Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * SMPTE 302M encoder
  3.  * Copyright (c) 2010 Google, Inc.
  4.  * Copyright (c) 2013 Darryl Wallace <wallacdj@gmail.com>
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. #include "avcodec.h"
  24. #include "internal.h"
  25. #include "put_bits.h"
  26.  
  27. #define AES3_HEADER_LEN 4
  28.  
  29. typedef struct S302MEncContext {
  30.     uint8_t framing_index; /* Set for even channels on multiple of 192 samples */
  31. } S302MEncContext;
  32.  
  33. static av_cold int s302m_encode_init(AVCodecContext *avctx)
  34. {
  35.     S302MEncContext *s = avctx->priv_data;
  36.  
  37.     if (avctx->channels & 1 || avctx->channels > 8) {
  38.         av_log(avctx, AV_LOG_ERROR,
  39.                "Encoding %d channel(s) is not allowed. Only 2, 4, 6 and 8 channels are supported.\n",
  40.                avctx->channels);
  41.         return AVERROR(EINVAL);
  42.     }
  43.  
  44.     switch (avctx->sample_fmt) {
  45.     case AV_SAMPLE_FMT_S16:
  46.         avctx->bits_per_raw_sample = 16;
  47.         break;
  48.     case AV_SAMPLE_FMT_S32:
  49.         if (avctx->bits_per_raw_sample > 20) {
  50.             if (avctx->bits_per_raw_sample > 24)
  51.                 av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
  52.             avctx->bits_per_raw_sample = 24;
  53.         } else if (!avctx->bits_per_raw_sample) {
  54.             avctx->bits_per_raw_sample = 24;
  55.         } else if (avctx->bits_per_raw_sample <= 20) {
  56.             avctx->bits_per_raw_sample = 20;
  57.         }
  58.     }
  59.  
  60.     avctx->frame_size = 0;
  61.     avctx->bit_rate   = 48000 * avctx->channels *
  62.                        (avctx->bits_per_raw_sample + 4);
  63.     s->framing_index  = 0;
  64.  
  65.     return 0;
  66. }
  67.  
  68. static int s302m_encode2_frame(AVCodecContext *avctx, AVPacket *avpkt,
  69.                                const AVFrame *frame, int *got_packet_ptr)
  70. {
  71.     S302MEncContext *s = avctx->priv_data;
  72.     const int buf_size = AES3_HEADER_LEN +
  73.                         (frame->nb_samples *
  74.                          avctx->channels *
  75.                         (avctx->bits_per_raw_sample + 4)) / 8;
  76.     int ret, c, channels;
  77.     uint8_t *o;
  78.     PutBitContext pb;
  79.  
  80.     if ((ret = ff_alloc_packet2(avctx, avpkt, buf_size)) < 0)
  81.         return ret;
  82.  
  83.     o = avpkt->data;
  84.     init_put_bits(&pb, o, buf_size * 8);
  85.     put_bits(&pb, 16, buf_size - AES3_HEADER_LEN);
  86.     put_bits(&pb, 2, (avctx->channels - 2) >> 1);   // number of channels
  87.     put_bits(&pb, 8, 0);                            // channel ID
  88.     put_bits(&pb, 2, (avctx->bits_per_raw_sample - 16) / 4); // bits per samples (0 = 16bit, 1 = 20bit, 2 = 24bit)
  89.     put_bits(&pb, 4, 0);                            // alignments
  90.     flush_put_bits(&pb);
  91.     o += AES3_HEADER_LEN;
  92.  
  93.     if (avctx->bits_per_raw_sample == 24) {
  94.         const uint32_t *samples = (uint32_t *)frame->data[0];
  95.  
  96.         for (c = 0; c < frame->nb_samples; c++) {
  97.             uint8_t vucf = s->framing_index == 0 ? 0x10: 0;
  98.  
  99.             for (channels = 0; channels < avctx->channels; channels += 2) {
  100.                 o[0] = ff_reverse[(samples[0] & 0x0000FF00) >> 8];
  101.                 o[1] = ff_reverse[(samples[0] & 0x00FF0000) >> 16];
  102.                 o[2] = ff_reverse[(samples[0] & 0xFF000000) >> 24];
  103.                 o[3] = ff_reverse[(samples[1] & 0x00000F00) >> 4] | vucf;
  104.                 o[4] = ff_reverse[(samples[1] & 0x000FF000) >> 12];
  105.                 o[5] = ff_reverse[(samples[1] & 0x0FF00000) >> 20];
  106.                 o[6] = ff_reverse[(samples[1] & 0xF0000000) >> 28];
  107.                 o += 7;
  108.                 samples += 2;
  109.             }
  110.  
  111.             s->framing_index++;
  112.             if (s->framing_index >= 192)
  113.                 s->framing_index = 0;
  114.         }
  115.     } else if (avctx->bits_per_raw_sample == 20) {
  116.         const uint32_t *samples = (uint32_t *)frame->data[0];
  117.  
  118.         for (c = 0; c < frame->nb_samples; c++) {
  119.             uint8_t vucf = s->framing_index == 0 ? 0x80: 0;
  120.  
  121.             for (channels = 0; channels < avctx->channels; channels += 2) {
  122.                 o[0] = ff_reverse[ (samples[0] & 0x000FF000) >> 12];
  123.                 o[1] = ff_reverse[ (samples[0] & 0x0FF00000) >> 20];
  124.                 o[2] = ff_reverse[((samples[0] & 0xF0000000) >> 28) | vucf];
  125.                 o[3] = ff_reverse[ (samples[1] & 0x000FF000) >> 12];
  126.                 o[4] = ff_reverse[ (samples[1] & 0x0FF00000) >> 20];
  127.                 o[5] = ff_reverse[ (samples[1] & 0xF0000000) >> 28];
  128.                 o += 6;
  129.                 samples += 2;
  130.             }
  131.  
  132.             s->framing_index++;
  133.             if (s->framing_index >= 192)
  134.                 s->framing_index = 0;
  135.         }
  136.     } else if (avctx->bits_per_raw_sample == 16) {
  137.         const uint16_t *samples = (uint16_t *)frame->data[0];
  138.  
  139.         for (c = 0; c < frame->nb_samples; c++) {
  140.             uint8_t vucf = s->framing_index == 0 ? 0x10 : 0;
  141.  
  142.             for (channels = 0; channels < avctx->channels; channels += 2) {
  143.                 o[0] = ff_reverse[ samples[0] & 0xFF];
  144.                 o[1] = ff_reverse[(samples[0] & 0xFF00) >>  8];
  145.                 o[2] = ff_reverse[(samples[1] & 0x0F)   <<  4] | vucf;
  146.                 o[3] = ff_reverse[(samples[1] & 0x0FF0) >>  4];
  147.                 o[4] = ff_reverse[(samples[1] & 0xF000) >> 12];
  148.                 o += 5;
  149.                 samples += 2;
  150.  
  151.             }
  152.  
  153.             s->framing_index++;
  154.             if (s->framing_index >= 192)
  155.                 s->framing_index = 0;
  156.         }
  157.     }
  158.  
  159.     *got_packet_ptr = 1;
  160.  
  161.     return 0;
  162. }
  163.  
  164. AVCodec ff_s302m_encoder = {
  165.     .name                  = "s302m",
  166.     .long_name             = NULL_IF_CONFIG_SMALL("SMPTE 302M"),
  167.     .type                  = AVMEDIA_TYPE_AUDIO,
  168.     .id                    = CODEC_ID_S302M,
  169.     .priv_data_size        = sizeof(S302MEncContext),
  170.     .init                  = s302m_encode_init,
  171.     .encode2               = s302m_encode2_frame,
  172.     .sample_fmts           = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
  173.                                                             AV_SAMPLE_FMT_S16,
  174.                                                             AV_SAMPLE_FMT_NONE },
  175.     .capabilities          = CODEC_CAP_VARIABLE_FRAME_SIZE | CODEC_CAP_EXPERIMENTAL,
  176.     .supported_samplerates = (const int[]) { 48000, 0 },
  177. };
  178.