Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * MDCT/IMDCT transforms
  3.  * Copyright (c) 2002 Fabrice Bellard
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. #include <stdlib.h>
  23. #include <string.h>
  24. #include "libavutil/common.h"
  25. #include "libavutil/mathematics.h"
  26. #include "fft.h"
  27. #include "fft-internal.h"
  28.  
  29. /**
  30.  * @file
  31.  * MDCT/IMDCT transforms.
  32.  */
  33.  
  34. #if CONFIG_FFT_FLOAT
  35. #   define RSCALE(x) (x)
  36. #else
  37. #if CONFIG_FFT_FIXED_32
  38. #   define RSCALE(x) (((x) + 32) >> 6)
  39. #else /* CONFIG_FFT_FIXED_32 */
  40. #   define RSCALE(x) ((x) >> 1)
  41. #endif /* CONFIG_FFT_FIXED_32 */
  42. #endif
  43.  
  44. /**
  45.  * init MDCT or IMDCT computation.
  46.  */
  47. av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
  48. {
  49.     int n, n4, i;
  50.     double alpha, theta;
  51.     int tstep;
  52.  
  53.     memset(s, 0, sizeof(*s));
  54.     n = 1 << nbits;
  55.     s->mdct_bits = nbits;
  56.     s->mdct_size = n;
  57.     n4 = n >> 2;
  58.     s->mdct_permutation = FF_MDCT_PERM_NONE;
  59.  
  60.     if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
  61.         goto fail;
  62.  
  63.     s->tcos = av_malloc(n/2 * sizeof(FFTSample));
  64.     if (!s->tcos)
  65.         goto fail;
  66.  
  67.     switch (s->mdct_permutation) {
  68.     case FF_MDCT_PERM_NONE:
  69.         s->tsin = s->tcos + n4;
  70.         tstep = 1;
  71.         break;
  72.     case FF_MDCT_PERM_INTERLEAVE:
  73.         s->tsin = s->tcos + 1;
  74.         tstep = 2;
  75.         break;
  76.     default:
  77.         goto fail;
  78.     }
  79.  
  80.     theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
  81.     scale = sqrt(fabs(scale));
  82.     for(i=0;i<n4;i++) {
  83.         alpha = 2 * M_PI * (i + theta) / n;
  84.         s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
  85.         s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
  86.     }
  87.     return 0;
  88.  fail:
  89.     ff_mdct_end(s);
  90.     return -1;
  91. }
  92.  
  93. /**
  94.  * Compute the middle half of the inverse MDCT of size N = 2^nbits,
  95.  * thus excluding the parts that can be derived by symmetry
  96.  * @param output N/2 samples
  97.  * @param input N/2 samples
  98.  */
  99. void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
  100. {
  101.     int k, n8, n4, n2, n, j;
  102.     const uint16_t *revtab = s->revtab;
  103.     const FFTSample *tcos = s->tcos;
  104.     const FFTSample *tsin = s->tsin;
  105.     const FFTSample *in1, *in2;
  106.     FFTComplex *z = (FFTComplex *)output;
  107.  
  108.     n = 1 << s->mdct_bits;
  109.     n2 = n >> 1;
  110.     n4 = n >> 2;
  111.     n8 = n >> 3;
  112.  
  113.     /* pre rotation */
  114.     in1 = input;
  115.     in2 = input + n2 - 1;
  116.     for(k = 0; k < n4; k++) {
  117.         j=revtab[k];
  118.         CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  119.         in1 += 2;
  120.         in2 -= 2;
  121.     }
  122.     s->fft_calc(s, z);
  123.  
  124.     /* post rotation + reordering */
  125.     for(k = 0; k < n8; k++) {
  126.         FFTSample r0, i0, r1, i1;
  127.         CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
  128.         CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
  129.         z[n8-k-1].re = r0;
  130.         z[n8-k-1].im = i0;
  131.         z[n8+k  ].re = r1;
  132.         z[n8+k  ].im = i1;
  133.     }
  134. }
  135.  
  136. /**
  137.  * Compute inverse MDCT of size N = 2^nbits
  138.  * @param output N samples
  139.  * @param input N/2 samples
  140.  */
  141. void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
  142. {
  143.     int k;
  144.     int n = 1 << s->mdct_bits;
  145.     int n2 = n >> 1;
  146.     int n4 = n >> 2;
  147.  
  148.     ff_imdct_half_c(s, output+n4, input);
  149.  
  150.     for(k = 0; k < n4; k++) {
  151.         output[k] = -output[n2-k-1];
  152.         output[n-k-1] = output[n2+k];
  153.     }
  154. }
  155.  
  156. /**
  157.  * Compute MDCT of size N = 2^nbits
  158.  * @param input N samples
  159.  * @param out N/2 samples
  160.  */
  161. void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
  162. {
  163.     int i, j, n, n8, n4, n2, n3;
  164.     FFTDouble re, im;
  165.     const uint16_t *revtab = s->revtab;
  166.     const FFTSample *tcos = s->tcos;
  167.     const FFTSample *tsin = s->tsin;
  168.     FFTComplex *x = (FFTComplex *)out;
  169.  
  170.     n = 1 << s->mdct_bits;
  171.     n2 = n >> 1;
  172.     n4 = n >> 2;
  173.     n8 = n >> 3;
  174.     n3 = 3 * n4;
  175.  
  176.     /* pre rotation */
  177.     for(i=0;i<n8;i++) {
  178.         re = RSCALE(-input[2*i+n3] - input[n3-1-2*i]);
  179.         im = RSCALE(-input[n4+2*i] + input[n4-1-2*i]);
  180.         j = revtab[i];
  181.         CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  182.  
  183.         re = RSCALE( input[2*i]    - input[n2-1-2*i]);
  184.         im = RSCALE(-input[n2+2*i] - input[ n-1-2*i]);
  185.         j = revtab[n8 + i];
  186.         CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  187.     }
  188.  
  189.     s->fft_calc(s, x);
  190.  
  191.     /* post rotation */
  192.     for(i=0;i<n8;i++) {
  193.         FFTSample r0, i0, r1, i1;
  194.         CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
  195.         CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
  196.         x[n8-i-1].re = r0;
  197.         x[n8-i-1].im = i0;
  198.         x[n8+i  ].re = r1;
  199.         x[n8+i  ].im = i1;
  200.     }
  201. }
  202.  
  203. av_cold void ff_mdct_end(FFTContext *s)
  204. {
  205.     av_freep(&s->tcos);
  206.     ff_fft_end(s);
  207. }
  208.