Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (C) 2010 Georg Martius <georg.martius@web.de>
  3.  * Copyright (C) 2010 Daniel G. Taylor <dan@programmer-art.org>
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * transform input video
  25.  */
  26.  
  27. #include "libavutil/common.h"
  28. #include "libavutil/avassert.h"
  29.  
  30. #include "transform.h"
  31.  
  32. #define INTERPOLATE_METHOD(name) \
  33.     static uint8_t name(float x, float y, const uint8_t *src, \
  34.                         int width, int height, int stride, uint8_t def)
  35.  
  36. #define PIXEL(img, x, y, w, h, stride, def) \
  37.     ((x) < 0 || (y) < 0) ? (def) : \
  38.     (((x) >= (w) || (y) >= (h)) ? (def) : \
  39.     img[(x) + (y) * (stride)])
  40.  
  41. /**
  42.  * Nearest neighbor interpolation
  43.  */
  44. INTERPOLATE_METHOD(interpolate_nearest)
  45. {
  46.     return PIXEL(src, (int)(x + 0.5), (int)(y + 0.5), width, height, stride, def);
  47. }
  48.  
  49. /**
  50.  * Bilinear interpolation
  51.  */
  52. INTERPOLATE_METHOD(interpolate_bilinear)
  53. {
  54.     int x_c, x_f, y_c, y_f;
  55.     int v1, v2, v3, v4;
  56.  
  57.     if (x < -1 || x > width || y < -1 || y > height) {
  58.         return def;
  59.     } else {
  60.         x_f = (int)x;
  61.         x_c = x_f + 1;
  62.  
  63.         y_f = (int)y;
  64.         y_c = y_f + 1;
  65.  
  66.         v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
  67.         v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
  68.         v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
  69.         v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
  70.  
  71.         return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) +
  72.                 v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y)));
  73.     }
  74. }
  75.  
  76. /**
  77.  * Biquadratic interpolation
  78.  */
  79. INTERPOLATE_METHOD(interpolate_biquadratic)
  80. {
  81.     int     x_c, x_f, y_c, y_f;
  82.     uint8_t v1,  v2,  v3,  v4;
  83.     float   f1,  f2,  f3,  f4;
  84.  
  85.     if (x < - 1 || x > width || y < -1 || y > height)
  86.         return def;
  87.     else {
  88.         x_f = (int)x;
  89.         x_c = x_f + 1;
  90.         y_f = (int)y;
  91.         y_c = y_f + 1;
  92.  
  93.         v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
  94.         v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
  95.         v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
  96.         v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
  97.  
  98.         f1 = 1 - sqrt((x_c - x) * (y_c - y));
  99.         f2 = 1 - sqrt((x_c - x) * (y - y_f));
  100.         f3 = 1 - sqrt((x - x_f) * (y_c - y));
  101.         f4 = 1 - sqrt((x - x_f) * (y - y_f));
  102.         return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4);
  103.     }
  104. }
  105.  
  106. void avfilter_get_matrix(float x_shift, float y_shift, float angle, float zoom, float *matrix) {
  107.     matrix[0] = zoom * cos(angle);
  108.     matrix[1] = -sin(angle);
  109.     matrix[2] = x_shift;
  110.     matrix[3] = -matrix[1];
  111.     matrix[4] = matrix[0];
  112.     matrix[5] = y_shift;
  113.     matrix[6] = 0;
  114.     matrix[7] = 0;
  115.     matrix[8] = 1;
  116. }
  117.  
  118. void avfilter_add_matrix(const float *m1, const float *m2, float *result)
  119. {
  120.     int i;
  121.     for (i = 0; i < 9; i++)
  122.         result[i] = m1[i] + m2[i];
  123. }
  124.  
  125. void avfilter_sub_matrix(const float *m1, const float *m2, float *result)
  126. {
  127.     int i;
  128.     for (i = 0; i < 9; i++)
  129.         result[i] = m1[i] - m2[i];
  130. }
  131.  
  132. void avfilter_mul_matrix(const float *m1, float scalar, float *result)
  133. {
  134.     int i;
  135.     for (i = 0; i < 9; i++)
  136.         result[i] = m1[i] * scalar;
  137. }
  138.  
  139. static inline int mirror(int v, int m)
  140. {
  141.     while ((unsigned)v > (unsigned)m) {
  142.         v = -v;
  143.         if (v < 0)
  144.             v += 2 * m;
  145.     }
  146.     return v;
  147. }
  148.  
  149. int avfilter_transform(const uint8_t *src, uint8_t *dst,
  150.                         int src_stride, int dst_stride,
  151.                         int width, int height, const float *matrix,
  152.                         enum InterpolateMethod interpolate,
  153.                         enum FillMethod fill)
  154. {
  155.     int x, y;
  156.     float x_s, y_s;
  157.     uint8_t def = 0;
  158.     uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL;
  159.  
  160.     switch(interpolate) {
  161.         case INTERPOLATE_NEAREST:
  162.             func = interpolate_nearest;
  163.             break;
  164.         case INTERPOLATE_BILINEAR:
  165.             func = interpolate_bilinear;
  166.             break;
  167.         case INTERPOLATE_BIQUADRATIC:
  168.             func = interpolate_biquadratic;
  169.             break;
  170.         default:
  171.             return AVERROR(EINVAL);
  172.     }
  173.  
  174.     for (y = 0; y < height; y++) {
  175.         for(x = 0; x < width; x++) {
  176.             x_s = x * matrix[0] + y * matrix[1] + matrix[2];
  177.             y_s = x * matrix[3] + y * matrix[4] + matrix[5];
  178.  
  179.             switch(fill) {
  180.                 case FILL_ORIGINAL:
  181.                     def = src[y * src_stride + x];
  182.                     break;
  183.                 case FILL_CLAMP:
  184.                     y_s = av_clipf(y_s, 0, height - 1);
  185.                     x_s = av_clipf(x_s, 0, width - 1);
  186.                     def = src[(int)y_s * src_stride + (int)x_s];
  187.                     break;
  188.                 case FILL_MIRROR:
  189.                     x_s = mirror(x_s,  width-1);
  190.                     y_s = mirror(y_s, height-1);
  191.  
  192.                     av_assert2(x_s >= 0 && y_s >= 0);
  193.                     av_assert2(x_s < width && y_s < height);
  194.                     def = src[(int)y_s * src_stride + (int)x_s];
  195.             }
  196.  
  197.             dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def);
  198.         }
  199.     }
  200.     return 0;
  201. }
  202.