Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * This file is part of the Independent JPEG Group's software.
  3.  *
  4.  * The authors make NO WARRANTY or representation, either express or implied,
  5.  * with respect to this software, its quality, accuracy, merchantability, or
  6.  * fitness for a particular purpose.  This software is provided "AS IS", and
  7.  * you, its user, assume the entire risk as to its quality and accuracy.
  8.  *
  9.  * This software is copyright (C) 1991-1996, Thomas G. Lane.
  10.  * All Rights Reserved except as specified below.
  11.  *
  12.  * Permission is hereby granted to use, copy, modify, and distribute this
  13.  * software (or portions thereof) for any purpose, without fee, subject to
  14.  * these conditions:
  15.  * (1) If any part of the source code for this software is distributed, then
  16.  * this README file must be included, with this copyright and no-warranty
  17.  * notice unaltered; and any additions, deletions, or changes to the original
  18.  * files must be clearly indicated in accompanying documentation.
  19.  * (2) If only executable code is distributed, then the accompanying
  20.  * documentation must state that "this software is based in part on the work
  21.  * of the Independent JPEG Group".
  22.  * (3) Permission for use of this software is granted only if the user accepts
  23.  * full responsibility for any undesirable consequences; the authors accept
  24.  * NO LIABILITY for damages of any kind.
  25.  *
  26.  * These conditions apply to any software derived from or based on the IJG
  27.  * code, not just to the unmodified library.  If you use our work, you ought
  28.  * to acknowledge us.
  29.  *
  30.  * Permission is NOT granted for the use of any IJG author's name or company
  31.  * name in advertising or publicity relating to this software or products
  32.  * derived from it.  This software may be referred to only as "the Independent
  33.  * JPEG Group's software".
  34.  *
  35.  * We specifically permit and encourage the use of this software as the basis
  36.  * of commercial products, provided that all warranty or liability claims are
  37.  * assumed by the product vendor.
  38.  *
  39.  * This file contains a slow-but-accurate integer implementation of the
  40.  * forward DCT (Discrete Cosine Transform).
  41.  *
  42.  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  43.  * on each column.  Direct algorithms are also available, but they are
  44.  * much more complex and seem not to be any faster when reduced to code.
  45.  *
  46.  * This implementation is based on an algorithm described in
  47.  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  48.  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  49.  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  50.  * The primary algorithm described there uses 11 multiplies and 29 adds.
  51.  * We use their alternate method with 12 multiplies and 32 adds.
  52.  * The advantage of this method is that no data path contains more than one
  53.  * multiplication; this allows a very simple and accurate implementation in
  54.  * scaled fixed-point arithmetic, with a minimal number of shifts.
  55.  */
  56.  
  57. /**
  58.  * @file
  59.  * Independent JPEG Group's slow & accurate dct.
  60.  */
  61.  
  62. #include "libavutil/common.h"
  63. #include "dct.h"
  64.  
  65. #include "bit_depth_template.c"
  66.  
  67. #define DCTSIZE 8
  68. #define BITS_IN_JSAMPLE BIT_DEPTH
  69. #define GLOBAL(x) x
  70. #define RIGHT_SHIFT(x, n) ((x) >> (n))
  71. #define MULTIPLY16C16(var,const) ((var)*(const))
  72.  
  73. #if 1 //def USE_ACCURATE_ROUNDING
  74. #define DESCALE(x,n)  RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
  75. #else
  76. #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
  77. #endif
  78.  
  79.  
  80. /*
  81.  * This module is specialized to the case DCTSIZE = 8.
  82.  */
  83.  
  84. #if DCTSIZE != 8
  85. #error  "Sorry, this code only copes with 8x8 DCTs."
  86. #endif
  87.  
  88.  
  89. /*
  90.  * The poop on this scaling stuff is as follows:
  91.  *
  92.  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
  93.  * larger than the true DCT outputs.  The final outputs are therefore
  94.  * a factor of N larger than desired; since N=8 this can be cured by
  95.  * a simple right shift at the end of the algorithm.  The advantage of
  96.  * this arrangement is that we save two multiplications per 1-D DCT,
  97.  * because the y0 and y4 outputs need not be divided by sqrt(N).
  98.  * In the IJG code, this factor of 8 is removed by the quantization step
  99.  * (in jcdctmgr.c), NOT in this module.
  100.  *
  101.  * We have to do addition and subtraction of the integer inputs, which
  102.  * is no problem, and multiplication by fractional constants, which is
  103.  * a problem to do in integer arithmetic.  We multiply all the constants
  104.  * by CONST_SCALE and convert them to integer constants (thus retaining
  105.  * CONST_BITS bits of precision in the constants).  After doing a
  106.  * multiplication we have to divide the product by CONST_SCALE, with proper
  107.  * rounding, to produce the correct output.  This division can be done
  108.  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
  109.  * as long as possible so that partial sums can be added together with
  110.  * full fractional precision.
  111.  *
  112.  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  113.  * they are represented to better-than-integral precision.  These outputs
  114.  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  115.  * with the recommended scaling.  (For 12-bit sample data, the intermediate
  116.  * array is int32_t anyway.)
  117.  *
  118.  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  119.  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
  120.  * shows that the values given below are the most effective.
  121.  */
  122.  
  123. #undef CONST_BITS
  124. #undef PASS1_BITS
  125. #undef OUT_SHIFT
  126.  
  127. #if BITS_IN_JSAMPLE == 8
  128. #define CONST_BITS  13
  129. #define PASS1_BITS  4   /* set this to 2 if 16x16 multiplies are faster */
  130. #define OUT_SHIFT   PASS1_BITS
  131. #else
  132. #define CONST_BITS  13
  133. #define PASS1_BITS  1   /* lose a little precision to avoid overflow */
  134. #define OUT_SHIFT   (PASS1_BITS + 1)
  135. #endif
  136.  
  137. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  138.  * causing a lot of useless floating-point operations at run time.
  139.  * To get around this we use the following pre-calculated constants.
  140.  * If you change CONST_BITS you may want to add appropriate values.
  141.  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  142.  */
  143.  
  144. #if CONST_BITS == 13
  145. #define FIX_0_298631336  ((int32_t)  2446)      /* FIX(0.298631336) */
  146. #define FIX_0_390180644  ((int32_t)  3196)      /* FIX(0.390180644) */
  147. #define FIX_0_541196100  ((int32_t)  4433)      /* FIX(0.541196100) */
  148. #define FIX_0_765366865  ((int32_t)  6270)      /* FIX(0.765366865) */
  149. #define FIX_0_899976223  ((int32_t)  7373)      /* FIX(0.899976223) */
  150. #define FIX_1_175875602  ((int32_t)  9633)      /* FIX(1.175875602) */
  151. #define FIX_1_501321110  ((int32_t)  12299)     /* FIX(1.501321110) */
  152. #define FIX_1_847759065  ((int32_t)  15137)     /* FIX(1.847759065) */
  153. #define FIX_1_961570560  ((int32_t)  16069)     /* FIX(1.961570560) */
  154. #define FIX_2_053119869  ((int32_t)  16819)     /* FIX(2.053119869) */
  155. #define FIX_2_562915447  ((int32_t)  20995)     /* FIX(2.562915447) */
  156. #define FIX_3_072711026  ((int32_t)  25172)     /* FIX(3.072711026) */
  157. #else
  158. #define FIX_0_298631336  FIX(0.298631336)
  159. #define FIX_0_390180644  FIX(0.390180644)
  160. #define FIX_0_541196100  FIX(0.541196100)
  161. #define FIX_0_765366865  FIX(0.765366865)
  162. #define FIX_0_899976223  FIX(0.899976223)
  163. #define FIX_1_175875602  FIX(1.175875602)
  164. #define FIX_1_501321110  FIX(1.501321110)
  165. #define FIX_1_847759065  FIX(1.847759065)
  166. #define FIX_1_961570560  FIX(1.961570560)
  167. #define FIX_2_053119869  FIX(2.053119869)
  168. #define FIX_2_562915447  FIX(2.562915447)
  169. #define FIX_3_072711026  FIX(3.072711026)
  170. #endif
  171.  
  172.  
  173. /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
  174.  * For 8-bit samples with the recommended scaling, all the variable
  175.  * and constant values involved are no more than 16 bits wide, so a
  176.  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  177.  * For 12-bit samples, a full 32-bit multiplication will be needed.
  178.  */
  179.  
  180. #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
  181. #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
  182. #else
  183. #define MULTIPLY(var,const)  ((var) * (const))
  184. #endif
  185.  
  186.  
  187. static av_always_inline void FUNC(row_fdct)(int16_t *data)
  188. {
  189.   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  190.   int tmp10, tmp11, tmp12, tmp13;
  191.   int z1, z2, z3, z4, z5;
  192.   int16_t *dataptr;
  193.   int ctr;
  194.  
  195.   /* Pass 1: process rows. */
  196.   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
  197.   /* furthermore, we scale the results by 2**PASS1_BITS. */
  198.  
  199.   dataptr = data;
  200.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  201.     tmp0 = dataptr[0] + dataptr[7];
  202.     tmp7 = dataptr[0] - dataptr[7];
  203.     tmp1 = dataptr[1] + dataptr[6];
  204.     tmp6 = dataptr[1] - dataptr[6];
  205.     tmp2 = dataptr[2] + dataptr[5];
  206.     tmp5 = dataptr[2] - dataptr[5];
  207.     tmp3 = dataptr[3] + dataptr[4];
  208.     tmp4 = dataptr[3] - dataptr[4];
  209.  
  210.     /* Even part per LL&M figure 1 --- note that published figure is faulty;
  211.      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
  212.      */
  213.  
  214.     tmp10 = tmp0 + tmp3;
  215.     tmp13 = tmp0 - tmp3;
  216.     tmp11 = tmp1 + tmp2;
  217.     tmp12 = tmp1 - tmp2;
  218.  
  219.     dataptr[0] = (int16_t) ((tmp10 + tmp11) << PASS1_BITS);
  220.     dataptr[4] = (int16_t) ((tmp10 - tmp11) << PASS1_BITS);
  221.  
  222.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  223.     dataptr[2] = (int16_t) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  224.                                    CONST_BITS-PASS1_BITS);
  225.     dataptr[6] = (int16_t) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  226.                                    CONST_BITS-PASS1_BITS);
  227.  
  228.     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
  229.      * cK represents cos(K*pi/16).
  230.      * i0..i3 in the paper are tmp4..tmp7 here.
  231.      */
  232.  
  233.     z1 = tmp4 + tmp7;
  234.     z2 = tmp5 + tmp6;
  235.     z3 = tmp4 + tmp6;
  236.     z4 = tmp5 + tmp7;
  237.     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  238.  
  239.     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  240.     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  241.     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  242.     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  243.     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  244.     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  245.     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  246.     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  247.  
  248.     z3 += z5;
  249.     z4 += z5;
  250.  
  251.     dataptr[7] = (int16_t) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  252.     dataptr[5] = (int16_t) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  253.     dataptr[3] = (int16_t) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  254.     dataptr[1] = (int16_t) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  255.  
  256.     dataptr += DCTSIZE;         /* advance pointer to next row */
  257.   }
  258. }
  259.  
  260. /*
  261.  * Perform the forward DCT on one block of samples.
  262.  */
  263.  
  264. GLOBAL(void)
  265. FUNC(ff_jpeg_fdct_islow)(int16_t *data)
  266. {
  267.   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  268.   int tmp10, tmp11, tmp12, tmp13;
  269.   int z1, z2, z3, z4, z5;
  270.   int16_t *dataptr;
  271.   int ctr;
  272.  
  273.   FUNC(row_fdct)(data);
  274.  
  275.   /* Pass 2: process columns.
  276.    * We remove the PASS1_BITS scaling, but leave the results scaled up
  277.    * by an overall factor of 8.
  278.    */
  279.  
  280.   dataptr = data;
  281.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  282.     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  283.     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  284.     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  285.     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  286.     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  287.     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  288.     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  289.     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  290.  
  291.     /* Even part per LL&M figure 1 --- note that published figure is faulty;
  292.      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
  293.      */
  294.  
  295.     tmp10 = tmp0 + tmp3;
  296.     tmp13 = tmp0 - tmp3;
  297.     tmp11 = tmp1 + tmp2;
  298.     tmp12 = tmp1 - tmp2;
  299.  
  300.     dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
  301.     dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
  302.  
  303.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  304.     dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  305.                                  CONST_BITS + OUT_SHIFT);
  306.     dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  307.                                  CONST_BITS + OUT_SHIFT);
  308.  
  309.     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
  310.      * cK represents cos(K*pi/16).
  311.      * i0..i3 in the paper are tmp4..tmp7 here.
  312.      */
  313.  
  314.     z1 = tmp4 + tmp7;
  315.     z2 = tmp5 + tmp6;
  316.     z3 = tmp4 + tmp6;
  317.     z4 = tmp5 + tmp7;
  318.     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  319.  
  320.     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  321.     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  322.     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  323.     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  324.     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  325.     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  326.     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  327.     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  328.  
  329.     z3 += z5;
  330.     z4 += z5;
  331.  
  332.     dataptr[DCTSIZE*7] = DESCALE(tmp4 + z1 + z3, CONST_BITS + OUT_SHIFT);
  333.     dataptr[DCTSIZE*5] = DESCALE(tmp5 + z2 + z4, CONST_BITS + OUT_SHIFT);
  334.     dataptr[DCTSIZE*3] = DESCALE(tmp6 + z2 + z3, CONST_BITS + OUT_SHIFT);
  335.     dataptr[DCTSIZE*1] = DESCALE(tmp7 + z1 + z4, CONST_BITS + OUT_SHIFT);
  336.  
  337.     dataptr++;                  /* advance pointer to next column */
  338.   }
  339. }
  340.  
  341. /*
  342.  * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
  343.  * on the rows and then, instead of doing even and odd, part on the columns
  344.  * you do even part two times.
  345.  */
  346. GLOBAL(void)
  347. FUNC(ff_fdct248_islow)(int16_t *data)
  348. {
  349.   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  350.   int tmp10, tmp11, tmp12, tmp13;
  351.   int z1;
  352.   int16_t *dataptr;
  353.   int ctr;
  354.  
  355.   FUNC(row_fdct)(data);
  356.  
  357.   /* Pass 2: process columns.
  358.    * We remove the PASS1_BITS scaling, but leave the results scaled up
  359.    * by an overall factor of 8.
  360.    */
  361.  
  362.   dataptr = data;
  363.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  364.      tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
  365.      tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
  366.      tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
  367.      tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
  368.      tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
  369.      tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
  370.      tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
  371.      tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
  372.  
  373.      tmp10 = tmp0 + tmp3;
  374.      tmp11 = tmp1 + tmp2;
  375.      tmp12 = tmp1 - tmp2;
  376.      tmp13 = tmp0 - tmp3;
  377.  
  378.      dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
  379.      dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
  380.  
  381.      z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  382.      dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  383.                                   CONST_BITS+OUT_SHIFT);
  384.      dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  385.                                   CONST_BITS+OUT_SHIFT);
  386.  
  387.      tmp10 = tmp4 + tmp7;
  388.      tmp11 = tmp5 + tmp6;
  389.      tmp12 = tmp5 - tmp6;
  390.      tmp13 = tmp4 - tmp7;
  391.  
  392.      dataptr[DCTSIZE*1] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
  393.      dataptr[DCTSIZE*5] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
  394.  
  395.      z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  396.      dataptr[DCTSIZE*3] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  397.                                   CONST_BITS + OUT_SHIFT);
  398.      dataptr[DCTSIZE*7] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  399.                                   CONST_BITS + OUT_SHIFT);
  400.  
  401.      dataptr++;                 /* advance pointer to next column */
  402.   }
  403. }
  404.