Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
  3.  * Copyright (c) 2002 Fabrice Bellard
  4.  *
  5.  * This file is part of libswresample
  6.  *
  7.  * libswresample is free software; you can redistribute it and/or modify
  8.  * it under the terms of the GNU General Public License as published by
  9.  * the Free Software Foundation; either version 2 of the License, or
  10.  * (at your option) any later version.
  11.  *
  12.  * libswresample is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.  * GNU General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU General Public License
  18.  * along with libswresample; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. #include "libavutil/avassert.h"
  23. #include "libavutil/channel_layout.h"
  24. #include "libavutil/common.h"
  25. #include "libavutil/opt.h"
  26. #include "swresample.h"
  27.  
  28. #undef time
  29. #include "time.h"
  30. #undef fprintf
  31.  
  32. #define SAMPLES 1000
  33.  
  34. #define ASSERT_LEVEL 2
  35.  
  36. static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){
  37.     const uint8_t *p;
  38.     if(av_sample_fmt_is_planar(f)){
  39.         f= av_get_alt_sample_fmt(f, 0);
  40.         p= a[ch];
  41.     }else{
  42.         p= a[0];
  43.         index= ch + index*ch_count;
  44.     }
  45.  
  46.     switch(f){
  47.     case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0;
  48.     case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0;
  49.     case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0;
  50.     case AV_SAMPLE_FMT_FLT: return ((const float  *)p)[index];
  51.     case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index];
  52.     default: av_assert0(0);
  53.     }
  54. }
  55.  
  56. static void  set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){
  57.     uint8_t *p;
  58.     if(av_sample_fmt_is_planar(f)){
  59.         f= av_get_alt_sample_fmt(f, 0);
  60.         p= a[ch];
  61.     }else{
  62.         p= a[0];
  63.         index= ch + index*ch_count;
  64.     }
  65.     switch(f){
  66.     case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127));     break;
  67.     case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767));         break;
  68.     case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647));   break;
  69.     case AV_SAMPLE_FMT_FLT: ((float  *)p)[index]= v;                                      break;
  70.     case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v;                                      break;
  71.     default: av_assert2(0);
  72.     }
  73. }
  74.  
  75. static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){
  76.     int ch;
  77.  
  78.     if(av_sample_fmt_is_planar(f)){
  79.         f= av_get_alt_sample_fmt(f, 0);
  80.         for(ch= 0; ch<ch_count; ch++)
  81.             a[ch] += index*av_get_bytes_per_sample(f);
  82.     }else{
  83.         a[0] += index*ch_count*av_get_bytes_per_sample(f);
  84.     }
  85. }
  86.  
  87. static const enum AVSampleFormat formats[] = {
  88.     AV_SAMPLE_FMT_S16,
  89.     AV_SAMPLE_FMT_FLTP,
  90.     AV_SAMPLE_FMT_S16P,
  91.     AV_SAMPLE_FMT_FLT,
  92.     AV_SAMPLE_FMT_S32P,
  93.     AV_SAMPLE_FMT_S32,
  94.     AV_SAMPLE_FMT_U8P,
  95.     AV_SAMPLE_FMT_U8,
  96.     AV_SAMPLE_FMT_DBLP,
  97.     AV_SAMPLE_FMT_DBL,
  98. };
  99.  
  100. static const int rates[] = {
  101.     8000,
  102.     11025,
  103.     16000,
  104.     22050,
  105.     32000,
  106.     48000,
  107. };
  108.  
  109. uint64_t layouts[]={
  110.     AV_CH_LAYOUT_MONO                    ,
  111.     AV_CH_LAYOUT_STEREO                  ,
  112.     AV_CH_LAYOUT_2_1                     ,
  113.     AV_CH_LAYOUT_SURROUND                ,
  114.     AV_CH_LAYOUT_4POINT0                 ,
  115.     AV_CH_LAYOUT_2_2                     ,
  116.     AV_CH_LAYOUT_QUAD                    ,
  117.     AV_CH_LAYOUT_5POINT0                 ,
  118.     AV_CH_LAYOUT_5POINT1                 ,
  119.     AV_CH_LAYOUT_5POINT0_BACK            ,
  120.     AV_CH_LAYOUT_5POINT1_BACK            ,
  121.     AV_CH_LAYOUT_7POINT0                 ,
  122.     AV_CH_LAYOUT_7POINT1                 ,
  123.     AV_CH_LAYOUT_7POINT1_WIDE            ,
  124. };
  125.  
  126. static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){
  127.     if(av_sample_fmt_is_planar(format)){
  128.         int i;
  129.         int plane_size= av_get_bytes_per_sample(format&0xFF)*samples;
  130.         format&=0xFF;
  131.         for(i=0; i<SWR_CH_MAX; i++){
  132.             out[i]= in + i*plane_size;
  133.         }
  134.     }else{
  135.         out[0]= in;
  136.     }
  137. }
  138.  
  139. static int cmp(const int *a, const int *b){
  140.     return *a - *b;
  141. }
  142.  
  143. static void audiogen(void *data, enum AVSampleFormat sample_fmt,
  144.                      int channels, int sample_rate, int nb_samples)
  145. {
  146.     int i, ch, k;
  147.     double v, f, a, ampa;
  148.     double tabf1[SWR_CH_MAX];
  149.     double tabf2[SWR_CH_MAX];
  150.     double taba[SWR_CH_MAX];
  151.     unsigned static rnd;
  152.  
  153. #define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v);
  154. #define uint_rand(x) (x = x * 1664525 + 1013904223)
  155. #define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1)
  156.     k = 0;
  157.  
  158.     /* 1 second of single freq sinus at 1000 Hz */
  159.     a = 0;
  160.     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
  161.         v = sin(a) * 0.30;
  162.         for (ch = 0; ch < channels; ch++)
  163.             PUT_SAMPLE
  164.         a += M_PI * 1000.0 * 2.0 / sample_rate;
  165.     }
  166.  
  167.     /* 1 second of varing frequency between 100 and 10000 Hz */
  168.     a = 0;
  169.     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
  170.         v = sin(a) * 0.30;
  171.         for (ch = 0; ch < channels; ch++)
  172.             PUT_SAMPLE
  173.         f  = 100.0 + (((10000.0 - 100.0) * i) / sample_rate);
  174.         a += M_PI * f * 2.0 / sample_rate;
  175.     }
  176.  
  177.     /* 0.5 second of low amplitude white noise */
  178.     for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
  179.         v = dbl_rand(rnd) * 0.30;
  180.         for (ch = 0; ch < channels; ch++)
  181.             PUT_SAMPLE
  182.     }
  183.  
  184.     /* 0.5 second of high amplitude white noise */
  185.     for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
  186.         v = dbl_rand(rnd);
  187.         for (ch = 0; ch < channels; ch++)
  188.             PUT_SAMPLE
  189.     }
  190.  
  191.     /* 1 second of unrelated ramps for each channel */
  192.     for (ch = 0; ch < channels; ch++) {
  193.         taba[ch]  = 0;
  194.         tabf1[ch] = 100 + uint_rand(rnd) % 5000;
  195.         tabf2[ch] = 100 + uint_rand(rnd) % 5000;
  196.     }
  197.     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
  198.         for (ch = 0; ch < channels; ch++) {
  199.             v = sin(taba[ch]) * 0.30;
  200.             PUT_SAMPLE
  201.             f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate);
  202.             taba[ch] += M_PI * f * 2.0 / sample_rate;
  203.         }
  204.     }
  205.  
  206.     /* 2 seconds of 500 Hz with varying volume */
  207.     a    = 0;
  208.     ampa = 0;
  209.     for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) {
  210.         for (ch = 0; ch < channels; ch++) {
  211.             double amp = (1.0 + sin(ampa)) * 0.15;
  212.             if (ch & 1)
  213.                 amp = 0.30 - amp;
  214.             v = sin(a) * amp;
  215.             PUT_SAMPLE
  216.             a    += M_PI * 500.0 * 2.0 / sample_rate;
  217.             ampa += M_PI *  2.0 / sample_rate;
  218.         }
  219.     }
  220. }
  221.  
  222. int main(int argc, char **argv){
  223.     int in_sample_rate, out_sample_rate, ch ,i, flush_count;
  224.     uint64_t in_ch_layout, out_ch_layout;
  225.     enum AVSampleFormat in_sample_fmt, out_sample_fmt;
  226.     uint8_t array_in[SAMPLES*8*8];
  227.     uint8_t array_mid[SAMPLES*8*8*3];
  228.     uint8_t array_out[SAMPLES*8*8+100];
  229.     uint8_t *ain[SWR_CH_MAX];
  230.     uint8_t *aout[SWR_CH_MAX];
  231.     uint8_t *amid[SWR_CH_MAX];
  232.     int flush_i=0;
  233.     int mode;
  234.     int num_tests = 10000;
  235.     uint32_t seed = 0;
  236.     uint32_t rand_seed = 0;
  237.     int remaining_tests[FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats)];
  238.     int max_tests = FF_ARRAY_ELEMS(remaining_tests);
  239.     int test;
  240.     int specific_test= -1;
  241.  
  242.     struct SwrContext * forw_ctx= NULL;
  243.     struct SwrContext *backw_ctx= NULL;
  244.  
  245.     if (argc > 1) {
  246.         if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
  247.             av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]]  \n"
  248.                    "num_tests           Default is %d\n", num_tests);
  249.             return 0;
  250.         }
  251.         num_tests = strtol(argv[1], NULL, 0);
  252.         if(num_tests < 0) {
  253.             num_tests = -num_tests;
  254.             rand_seed = time(0);
  255.         }
  256.         if(num_tests<= 0 || num_tests>max_tests)
  257.             num_tests = max_tests;
  258.         if(argc > 2) {
  259.             specific_test = strtol(argv[1], NULL, 0);
  260.         }
  261.     }
  262.  
  263.     for(i=0; i<max_tests; i++)
  264.         remaining_tests[i] = i;
  265.  
  266.     for(test=0; test<num_tests; test++){
  267.         unsigned r;
  268.         uint_rand(seed);
  269.         r = (seed * (uint64_t)(max_tests - test)) >>32;
  270.         FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]);
  271.     }
  272.     qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), (void*)cmp);
  273.     in_sample_rate=16000;
  274.     for(test=0; test<num_tests; test++){
  275.         char  in_layout_string[256];
  276.         char out_layout_string[256];
  277.         unsigned vector= remaining_tests[max_tests - test - 1];
  278.         int in_ch_count;
  279.         int out_count, mid_count, out_ch_count;
  280.  
  281.         in_ch_layout    = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
  282.         out_ch_layout   = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
  283.         in_sample_fmt   = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
  284.         out_sample_fmt  = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
  285.         out_sample_rate = rates  [vector % FF_ARRAY_ELEMS(rates  )]; vector /= FF_ARRAY_ELEMS(rates);
  286.         av_assert0(!vector);
  287.  
  288.         if(specific_test == 0){
  289.             if(out_sample_rate != in_sample_rate || in_ch_layout != out_ch_layout)
  290.                 continue;
  291.         }
  292.  
  293.         in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout);
  294.         out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout);
  295.         av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string),  in_ch_count,  in_ch_layout);
  296.         av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout);
  297.         fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n",
  298.                 in_layout_string, out_layout_string,
  299.                 in_sample_rate, out_sample_rate,
  300.                 av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt));
  301.         forw_ctx  = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt,  out_sample_rate,
  302.                                                     in_ch_layout,  in_sample_fmt,  in_sample_rate,
  303.                                         0, 0);
  304.         backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout,  in_sample_fmt,             in_sample_rate,
  305.                                                     out_ch_layout, out_sample_fmt, out_sample_rate,
  306.                                         0, 0);
  307.         if(!forw_ctx) {
  308.             fprintf(stderr, "Failed to init forw_cts\n");
  309.             return 1;
  310.         }
  311.         if(!backw_ctx) {
  312.             fprintf(stderr, "Failed to init backw_ctx\n");
  313.             return 1;
  314.         }
  315.         if(swr_init( forw_ctx) < 0)
  316.             fprintf(stderr, "swr_init(->) failed\n");
  317.         if(swr_init(backw_ctx) < 0)
  318.             fprintf(stderr, "swr_init(<-) failed\n");
  319.                 //FIXME test planar
  320.         setup_array(ain , array_in ,  in_sample_fmt,   SAMPLES);
  321.         setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES);
  322.         setup_array(aout, array_out,  in_sample_fmt           ,   SAMPLES);
  323. #if 0
  324.         for(ch=0; ch<in_ch_count; ch++){
  325.             for(i=0; i<SAMPLES; i++)
  326.                 set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES));
  327.         }
  328. #else
  329.         audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES);
  330. #endif
  331.         mode = uint_rand(rand_seed) % 3;
  332.         if(mode==0 /*|| out_sample_rate == in_sample_rate*/) {
  333.             mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES);
  334.         } else if(mode==1){
  335.             mid_count= swr_convert(forw_ctx, amid,         0, (const uint8_t **)ain, SAMPLES);
  336.             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
  337.         } else {
  338.             int tmp_count;
  339.             mid_count= swr_convert(forw_ctx, amid,         0, (const uint8_t **)ain,       1);
  340.             av_assert0(mid_count==0);
  341.             shift(ain,  1, in_ch_count, in_sample_fmt);
  342.             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
  343.             shift(amid,  mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
  344.             mid_count+=swr_convert(forw_ctx, amid,         2, (const uint8_t **)ain,       2);
  345.             shift(amid,  mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
  346.             shift(ain,  2, in_ch_count, in_sample_fmt);
  347.             mid_count+=swr_convert(forw_ctx, amid,         1, (const uint8_t **)ain, SAMPLES-3);
  348.             shift(amid,  mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
  349.             shift(ain, -3, in_ch_count, in_sample_fmt);
  350.             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
  351.             shift(amid,  -tmp_count, out_ch_count, out_sample_fmt);
  352.         }
  353.         out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count);
  354.  
  355.         for(ch=0; ch<in_ch_count; ch++){
  356.             double sse, maxdiff=0;
  357.             double sum_a= 0;
  358.             double sum_b= 0;
  359.             double sum_aa= 0;
  360.             double sum_bb= 0;
  361.             double sum_ab= 0;
  362.             for(i=0; i<out_count; i++){
  363.                 double a= get(ain , ch, i, in_ch_count, in_sample_fmt);
  364.                 double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
  365.                 sum_a += a;
  366.                 sum_b += b;
  367.                 sum_aa+= a*a;
  368.                 sum_bb+= b*b;
  369.                 sum_ab+= a*b;
  370.                 maxdiff= FFMAX(maxdiff, FFABS(a-b));
  371.             }
  372.             sse= sum_aa + sum_bb - 2*sum_ab;
  373.             if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
  374.  
  375.             fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count);
  376.         }
  377.  
  378.         flush_i++;
  379.         flush_i%=21;
  380.         flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0);
  381.         shift(aout,  flush_i, in_ch_count, in_sample_fmt);
  382.         flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0);
  383.         shift(aout, -flush_i, in_ch_count, in_sample_fmt);
  384.         if(flush_count){
  385.             for(ch=0; ch<in_ch_count; ch++){
  386.                 double sse, maxdiff=0;
  387.                 double sum_a= 0;
  388.                 double sum_b= 0;
  389.                 double sum_aa= 0;
  390.                 double sum_bb= 0;
  391.                 double sum_ab= 0;
  392.                 for(i=0; i<flush_count; i++){
  393.                     double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt);
  394.                     double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
  395.                     sum_a += a;
  396.                     sum_b += b;
  397.                     sum_aa+= a*a;
  398.                     sum_bb+= b*b;
  399.                     sum_ab+= a*b;
  400.                     maxdiff= FFMAX(maxdiff, FFABS(a-b));
  401.                 }
  402.                 sse= sum_aa + sum_bb - 2*sum_ab;
  403.                 if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
  404.  
  405.                 fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i);
  406.             }
  407.         }
  408.  
  409.  
  410.         fprintf(stderr, "\n");
  411.     }
  412.  
  413.     return 0;
  414. }
  415.