Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * AAC Spectral Band Replication decoding functions
  3.  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4.  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. #include "config.h"
  24. #include "libavutil/attributes.h"
  25. #include "libavutil/intfloat.h"
  26. #include "sbrdsp.h"
  27.  
  28. static void sbr_sum64x5_c(float *z)
  29. {
  30.     int k;
  31.     for (k = 0; k < 64; k++) {
  32.         float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  33.         z[k] = f;
  34.     }
  35. }
  36.  
  37. static float sbr_sum_square_c(float (*x)[2], int n)
  38. {
  39.     float sum0 = 0.0f, sum1 = 0.0f;
  40.     int i;
  41.  
  42.     for (i = 0; i < n; i += 2)
  43.     {
  44.         sum0 += x[i + 0][0] * x[i + 0][0];
  45.         sum1 += x[i + 0][1] * x[i + 0][1];
  46.         sum0 += x[i + 1][0] * x[i + 1][0];
  47.         sum1 += x[i + 1][1] * x[i + 1][1];
  48.     }
  49.  
  50.     return sum0 + sum1;
  51. }
  52.  
  53. static void sbr_neg_odd_64_c(float *x)
  54. {
  55.     union av_intfloat32 *xi = (union av_intfloat32*) x;
  56.     int i;
  57.     for (i = 1; i < 64; i += 4) {
  58.         xi[i + 0].i ^= 1U << 31;
  59.         xi[i + 2].i ^= 1U << 31;
  60.     }
  61. }
  62.  
  63. static void sbr_qmf_pre_shuffle_c(float *z)
  64. {
  65.     union av_intfloat32 *zi = (union av_intfloat32*) z;
  66.     int k;
  67.     zi[64].i = zi[0].i;
  68.     zi[65].i = zi[1].i;
  69.     for (k = 1; k < 31; k += 2) {
  70.         zi[64 + 2 * k + 0].i = zi[64 - k].i ^ (1U << 31);
  71.         zi[64 + 2 * k + 1].i = zi[ k + 1].i;
  72.         zi[64 + 2 * k + 2].i = zi[63 - k].i ^ (1U << 31);
  73.         zi[64 + 2 * k + 3].i = zi[ k + 2].i;
  74.     }
  75.  
  76.     zi[64 + 2 * 31 + 0].i = zi[64 - 31].i ^ (1U << 31);
  77.     zi[64 + 2 * 31 + 1].i = zi[31 +  1].i;
  78. }
  79.  
  80. static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z)
  81. {
  82.     const union av_intfloat32 *zi = (const union av_intfloat32*) z;
  83.     union av_intfloat32 *Wi       = (union av_intfloat32*) W;
  84.     int k;
  85.     for (k = 0; k < 32; k += 2) {
  86.         Wi[2 * k + 0].i = zi[63 - k].i ^ (1U << 31);
  87.         Wi[2 * k + 1].i = zi[ k + 0].i;
  88.         Wi[2 * k + 2].i = zi[62 - k].i ^ (1U << 31);
  89.         Wi[2 * k + 3].i = zi[ k + 1].i;
  90.     }
  91. }
  92.  
  93. static void sbr_qmf_deint_neg_c(float *v, const float *src)
  94. {
  95.     const union av_intfloat32 *si = (const union av_intfloat32*)src;
  96.     union av_intfloat32 *vi = (union av_intfloat32*)v;
  97.     int i;
  98.     for (i = 0; i < 32; i++) {
  99.         vi[     i].i = si[63 - 2 * i    ].i;
  100.         vi[63 - i].i = si[63 - 2 * i - 1].i ^ (1U << 31);
  101.     }
  102. }
  103.  
  104. static void sbr_qmf_deint_bfly_c(float *v, const float *src0, const float *src1)
  105. {
  106.     int i;
  107.     for (i = 0; i < 64; i++) {
  108.         v[      i] = src0[i] - src1[63 - i];
  109.         v[127 - i] = src0[i] + src1[63 - i];
  110.     }
  111. }
  112.  
  113. static av_always_inline void autocorrelate(const float x[40][2],
  114.                                            float phi[3][2][2], int lag)
  115. {
  116.     int i;
  117.     float real_sum = 0.0f;
  118.     float imag_sum = 0.0f;
  119.     if (lag) {
  120.         for (i = 1; i < 38; i++) {
  121.             real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  122.             imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  123.         }
  124.         phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  125.         phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  126.         if (lag == 1) {
  127.             phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  128.             phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  129.         }
  130.     } else {
  131.         for (i = 1; i < 38; i++) {
  132.             real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  133.         }
  134.         phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  135.         phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  136.     }
  137. }
  138.  
  139. static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
  140. {
  141. #if 0
  142.     /* This code is slower because it multiplies memory accesses.
  143.      * It is left for educational purposes and because it may offer
  144.      * a better reference for writing arch-specific DSP functions. */
  145.     autocorrelate(x, phi, 0);
  146.     autocorrelate(x, phi, 1);
  147.     autocorrelate(x, phi, 2);
  148. #else
  149.     float real_sum2 = x[0][0] * x[2][0] + x[0][1] * x[2][1];
  150.     float imag_sum2 = x[0][0] * x[2][1] - x[0][1] * x[2][0];
  151.     float real_sum1 = 0.0f, imag_sum1 = 0.0f, real_sum0 = 0.0f;
  152.     int   i;
  153.     for (i = 1; i < 38; i++) {
  154.         real_sum0 += x[i][0] * x[i    ][0] + x[i][1] * x[i    ][1];
  155.         real_sum1 += x[i][0] * x[i + 1][0] + x[i][1] * x[i + 1][1];
  156.         imag_sum1 += x[i][0] * x[i + 1][1] - x[i][1] * x[i + 1][0];
  157.         real_sum2 += x[i][0] * x[i + 2][0] + x[i][1] * x[i + 2][1];
  158.         imag_sum2 += x[i][0] * x[i + 2][1] - x[i][1] * x[i + 2][0];
  159.     }
  160.     phi[2 - 2][1][0] = real_sum2;
  161.     phi[2 - 2][1][1] = imag_sum2;
  162.     phi[2    ][1][0] = real_sum0 + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  163.     phi[1    ][0][0] = real_sum0 + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  164.     phi[2 - 1][1][0] = real_sum1 + x[ 0][0] * x[ 1][0] + x[ 0][1] * x[ 1][1];
  165.     phi[2 - 1][1][1] = imag_sum1 + x[ 0][0] * x[ 1][1] - x[ 0][1] * x[ 1][0];
  166.     phi[0    ][0][0] = real_sum1 + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  167.     phi[0    ][0][1] = imag_sum1 + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  168. #endif
  169. }
  170.  
  171. static void sbr_hf_gen_c(float (*X_high)[2], const float (*X_low)[2],
  172.                          const float alpha0[2], const float alpha1[2],
  173.                          float bw, int start, int end)
  174. {
  175.     float alpha[4];
  176.     int i;
  177.  
  178.     alpha[0] = alpha1[0] * bw * bw;
  179.     alpha[1] = alpha1[1] * bw * bw;
  180.     alpha[2] = alpha0[0] * bw;
  181.     alpha[3] = alpha0[1] * bw;
  182.  
  183.     for (i = start; i < end; i++) {
  184.         X_high[i][0] =
  185.             X_low[i - 2][0] * alpha[0] -
  186.             X_low[i - 2][1] * alpha[1] +
  187.             X_low[i - 1][0] * alpha[2] -
  188.             X_low[i - 1][1] * alpha[3] +
  189.             X_low[i][0];
  190.         X_high[i][1] =
  191.             X_low[i - 2][1] * alpha[0] +
  192.             X_low[i - 2][0] * alpha[1] +
  193.             X_low[i - 1][1] * alpha[2] +
  194.             X_low[i - 1][0] * alpha[3] +
  195.             X_low[i][1];
  196.     }
  197. }
  198.  
  199. static void sbr_hf_g_filt_c(float (*Y)[2], const float (*X_high)[40][2],
  200.                             const float *g_filt, int m_max, intptr_t ixh)
  201. {
  202.     int m;
  203.  
  204.     for (m = 0; m < m_max; m++) {
  205.         Y[m][0] = X_high[m][ixh][0] * g_filt[m];
  206.         Y[m][1] = X_high[m][ixh][1] * g_filt[m];
  207.     }
  208. }
  209.  
  210. static av_always_inline void sbr_hf_apply_noise(float (*Y)[2],
  211.                                                 const float *s_m,
  212.                                                 const float *q_filt,
  213.                                                 int noise,
  214.                                                 float phi_sign0,
  215.                                                 float phi_sign1,
  216.                                                 int m_max)
  217. {
  218.     int m;
  219.  
  220.     for (m = 0; m < m_max; m++) {
  221.         float y0 = Y[m][0];
  222.         float y1 = Y[m][1];
  223.         noise = (noise + 1) & 0x1ff;
  224.         if (s_m[m]) {
  225.             y0 += s_m[m] * phi_sign0;
  226.             y1 += s_m[m] * phi_sign1;
  227.         } else {
  228.             y0 += q_filt[m] * ff_sbr_noise_table[noise][0];
  229.             y1 += q_filt[m] * ff_sbr_noise_table[noise][1];
  230.         }
  231.         Y[m][0] = y0;
  232.         Y[m][1] = y1;
  233.         phi_sign1 = -phi_sign1;
  234.     }
  235. }
  236.  
  237. static void sbr_hf_apply_noise_0(float (*Y)[2], const float *s_m,
  238.                                  const float *q_filt, int noise,
  239.                                  int kx, int m_max)
  240. {
  241.     sbr_hf_apply_noise(Y, s_m, q_filt, noise, 1.0, 0.0, m_max);
  242. }
  243.  
  244. static void sbr_hf_apply_noise_1(float (*Y)[2], const float *s_m,
  245.                                  const float *q_filt, int noise,
  246.                                  int kx, int m_max)
  247. {
  248.     float phi_sign = 1 - 2 * (kx & 1);
  249.     sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, phi_sign, m_max);
  250. }
  251.  
  252. static void sbr_hf_apply_noise_2(float (*Y)[2], const float *s_m,
  253.                                  const float *q_filt, int noise,
  254.                                  int kx, int m_max)
  255. {
  256.     sbr_hf_apply_noise(Y, s_m, q_filt, noise, -1.0, 0.0, m_max);
  257. }
  258.  
  259. static void sbr_hf_apply_noise_3(float (*Y)[2], const float *s_m,
  260.                                  const float *q_filt, int noise,
  261.                                  int kx, int m_max)
  262. {
  263.     float phi_sign = 1 - 2 * (kx & 1);
  264.     sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, -phi_sign, m_max);
  265. }
  266.  
  267. av_cold void ff_sbrdsp_init(SBRDSPContext *s)
  268. {
  269.     s->sum64x5 = sbr_sum64x5_c;
  270.     s->sum_square = sbr_sum_square_c;
  271.     s->neg_odd_64 = sbr_neg_odd_64_c;
  272.     s->qmf_pre_shuffle = sbr_qmf_pre_shuffle_c;
  273.     s->qmf_post_shuffle = sbr_qmf_post_shuffle_c;
  274.     s->qmf_deint_neg = sbr_qmf_deint_neg_c;
  275.     s->qmf_deint_bfly = sbr_qmf_deint_bfly_c;
  276.     s->autocorrelate = sbr_autocorrelate_c;
  277.     s->hf_gen = sbr_hf_gen_c;
  278.     s->hf_g_filt = sbr_hf_g_filt_c;
  279.  
  280.     s->hf_apply_noise[0] = sbr_hf_apply_noise_0;
  281.     s->hf_apply_noise[1] = sbr_hf_apply_noise_1;
  282.     s->hf_apply_noise[2] = sbr_hf_apply_noise_2;
  283.     s->hf_apply_noise[3] = sbr_hf_apply_noise_3;
  284.  
  285.     if (ARCH_ARM)
  286.         ff_sbrdsp_init_arm(s);
  287.     if (ARCH_X86)
  288.         ff_sbrdsp_init_x86(s);
  289.     if (ARCH_MIPS)
  290.         ff_sbrdsp_init_mips(s);
  291. }
  292.