Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
  3.  * Copyright (C) 2013 James Almer
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. #include <string.h>
  23.  
  24. #include "attributes.h"
  25. #include "avutil.h"
  26. #include "bswap.h"
  27. #include "intreadwrite.h"
  28. #include "ripemd.h"
  29. #include "mem.h"
  30.  
  31. /** hash context */
  32. typedef struct AVRIPEMD {
  33.     uint8_t  digest_len;  ///< digest length in 32-bit words
  34.     uint64_t count;       ///< number of bytes in buffer
  35.     uint8_t  buffer[64];  ///< 512-bit buffer of input values used in hash updating
  36.     uint32_t state[10];   ///< current hash value
  37.     uint8_t  ext;         ///< extension (0 for 128 and 160, 1 for 256 and 320)
  38.     /** function used to update hash for 512-bit input block */
  39.     void     (*transform)(uint32_t *state, const uint8_t buffer[64], int ext);
  40. } AVRIPEMD;
  41.  
  42. const int av_ripemd_size = sizeof(AVRIPEMD);
  43.  
  44. struct AVRIPEMD *av_ripemd_alloc(void)
  45. {
  46.     return av_mallocz(sizeof(struct AVRIPEMD));
  47. }
  48.  
  49. static const uint32_t KA[4] = {
  50.     0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e
  51. };
  52.  
  53. static const uint32_t KB[4] = {
  54.     0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9
  55. };
  56.  
  57. static const int ROTA[80] = {
  58.     11, 14, 15, 12,  5,  8,  7 , 9, 11, 13, 14, 15,  6,  7,  9,  8,
  59.      7 , 6,  8, 13, 11,  9,  7, 15,  7, 12, 15,  9, 11,  7, 13, 12,
  60.     11, 13,  6,  7, 14,  9, 13, 15, 14,  8, 13,  6,  5, 12,  7,  5,
  61.     11, 12, 14, 15, 14, 15,  9,  8,  9, 14,  5,  6,  8,  6,  5, 12,
  62.      9, 15,  5, 11,  6,  8, 13, 12,  5, 12, 13, 14, 11,  8,  5,  6
  63. };
  64.  
  65. static const int ROTB[80] = {
  66.      8,  9,  9, 11, 13, 15, 15,  5,  7,  7,  8, 11, 14, 14, 12,  6,
  67.      9, 13, 15,  7, 12,  8,  9, 11,  7,  7, 12,  7,  6, 15, 13, 11,
  68.      9,  7, 15, 11,  8,  6,  6, 14, 12, 13,  5, 14, 13, 13,  7,  5,
  69.     15,  5,  8, 11, 14, 14,  6, 14,  6,  9, 12,  9, 12,  5, 15,  8,
  70.      8,  5, 12,  9, 12,  5, 14,  6,  8, 13,  6,  5, 15, 13, 11, 11
  71. };
  72.  
  73. static const int WA[80] = {
  74.      0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
  75.      7,  4, 13,  1, 10,  6, 15,  3, 12,  0,  9,  5,  2, 14, 11,  8,
  76.      3, 10, 14,  4,  9, 15,  8,  1,  2,  7,  0,  6, 13, 11,  5, 12,
  77.      1,  9, 11, 10,  0,  8, 12,  4, 13,  3,  7, 15, 14,  5,  6,  2,
  78.      4,  0,  5,  9,  7, 12,  2, 10, 14,  1,  3,  8, 11,  6, 15, 13
  79. };
  80.  
  81. static const int WB[80] = {
  82.      5, 14,  7,  0,  9,  2, 11,  4, 13,  6, 15,  8,  1, 10,  3, 12,
  83.      6, 11,  3,  7,  0, 13,  5, 10, 14, 15,  8, 12,  4,  9,  1,  2,
  84.     15,  5,  1,  3,  7, 14,  6,  9, 11,  8, 12,  2, 10,  0,  4, 13,
  85.      8,  6,  4,  1,  3, 11, 15,  0,  5, 12,  2, 13,  9,  7, 10, 14,
  86.     12, 15, 10,  4,  1,  5,  8,  7,  6,  2, 13, 14,  0,  3,  9, 11
  87. };
  88.  
  89. #define rol(value, bits) ((value << bits) | (value >> (32 - bits)))
  90.  
  91. #define SWAP(a,b) if (ext) { t = a; a = b; b = t; }
  92.  
  93. #define ROUND128_0_TO_15(a,b,c,d,e,f,g,h)                               \
  94.     a = rol(a + ((  b ^ c  ^ d)      + block[WA[n]]),         ROTA[n]); \
  95.     e = rol(e + ((((f ^ g) & h) ^ g) + block[WB[n]] + KB[0]), ROTB[n]); \
  96.     n++
  97.  
  98. #define ROUND128_16_TO_31(a,b,c,d,e,f,g,h)                              \
  99.     a = rol(a + ((((c ^ d) & b) ^ d) + block[WA[n]] + KA[0]), ROTA[n]); \
  100.     e = rol(e + (((~g | f) ^ h)      + block[WB[n]] + KB[1]), ROTB[n]); \
  101.     n++
  102.  
  103. #define ROUND128_32_TO_47(a,b,c,d,e,f,g,h)                              \
  104.     a = rol(a + (((~c | b) ^ d)      + block[WA[n]] + KA[1]), ROTA[n]); \
  105.     e = rol(e + ((((g ^ h) & f) ^ h) + block[WB[n]] + KB[2]), ROTB[n]); \
  106.     n++
  107.  
  108. #define ROUND128_48_TO_63(a,b,c,d,e,f,g,h)                              \
  109.     a = rol(a + ((((b ^ c) & d) ^ c) + block[WA[n]] + KA[2]), ROTA[n]); \
  110.     e = rol(e + ((  f ^ g  ^ h)      + block[WB[n]]),         ROTB[n]); \
  111.     n++
  112.  
  113. static void ripemd128_transform(uint32_t *state, const uint8_t buffer[64], int ext)
  114. {
  115.     uint32_t a, b, c, d, e, f, g, h, t;
  116.     uint32_t block[16];
  117.     int n;
  118.  
  119.     if (ext) {
  120.         a = state[0]; b = state[1]; c = state[2]; d = state[3];
  121.         e = state[4]; f = state[5]; g = state[6]; h = state[7];
  122.     } else {
  123.         a = e = state[0];
  124.         b = f = state[1];
  125.         c = g = state[2];
  126.         d = h = state[3];
  127.     }
  128.  
  129.     for (n = 0; n < 16; n++)
  130.         block[n] = AV_RL32(buffer + 4 * n);
  131.     n = 0;
  132.  
  133. #if CONFIG_SMALL
  134.     for (; n < 16;) {
  135.         ROUND128_0_TO_15(a,b,c,d,e,f,g,h);
  136.         t = d; d = c; c = b; b = a; a = t;
  137.         t = h; h = g; g = f; f = e; e = t;
  138.     }
  139.     SWAP(a,e)
  140.  
  141.     for (; n < 32;) {
  142.         ROUND128_16_TO_31(a,b,c,d,e,f,g,h);
  143.         t = d; d = c; c = b; b = a; a = t;
  144.         t = h; h = g; g = f; f = e; e = t;
  145.     }
  146.     SWAP(b,f)
  147.  
  148.     for (; n < 48;) {
  149.         ROUND128_32_TO_47(a,b,c,d,e,f,g,h);
  150.         t = d; d = c; c = b; b = a; a = t;
  151.         t = h; h = g; g = f; f = e; e = t;
  152.     }
  153.     SWAP(c,g)
  154.  
  155.     for (; n < 64;) {
  156.         ROUND128_48_TO_63(a,b,c,d,e,f,g,h);
  157.         t = d; d = c; c = b; b = a; a = t;
  158.         t = h; h = g; g = f; f = e; e = t;
  159.     }
  160.     SWAP(d,h)
  161. #else
  162.  
  163. #define R128_0                         \
  164.     ROUND128_0_TO_15(a,b,c,d,e,f,g,h); \
  165.     ROUND128_0_TO_15(d,a,b,c,h,e,f,g); \
  166.     ROUND128_0_TO_15(c,d,a,b,g,h,e,f); \
  167.     ROUND128_0_TO_15(b,c,d,a,f,g,h,e)
  168.  
  169.     R128_0; R128_0; R128_0; R128_0;
  170.     SWAP(a,e)
  171.  
  172. #define R128_16                         \
  173.     ROUND128_16_TO_31(a,b,c,d,e,f,g,h); \
  174.     ROUND128_16_TO_31(d,a,b,c,h,e,f,g); \
  175.     ROUND128_16_TO_31(c,d,a,b,g,h,e,f); \
  176.     ROUND128_16_TO_31(b,c,d,a,f,g,h,e)
  177.  
  178.     R128_16; R128_16; R128_16; R128_16;
  179.     SWAP(b,f)
  180.  
  181. #define R128_32                         \
  182.     ROUND128_32_TO_47(a,b,c,d,e,f,g,h); \
  183.     ROUND128_32_TO_47(d,a,b,c,h,e,f,g); \
  184.     ROUND128_32_TO_47(c,d,a,b,g,h,e,f); \
  185.     ROUND128_32_TO_47(b,c,d,a,f,g,h,e)
  186.  
  187.     R128_32; R128_32; R128_32; R128_32;
  188.     SWAP(c,g)
  189.  
  190. #define R128_48                         \
  191.     ROUND128_48_TO_63(a,b,c,d,e,f,g,h); \
  192.     ROUND128_48_TO_63(d,a,b,c,h,e,f,g); \
  193.     ROUND128_48_TO_63(c,d,a,b,g,h,e,f); \
  194.     ROUND128_48_TO_63(b,c,d,a,f,g,h,e)
  195.  
  196.     R128_48; R128_48; R128_48; R128_48;
  197.     SWAP(d,h)
  198. #endif
  199.  
  200.     if (ext) {
  201.         state[0] += a; state[1] += b; state[2] += c; state[3] += d;
  202.         state[4] += e; state[5] += f; state[6] += g; state[7] += h;
  203.     } else {
  204.         h += c + state[1];
  205.         state[1] = state[2] + d + e;
  206.         state[2] = state[3] + a + f;
  207.         state[3] = state[0] + b + g;
  208.         state[0] = h;
  209.     }
  210. }
  211.  
  212. #define ROTATE(x,y) \
  213.     x = rol(x, 10); \
  214.     y = rol(y, 10); \
  215.     n++
  216.  
  217. #define ROUND160_0_TO_15(a,b,c,d,e,f,g,h,i,j)                               \
  218.     a = rol(a + ((  b ^ c  ^ d)      + block[WA[n]]),         ROTA[n]) + e; \
  219.     f = rol(f + (((~i | h) ^ g)      + block[WB[n]] + KB[0]), ROTB[n]) + j; \
  220.     ROTATE(c,h)
  221.  
  222. #define ROUND160_16_TO_31(a,b,c,d,e,f,g,h,i,j)                              \
  223.     a = rol(a + ((((c ^ d) & b) ^ d) + block[WA[n]] + KA[0]), ROTA[n]) + e; \
  224.     f = rol(f + ((((g ^ h) & i) ^ h) + block[WB[n]] + KB[1]), ROTB[n]) + j; \
  225.     ROTATE(c,h)
  226.  
  227. #define ROUND160_32_TO_47(a,b,c,d,e,f,g,h,i,j)                              \
  228.     a = rol(a + (((~c | b) ^ d)      + block[WA[n]] + KA[1]), ROTA[n]) + e; \
  229.     f = rol(f + (((~h | g) ^ i)      + block[WB[n]] + KB[2]), ROTB[n]) + j; \
  230.     ROTATE(c,h)
  231.  
  232. #define ROUND160_48_TO_63(a,b,c,d,e,f,g,h,i,j)                              \
  233.     a = rol(a + ((((b ^ c) & d) ^ c) + block[WA[n]] + KA[2]), ROTA[n]) + e; \
  234.     f = rol(f + ((((h ^ i) & g) ^ i) + block[WB[n]] + KB[3]), ROTB[n]) + j; \
  235.     ROTATE(c,h)
  236.  
  237. #define ROUND160_64_TO_79(a,b,c,d,e,f,g,h,i,j)                              \
  238.     a = rol(a + (((~d | c) ^ b)      + block[WA[n]] + KA[3]), ROTA[n]) + e; \
  239.     f = rol(f + ((  g ^ h  ^ i)      + block[WB[n]]),         ROTB[n]) + j; \
  240.     ROTATE(c,h)
  241.  
  242. static void ripemd160_transform(uint32_t *state, const uint8_t buffer[64], int ext)
  243. {
  244.     uint32_t a, b, c, d, e, f, g, h, i, j, t;
  245.     uint32_t block[16];
  246.     int n;
  247.  
  248.     if (ext) {
  249.         a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4];
  250.         f = state[5]; g = state[6]; h = state[7]; i = state[8]; j = state[9];
  251.     } else {
  252.         a = f = state[0];
  253.         b = g = state[1];
  254.         c = h = state[2];
  255.         d = i = state[3];
  256.         e = j = state[4];
  257.     }
  258.  
  259.     for (n = 0; n < 16; n++)
  260.         block[n] = AV_RL32(buffer + 4 * n);
  261.     n = 0;
  262.  
  263. #if CONFIG_SMALL
  264.     for (; n < 16;) {
  265.         ROUND160_0_TO_15(a,b,c,d,e,f,g,h,i,j);
  266.         t = e; e = d; d = c; c = b; b = a; a = t;
  267.         t = j; j = i; i = h; h = g; g = f; f = t;
  268.     }
  269.     SWAP(b,g)
  270.  
  271.     for (; n < 32;) {
  272.         ROUND160_16_TO_31(a,b,c,d,e,f,g,h,i,j);
  273.         t = e; e = d; d = c; c = b; b = a; a = t;
  274.         t = j; j = i; i = h; h = g; g = f; f = t;
  275.     }
  276.     SWAP(d,i)
  277.  
  278.     for (; n < 48;) {
  279.         ROUND160_32_TO_47(a,b,c,d,e,f,g,h,i,j);
  280.         t = e; e = d; d = c; c = b; b = a; a = t;
  281.         t = j; j = i; i = h; h = g; g = f; f = t;
  282.     }
  283.     SWAP(a,f)
  284.  
  285.     for (; n < 64;) {
  286.         ROUND160_48_TO_63(a,b,c,d,e,f,g,h,i,j);
  287.         t = e; e = d; d = c; c = b; b = a; a = t;
  288.         t = j; j = i; i = h; h = g; g = f; f = t;
  289.     }
  290.     SWAP(c,h)
  291.  
  292.     for (; n < 80;) {
  293.         ROUND160_64_TO_79(a,b,c,d,e,f,g,h,i,j);
  294.         t = e; e = d; d = c; c = b; b = a; a = t;
  295.         t = j; j = i; i = h; h = g; g = f; f = t;
  296.     }
  297.     SWAP(e,j)
  298. #else
  299.  
  300. #define R160_0                             \
  301.     ROUND160_0_TO_15(a,b,c,d,e,f,g,h,i,j); \
  302.     ROUND160_0_TO_15(e,a,b,c,d,j,f,g,h,i); \
  303.     ROUND160_0_TO_15(d,e,a,b,c,i,j,f,g,h); \
  304.     ROUND160_0_TO_15(c,d,e,a,b,h,i,j,f,g); \
  305.     ROUND160_0_TO_15(b,c,d,e,a,g,h,i,j,f)
  306.  
  307.     R160_0; R160_0; R160_0;
  308.     ROUND160_0_TO_15(a,b,c,d,e,f,g,h,i,j);
  309.     SWAP(a,f)
  310.  
  311. #define R160_16                             \
  312.     ROUND160_16_TO_31(e,a,b,c,d,j,f,g,h,i); \
  313.     ROUND160_16_TO_31(d,e,a,b,c,i,j,f,g,h); \
  314.     ROUND160_16_TO_31(c,d,e,a,b,h,i,j,f,g); \
  315.     ROUND160_16_TO_31(b,c,d,e,a,g,h,i,j,f); \
  316.     ROUND160_16_TO_31(a,b,c,d,e,f,g,h,i,j)
  317.  
  318.     R160_16; R160_16; R160_16;
  319.     ROUND160_16_TO_31(e,a,b,c,d,j,f,g,h,i);
  320.     SWAP(b,g)
  321.  
  322. #define R160_32                             \
  323.     ROUND160_32_TO_47(d,e,a,b,c,i,j,f,g,h); \
  324.     ROUND160_32_TO_47(c,d,e,a,b,h,i,j,f,g); \
  325.     ROUND160_32_TO_47(b,c,d,e,a,g,h,i,j,f); \
  326.     ROUND160_32_TO_47(a,b,c,d,e,f,g,h,i,j); \
  327.     ROUND160_32_TO_47(e,a,b,c,d,j,f,g,h,i)
  328.  
  329.     R160_32; R160_32; R160_32;
  330.     ROUND160_32_TO_47(d,e,a,b,c,i,j,f,g,h);
  331.     SWAP(c,h)
  332.  
  333. #define R160_48                             \
  334.     ROUND160_48_TO_63(c,d,e,a,b,h,i,j,f,g); \
  335.     ROUND160_48_TO_63(b,c,d,e,a,g,h,i,j,f); \
  336.     ROUND160_48_TO_63(a,b,c,d,e,f,g,h,i,j); \
  337.     ROUND160_48_TO_63(e,a,b,c,d,j,f,g,h,i); \
  338.     ROUND160_48_TO_63(d,e,a,b,c,i,j,f,g,h)
  339.  
  340.     R160_48; R160_48; R160_48;
  341.     ROUND160_48_TO_63(c,d,e,a,b,h,i,j,f,g);
  342.     SWAP(d,i)
  343.  
  344. #define R160_64                             \
  345.     ROUND160_64_TO_79(b,c,d,e,a,g,h,i,j,f); \
  346.     ROUND160_64_TO_79(a,b,c,d,e,f,g,h,i,j); \
  347.     ROUND160_64_TO_79(e,a,b,c,d,j,f,g,h,i); \
  348.     ROUND160_64_TO_79(d,e,a,b,c,i,j,f,g,h); \
  349.     ROUND160_64_TO_79(c,d,e,a,b,h,i,j,f,g)
  350.  
  351.     R160_64; R160_64; R160_64;
  352.     ROUND160_64_TO_79(b,c,d,e,a,g,h,i,j,f);
  353.     SWAP(e,j)
  354. #endif
  355.  
  356.     if (ext) {
  357.         state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e;
  358.         state[5] += f; state[6] += g; state[7] += h; state[8] += i; state[9] += j;
  359.     } else {
  360.         i += c + state[1];
  361.         state[1] = state[2] + d + j;
  362.         state[2] = state[3] + e + f;
  363.         state[3] = state[4] + a + g;
  364.         state[4] = state[0] + b + h;
  365.         state[0] = i;
  366.     }
  367. }
  368.  
  369. av_cold int av_ripemd_init(AVRIPEMD *ctx, int bits)
  370. {
  371.     ctx->digest_len = bits >> 5;
  372.     switch (bits) {
  373.     case 128: // RIPEMD-128
  374.         ctx->state[0] = 0x67452301;
  375.         ctx->state[1] = 0xEFCDAB89;
  376.         ctx->state[2] = 0x98BADCFE;
  377.         ctx->state[3] = 0x10325476;
  378.         ctx->transform = ripemd128_transform;
  379.         ctx->ext = 0;
  380.         break;
  381.     case 160: // RIPEMD-160
  382.         ctx->state[0] = 0x67452301;
  383.         ctx->state[1] = 0xEFCDAB89;
  384.         ctx->state[2] = 0x98BADCFE;
  385.         ctx->state[3] = 0x10325476;
  386.         ctx->state[4] = 0xC3D2E1F0;
  387.         ctx->transform = ripemd160_transform;
  388.         ctx->ext = 0;
  389.         break;
  390.     case 256: // RIPEMD-256
  391.         ctx->state[0] = 0x67452301;
  392.         ctx->state[1] = 0xEFCDAB89;
  393.         ctx->state[2] = 0x98BADCFE;
  394.         ctx->state[3] = 0x10325476;
  395.         ctx->state[4] = 0x76543210;
  396.         ctx->state[5] = 0xFEDCBA98;
  397.         ctx->state[6] = 0x89ABCDEF;
  398.         ctx->state[7] = 0x01234567;
  399.         ctx->transform = ripemd128_transform;
  400.         ctx->ext = 1;
  401.         break;
  402.     case 320: // RIPEMD-320
  403.         ctx->state[0] = 0x67452301;
  404.         ctx->state[1] = 0xEFCDAB89;
  405.         ctx->state[2] = 0x98BADCFE;
  406.         ctx->state[3] = 0x10325476;
  407.         ctx->state[4] = 0xC3D2E1F0;
  408.         ctx->state[5] = 0x76543210;
  409.         ctx->state[6] = 0xFEDCBA98;
  410.         ctx->state[7] = 0x89ABCDEF;
  411.         ctx->state[8] = 0x01234567;
  412.         ctx->state[9] = 0x3C2D1E0F;
  413.         ctx->transform = ripemd160_transform;
  414.         ctx->ext = 1;
  415.         break;
  416.     default:
  417.         return -1;
  418.     }
  419.     ctx->count = 0;
  420.     return 0;
  421. }
  422.  
  423. void av_ripemd_update(AVRIPEMD* ctx, const uint8_t* data, unsigned int len)
  424. {
  425.     unsigned int i, j;
  426.  
  427.     j = ctx->count & 63;
  428.     ctx->count += len;
  429. #if CONFIG_SMALL
  430.     for (i = 0; i < len; i++) {
  431.         ctx->buffer[j++] = data[i];
  432.         if (64 == j) {
  433.             ctx->transform(ctx->state, ctx->buffer, ctx->ext);
  434.             j = 0;
  435.         }
  436.     }
  437. #else
  438.     if ((j + len) > 63) {
  439.         memcpy(&ctx->buffer[j], data, (i = 64 - j));
  440.         ctx->transform(ctx->state, ctx->buffer, ctx->ext);
  441.         for (; i + 63 < len; i += 64)
  442.             ctx->transform(ctx->state, &data[i], ctx->ext);
  443.         j = 0;
  444.     } else
  445.         i = 0;
  446.     memcpy(&ctx->buffer[j], &data[i], len - i);
  447. #endif
  448. }
  449.  
  450. void av_ripemd_final(AVRIPEMD* ctx, uint8_t *digest)
  451. {
  452.     int i;
  453.     uint64_t finalcount = av_le2ne64(ctx->count << 3);
  454.  
  455.     av_ripemd_update(ctx, "\200", 1);
  456.     while ((ctx->count & 63) != 56)
  457.         av_ripemd_update(ctx, "", 1);
  458.     av_ripemd_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
  459.     for (i = 0; i < ctx->digest_len; i++)
  460.         AV_WL32(digest + i*4, ctx->state[i]);
  461. }
  462.  
  463. #ifdef TEST
  464. #include <stdio.h>
  465.  
  466. int main(void)
  467. {
  468.     int i, j, k;
  469.     AVRIPEMD ctx;
  470.     unsigned char digest[40];
  471.     static const int lengths[4] = { 128, 160, 256, 320 };
  472.  
  473.     for (j = 0; j < 4; j++) {
  474.         printf("Testing RIPEMD-%d\n", lengths[j]);
  475.         for (k = 0; k < 3; k++) {
  476.             av_ripemd_init(&ctx, lengths[j]);
  477.             if (k == 0)
  478.                 av_ripemd_update(&ctx, "abc", 3);
  479.             else if (k == 1)
  480.                 av_ripemd_update(&ctx, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
  481.             else
  482.                 for (i = 0; i < 1000*1000; i++)
  483.                     av_ripemd_update(&ctx, "a", 1);
  484.             av_ripemd_final(&ctx, digest);
  485.             for (i = 0; i < lengths[j] >> 3; i++)
  486.                 printf("%02X", digest[i]);
  487.             putchar('\n');
  488.         }
  489.         switch (j) { //test vectors (from ISO:IEC 10118-3 (2004) and http://homes.esat.kuleuven.be/~bosselae/ripemd160.html)
  490.         case 0:
  491.             printf("c14a1219 9c66e4ba 84636b0f 69144c77\n"
  492.                    "a1aa0689 d0fafa2d dc22e88b 49133a06\n"
  493.                    "4a7f5723 f954eba1 216c9d8f 6320431f\n");
  494.             break;
  495.         case 1:
  496.             printf("8eb208f7 e05d987a 9b044a8e 98c6b087 f15a0bfc\n"
  497.                    "12a05338 4a9c0c88 e405a06c 27dcf49a da62eb2b\n"
  498.                    "52783243 c1697bdb e16d37f9 7f68f083 25dc1528\n");
  499.             break;
  500.         case 2:
  501.             printf("afbd6e22 8b9d8cbb cef5ca2d 03e6dba1 0ac0bc7d cbe4680e 1e42d2e9 75459b65\n"
  502.                    "38430455 83aac6c8 c8d91285 73e7a980 9afb2a0f 34ccc36e a9e72f16 f6368e3f\n"
  503.                    "ac953744 e10e3151 4c150d4d 8d7b6773 42e33399 788296e4 3ae4850c e4f97978\n");
  504.             break;
  505.         case 3:
  506.             printf("de4c01b3 054f8930 a79d09ae 738e9230 1e5a1708 5beffdc1 b8d11671 3e74f82f a942d64c dbc4682d\n"
  507.                    "d034a795 0cf72202 1ba4b84d f769a5de 2060e259 df4c9bb4 a4268c0e 935bbc74 70a969c9 d072a1ac\n"
  508.                    "bdee37f4 371e2064 6b8b0d86 2dda1629 2ae36f40 965e8c85 09e63d1d bddecc50 3e2b63eb 9245bb66\n");
  509.             break;
  510.         }
  511.     }
  512.  
  513.     return 0;
  514. }
  515. #endif
  516.