__s));
  1340.  
  1341.         const size_type __len = size() + std::max(size(), __n);
  1342.         return (__len < size() || __len > max_size()) ? max_size() : __len;
  1343.       }
  1344.  
  1345.       // Internal erase functions follow.
  1346.  
  1347.       // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
  1348.       // _M_assign_aux.
  1349.       void
  1350.       _M_erase_at_end(pointer __pos)
  1351.       {
  1352.         std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
  1353.         this->_M_impl._M_finish = __pos;
  1354.       }
  1355.  
  1356. #if __cplusplus >= 201103L
  1357.     private:
  1358.       // Constant-time move assignment when source object's memory can be
  1359.       // moved, either because the source's allocator will move too
  1360.       // or because the allocators are equal.
  1361.       void
  1362.       _M_move_assign(vector&& __x, std::true_type) noexcept
  1363.       {
  1364.         const vector __tmp(std::move(*this));
  1365.         this->_M_impl._M_swap_data(__x._M_impl);
  1366.         if (_Alloc_traits::_S_propagate_on_move_assign())
  1367.           std::__alloc_on_move(_M_get_Tp_allocator(),
  1368.                                __x._M_get_Tp_allocator());
  1369.       }
  1370.  
  1371.       // Do move assignment when it might not be possible to move source
  1372.       // object's memory, resulting in a linear-time operation.
  1373.       void
  1374.       _M_move_assign(vector&& __x, std::false_type)
  1375.       {
  1376.         if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
  1377.           _M_move_assign(std::move(__x), std::true_type());
  1378.         else
  1379.           {
  1380.             // The rvalue's allocator cannot be moved and is not equal,
  1381.             // so we need to individually move each element.
  1382.             this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
  1383.                          std::__make_move_if_noexcept_iterator(__x.end()));
  1384.             __x.clear();
  1385.           }
  1386.       }
  1387. #endif
  1388.     };
  1389.  
  1390.  
  1391.   /**
  1392.    *  @brief  Vector equality comparison.
  1393.    *  @param  __x  A %vector.
  1394.    *  @param  __y  A %vector of the same type as @a __x.
  1395.    *  @return  True iff the size and elements of the vectors are equal.
  1396.    *
  1397.    *  This is an equivalence relation.  It is linear in the size of the
  1398.    *  vectors.  Vectors are considered equivalent if their sizes are equal,
  1399.    *  and if corresponding elements compare equal.
  1400.   */
  1401.   template<typename _Tp, typename _Alloc>
  1402.     inline bool
  1403.     operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
  1404.     { return (__x.size() == __y.size()
  1405.               && std::equal(__x.begin(), __x.end(), __y.begin())); }
  1406.  
  1407.   /**
  1408.    *  @brief  Vector ordering relation.
  1409.    *  @param  __x  A %vector.
  1410.    *  @param  __y  A %vector of the same type as @a __x.
  1411.    *  @return  True iff @a __x is lexicographically less than @a __y.
  1412.    *
  1413.    *  This is a total ordering relation.  It is linear in the size of the
  1414.    *  vectors.  The elements must be comparable with @c <.
  1415.    *
  1416.    *  See std::lexicographical_compare() for how the determination is made.
  1417.   */
  1418.   template<typename _Tp, typename _Alloc>
  1419.     inline bool
  1420.     operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
  1421.     { return std::lexicographical_compare(__x.begin(), __x.end(),
  1422.                                           __y.begin(), __y.end()); }
  1423.  
  1424.   /// Based on operator==
  1425.   template<typename _Tp, typename _Alloc>
  1426.     inline bool
  1427.     operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
  1428.     { return !(__x == __y); }
  1429.  
  1430.   /// Based on operator<
  1431.   template<typename _Tp, typename _Alloc>
  1432.     inline bool
  1433.     operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
  1434.     { return __y < __x; }
  1435.  
  1436.   /// Based on operator<
  1437.   template<typename _Tp, typename _Alloc>
  1438.     inline bool
  1439.     operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
  1440.     { return !(__y < __x); }
  1441.  
  1442.   /// Based on operator<
  1443.   template<typename _Tp, typename _Alloc>
  1444.     inline bool
  1445.     operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
  1446.     { return !(__x < __y); }
  1447.  
  1448.   /// See std::vector::swap().
  1449.   template<typename _Tp, typename _Alloc>
  1450.     inline void
  1451.     swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
  1452.     { __x.swap(__y); }
  1453.  
  1454. _GLIBCXX_END_NAMESPACE_CONTAINER
  1455. } // namespace std
  1456.  
  1457. #endif /* _STL_VECTOR_H */
  1458.