Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * LSP routines for ACELP-based codecs
  3.  *
  4.  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
  5.  * Copyright (c) 2008 Vladimir Voroshilov
  6.  *
  7.  * This file is part of FFmpeg.
  8.  *
  9.  * FFmpeg is free software; you can redistribute it and/or
  10.  * modify it under the terms of the GNU Lesser General Public
  11.  * License as published by the Free Software Foundation; either
  12.  * version 2.1 of the License, or (at your option) any later version.
  13.  *
  14.  * FFmpeg is distributed in the hope that it will be useful,
  15.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17.  * Lesser General Public License for more details.
  18.  *
  19.  * You should have received a copy of the GNU Lesser General Public
  20.  * License along with FFmpeg; if not, write to the Free Software
  21.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22.  */
  23.  
  24. #include <inttypes.h>
  25.  
  26. #include "avcodec.h"
  27. #define FRAC_BITS 14
  28. #include "mathops.h"
  29. #include "lsp.h"
  30. #include "libavcodec/mips/lsp_mips.h"
  31. #include "libavutil/avassert.h"
  32.  
  33. void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
  34. {
  35.     int i, j;
  36.  
  37.     /* sort lsfq in ascending order. float bubble agorithm,
  38.        O(n) if data already sorted, O(n^2) - otherwise */
  39.     for(i=0; i<lp_order-1; i++)
  40.         for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
  41.             FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
  42.  
  43.     for(i=0; i<lp_order; i++)
  44.     {
  45.         lsfq[i] = FFMAX(lsfq[i], lsfq_min);
  46.         lsfq_min = lsfq[i] + lsfq_min_distance;
  47.     }
  48.     lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
  49. }
  50.  
  51. void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
  52. {
  53.     int i;
  54.     float prev = 0.0;
  55.     for (i = 0; i < size; i++)
  56.         prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
  57. }
  58.  
  59.  
  60. /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
  61. static const int16_t tab_cos[65] =
  62. {
  63.   32767,  32738,  32617,  32421,  32145,  31793,  31364,  30860,
  64.   30280,  29629,  28905,  28113,  27252,  26326,  25336,  24285,
  65.   23176,  22011,  20793,  19525,  18210,  16851,  15451,  14014,
  66.   12543,  11043,   9515,   7965,   6395,   4810,   3214,   1609,
  67.       1,  -1607,  -3211,  -4808,  -6393,  -7962,  -9513, -11040,
  68.  -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
  69.  -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
  70.  -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
  71. };
  72.  
  73. static int16_t ff_cos(uint16_t arg)
  74. {
  75.     uint8_t offset= arg;
  76.     uint8_t ind = arg >> 8;
  77.  
  78.     av_assert2(arg <= 0x3fff);
  79.  
  80.     return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8);
  81. }
  82.  
  83. void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
  84. {
  85.     int i;
  86.  
  87.     /* Convert LSF to LSP, lsp=cos(lsf) */
  88.     for(i=0; i<lp_order; i++)
  89.         // 20861 = 2.0 / PI in (0.15)
  90.         lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
  91. }
  92.  
  93. void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
  94. {
  95.     int i;
  96.  
  97.     for(i = 0; i < lp_order; i++)
  98.         lsp[i] = cos(2.0 * M_PI * lsf[i]);
  99. }
  100.  
  101. /**
  102.  * @brief decodes polynomial coefficients from LSP
  103.  * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
  104.  * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
  105.  */
  106. static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
  107. {
  108.     int i, j;
  109.  
  110.     f[0] = 0x400000;          // 1.0 in (3.22)
  111.     f[1] = -lsp[0] << 8;      // *2 and (0.15) -> (3.22)
  112.  
  113.     for(i=2; i<=lp_half_order; i++)
  114.     {
  115.         f[i] = f[i-2];
  116.         for(j=i; j>1; j--)
  117.             f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
  118.  
  119.         f[1] -= lsp[2*i-2] << 8;
  120.     }
  121. }
  122.  
  123. void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
  124. {
  125.     int i;
  126.     int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
  127.     int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
  128.  
  129.     lsp2poly(f1, lsp  , lp_half_order);
  130.     lsp2poly(f2, lsp+1, lp_half_order);
  131.  
  132.     /* 3.2.6 of G.729, Equations 25 and  26*/
  133.     lp[0] = 4096;
  134.     for(i=1; i<lp_half_order+1; i++)
  135.     {
  136.         int ff1 = f1[i] + f1[i-1]; // (3.22)
  137.         int ff2 = f2[i] - f2[i-1]; // (3.22)
  138.  
  139.         ff1 += 1 << 10; // for rounding
  140.         lp[i]    = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  141.         lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  142.     }
  143. }
  144.  
  145. void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
  146. {
  147.     int lp_half_order = lp_order >> 1;
  148.     double buf[MAX_LP_HALF_ORDER + 1];
  149.     double pa[MAX_LP_HALF_ORDER + 1];
  150.     double *qa = buf + 1;
  151.     int i,j;
  152.  
  153.     qa[-1] = 0.0;
  154.  
  155.     ff_lsp2polyf(lsp    , pa, lp_half_order    );
  156.     ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
  157.  
  158.     for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
  159.         double paf =  pa[i]            * (1 + lsp[lp_order - 1]);
  160.         double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
  161.         lp[i-1]  = (paf + qaf) * 0.5;
  162.         lp[j-1]  = (paf - qaf) * 0.5;
  163.     }
  164.  
  165.     lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
  166.         pa[lp_half_order] * 0.5;
  167.  
  168.     lp[lp_order - 1] = lsp[lp_order - 1];
  169. }
  170.  
  171. void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
  172. {
  173.     int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
  174.     int i;
  175.  
  176.     /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
  177.     for(i=0; i<lp_order; i++)
  178. #ifdef G729_BITEXACT
  179.         lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
  180. #else
  181.         lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
  182. #endif
  183.  
  184.     ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
  185.  
  186.     /* LSP values for second subframe (3.2.5 of G.729)*/
  187.     ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
  188. }
  189.  
  190. #ifndef ff_lsp2polyf
  191. void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
  192. {
  193.     int i, j;
  194.  
  195.     f[0] = 1.0;
  196.     f[1] = -2 * lsp[0];
  197.     lsp -= 2;
  198.     for(i=2; i<=lp_half_order; i++)
  199.     {
  200.         double val = -2 * lsp[2*i];
  201.         f[i] = val * f[i-1] + 2*f[i-2];
  202.         for(j=i-1; j>1; j--)
  203.             f[j] += f[j-1] * val + f[j-2];
  204.         f[1] += val;
  205.     }
  206. }
  207. #endif /* ff_lsp2polyf */
  208.  
  209. void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
  210. {
  211.     double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
  212.     float *lpc2 = lpc + (lp_half_order << 1) - 1;
  213.  
  214.     av_assert2(lp_half_order <= MAX_LP_HALF_ORDER);
  215.  
  216.     ff_lsp2polyf(lsp,     pa, lp_half_order);
  217.     ff_lsp2polyf(lsp + 1, qa, lp_half_order);
  218.  
  219.     while (lp_half_order--) {
  220.         double paf = pa[lp_half_order+1] + pa[lp_half_order];
  221.         double qaf = qa[lp_half_order+1] - qa[lp_half_order];
  222.  
  223.         lpc [ lp_half_order] = 0.5*(paf+qaf);
  224.         lpc2[-lp_half_order] = 0.5*(paf-qaf);
  225.     }
  226. }
  227.  
  228. void ff_sort_nearly_sorted_floats(float *vals, int len)
  229. {
  230.     int i,j;
  231.  
  232.     for (i = 0; i < len - 1; i++)
  233.         for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
  234.             FFSWAP(float, vals[j], vals[j+1]);
  235. }
  236.