Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * This file is part of the Independent JPEG Group's software.
  3.  *
  4.  * The authors make NO WARRANTY or representation, either express or implied,
  5.  * with respect to this software, its quality, accuracy, merchantability, or
  6.  * fitness for a particular purpose.  This software is provided "AS IS", and
  7.  * you, its user, assume the entire risk as to its quality and accuracy.
  8.  *
  9.  * This software is copyright (C) 1994-1996, Thomas G. Lane.
  10.  * All Rights Reserved except as specified below.
  11.  *
  12.  * Permission is hereby granted to use, copy, modify, and distribute this
  13.  * software (or portions thereof) for any purpose, without fee, subject to
  14.  * these conditions:
  15.  * (1) If any part of the source code for this software is distributed, then
  16.  * this README file must be included, with this copyright and no-warranty
  17.  * notice unaltered; and any additions, deletions, or changes to the original
  18.  * files must be clearly indicated in accompanying documentation.
  19.  * (2) If only executable code is distributed, then the accompanying
  20.  * documentation must state that "this software is based in part on the work
  21.  * of the Independent JPEG Group".
  22.  * (3) Permission for use of this software is granted only if the user accepts
  23.  * full responsibility for any undesirable consequences; the authors accept
  24.  * NO LIABILITY for damages of any kind.
  25.  *
  26.  * These conditions apply to any software derived from or based on the IJG
  27.  * code, not just to the unmodified library.  If you use our work, you ought
  28.  * to acknowledge us.
  29.  *
  30.  * Permission is NOT granted for the use of any IJG author's name or company
  31.  * name in advertising or publicity relating to this software or products
  32.  * derived from it.  This software may be referred to only as "the Independent
  33.  * JPEG Group's software".
  34.  *
  35.  * We specifically permit and encourage the use of this software as the basis
  36.  * of commercial products, provided that all warranty or liability claims are
  37.  * assumed by the product vendor.
  38.  *
  39.  * This file contains a fast, not so accurate integer implementation of the
  40.  * forward DCT (Discrete Cosine Transform).
  41.  *
  42.  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  43.  * on each column.  Direct algorithms are also available, but they are
  44.  * much more complex and seem not to be any faster when reduced to code.
  45.  *
  46.  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  47.  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
  48.  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  49.  * JPEG textbook (see REFERENCES section in file README).  The following code
  50.  * is based directly on figure 4-8 in P&M.
  51.  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  52.  * possible to arrange the computation so that many of the multiplies are
  53.  * simple scalings of the final outputs.  These multiplies can then be
  54.  * folded into the multiplications or divisions by the JPEG quantization
  55.  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
  56.  * to be done in the DCT itself.
  57.  * The primary disadvantage of this method is that with fixed-point math,
  58.  * accuracy is lost due to imprecise representation of the scaled
  59.  * quantization values.  The smaller the quantization table entry, the less
  60.  * precise the scaled value, so this implementation does worse with high-
  61.  * quality-setting files than with low-quality ones.
  62.  */
  63.  
  64. /**
  65.  * @file
  66.  * Independent JPEG Group's fast AAN dct.
  67.  */
  68.  
  69. #include <stdlib.h>
  70. #include <stdio.h>
  71. #include "libavutil/common.h"
  72. #include "dct.h"
  73.  
  74. #define DCTSIZE 8
  75. #define GLOBAL(x) x
  76. #define RIGHT_SHIFT(x, n) ((x) >> (n))
  77.  
  78. /*
  79.  * This module is specialized to the case DCTSIZE = 8.
  80.  */
  81.  
  82. #if DCTSIZE != 8
  83.   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  84. #endif
  85.  
  86.  
  87. /* Scaling decisions are generally the same as in the LL&M algorithm;
  88.  * see jfdctint.c for more details.  However, we choose to descale
  89.  * (right shift) multiplication products as soon as they are formed,
  90.  * rather than carrying additional fractional bits into subsequent additions.
  91.  * This compromises accuracy slightly, but it lets us save a few shifts.
  92.  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  93.  * everywhere except in the multiplications proper; this saves a good deal
  94.  * of work on 16-bit-int machines.
  95.  *
  96.  * Again to save a few shifts, the intermediate results between pass 1 and
  97.  * pass 2 are not upscaled, but are represented only to integral precision.
  98.  *
  99.  * A final compromise is to represent the multiplicative constants to only
  100.  * 8 fractional bits, rather than 13.  This saves some shifting work on some
  101.  * machines, and may also reduce the cost of multiplication (since there
  102.  * are fewer one-bits in the constants).
  103.  */
  104.  
  105. #define CONST_BITS  8
  106.  
  107.  
  108. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  109.  * causing a lot of useless floating-point operations at run time.
  110.  * To get around this we use the following pre-calculated constants.
  111.  * If you change CONST_BITS you may want to add appropriate values.
  112.  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  113.  */
  114.  
  115. #if CONST_BITS == 8
  116. #define FIX_0_382683433  ((int32_t)   98)       /* FIX(0.382683433) */
  117. #define FIX_0_541196100  ((int32_t)  139)       /* FIX(0.541196100) */
  118. #define FIX_0_707106781  ((int32_t)  181)       /* FIX(0.707106781) */
  119. #define FIX_1_306562965  ((int32_t)  334)       /* FIX(1.306562965) */
  120. #else
  121. #define FIX_0_382683433  FIX(0.382683433)
  122. #define FIX_0_541196100  FIX(0.541196100)
  123. #define FIX_0_707106781  FIX(0.707106781)
  124. #define FIX_1_306562965  FIX(1.306562965)
  125. #endif
  126.  
  127.  
  128. /* We can gain a little more speed, with a further compromise in accuracy,
  129.  * by omitting the addition in a descaling shift.  This yields an incorrectly
  130.  * rounded result half the time...
  131.  */
  132.  
  133. #ifndef USE_ACCURATE_ROUNDING
  134. #undef DESCALE
  135. #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
  136. #endif
  137.  
  138.  
  139. /* Multiply a int16_t variable by an int32_t constant, and immediately
  140.  * descale to yield a int16_t result.
  141.  */
  142.  
  143. #define MULTIPLY(var,const)  ((int16_t) DESCALE((var) * (const), CONST_BITS))
  144.  
  145. static av_always_inline void row_fdct(int16_t * data){
  146.   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  147.   int tmp10, tmp11, tmp12, tmp13;
  148.   int z1, z2, z3, z4, z5, z11, z13;
  149.   int16_t *dataptr;
  150.   int ctr;
  151.  
  152.   /* Pass 1: process rows. */
  153.  
  154.   dataptr = data;
  155.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  156.     tmp0 = dataptr[0] + dataptr[7];
  157.     tmp7 = dataptr[0] - dataptr[7];
  158.     tmp1 = dataptr[1] + dataptr[6];
  159.     tmp6 = dataptr[1] - dataptr[6];
  160.     tmp2 = dataptr[2] + dataptr[5];
  161.     tmp5 = dataptr[2] - dataptr[5];
  162.     tmp3 = dataptr[3] + dataptr[4];
  163.     tmp4 = dataptr[3] - dataptr[4];
  164.  
  165.     /* Even part */
  166.  
  167.     tmp10 = tmp0 + tmp3;        /* phase 2 */
  168.     tmp13 = tmp0 - tmp3;
  169.     tmp11 = tmp1 + tmp2;
  170.     tmp12 = tmp1 - tmp2;
  171.  
  172.     dataptr[0] = tmp10 + tmp11; /* phase 3 */
  173.     dataptr[4] = tmp10 - tmp11;
  174.  
  175.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  176.     dataptr[2] = tmp13 + z1;    /* phase 5 */
  177.     dataptr[6] = tmp13 - z1;
  178.  
  179.     /* Odd part */
  180.  
  181.     tmp10 = tmp4 + tmp5;        /* phase 2 */
  182.     tmp11 = tmp5 + tmp6;
  183.     tmp12 = tmp6 + tmp7;
  184.  
  185.     /* The rotator is modified from fig 4-8 to avoid extra negations. */
  186.     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  187.     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5;    /* c2-c6 */
  188.     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5;    /* c2+c6 */
  189.     z3 = MULTIPLY(tmp11, FIX_0_707106781);         /* c4 */
  190.  
  191.     z11 = tmp7 + z3;            /* phase 5 */
  192.     z13 = tmp7 - z3;
  193.  
  194.     dataptr[5] = z13 + z2;      /* phase 6 */
  195.     dataptr[3] = z13 - z2;
  196.     dataptr[1] = z11 + z4;
  197.     dataptr[7] = z11 - z4;
  198.  
  199.     dataptr += DCTSIZE;         /* advance pointer to next row */
  200.   }
  201. }
  202.  
  203. /*
  204.  * Perform the forward DCT on one block of samples.
  205.  */
  206.  
  207. GLOBAL(void)
  208. ff_fdct_ifast (int16_t * data)
  209. {
  210.   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  211.   int tmp10, tmp11, tmp12, tmp13;
  212.   int z1, z2, z3, z4, z5, z11, z13;
  213.   int16_t *dataptr;
  214.   int ctr;
  215.  
  216.   row_fdct(data);
  217.  
  218.   /* Pass 2: process columns. */
  219.  
  220.   dataptr = data;
  221.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  222.     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  223.     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  224.     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  225.     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  226.     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  227.     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  228.     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  229.     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  230.  
  231.     /* Even part */
  232.  
  233.     tmp10 = tmp0 + tmp3;        /* phase 2 */
  234.     tmp13 = tmp0 - tmp3;
  235.     tmp11 = tmp1 + tmp2;
  236.     tmp12 = tmp1 - tmp2;
  237.  
  238.     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  239.     dataptr[DCTSIZE*4] = tmp10 - tmp11;
  240.  
  241.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  242.     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  243.     dataptr[DCTSIZE*6] = tmp13 - z1;
  244.  
  245.     /* Odd part */
  246.  
  247.     tmp10 = tmp4 + tmp5;        /* phase 2 */
  248.     tmp11 = tmp5 + tmp6;
  249.     tmp12 = tmp6 + tmp7;
  250.  
  251.     /* The rotator is modified from fig 4-8 to avoid extra negations. */
  252.     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  253.     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  254.     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  255.     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  256.  
  257.     z11 = tmp7 + z3;            /* phase 5 */
  258.     z13 = tmp7 - z3;
  259.  
  260.     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  261.     dataptr[DCTSIZE*3] = z13 - z2;
  262.     dataptr[DCTSIZE*1] = z11 + z4;
  263.     dataptr[DCTSIZE*7] = z11 - z4;
  264.  
  265.     dataptr++;                  /* advance pointer to next column */
  266.   }
  267. }
  268.  
  269. /*
  270.  * Perform the forward 2-4-8 DCT on one block of samples.
  271.  */
  272.  
  273. GLOBAL(void)
  274. ff_fdct_ifast248 (int16_t * data)
  275. {
  276.   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  277.   int tmp10, tmp11, tmp12, tmp13;
  278.   int z1;
  279.   int16_t *dataptr;
  280.   int ctr;
  281.  
  282.   row_fdct(data);
  283.  
  284.   /* Pass 2: process columns. */
  285.  
  286.   dataptr = data;
  287.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  288.     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
  289.     tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
  290.     tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
  291.     tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
  292.     tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
  293.     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
  294.     tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
  295.     tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
  296.  
  297.     /* Even part */
  298.  
  299.     tmp10 = tmp0 + tmp3;
  300.     tmp11 = tmp1 + tmp2;
  301.     tmp12 = tmp1 - tmp2;
  302.     tmp13 = tmp0 - tmp3;
  303.  
  304.     dataptr[DCTSIZE*0] = tmp10 + tmp11;
  305.     dataptr[DCTSIZE*4] = tmp10 - tmp11;
  306.  
  307.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
  308.     dataptr[DCTSIZE*2] = tmp13 + z1;
  309.     dataptr[DCTSIZE*6] = tmp13 - z1;
  310.  
  311.     tmp10 = tmp4 + tmp7;
  312.     tmp11 = tmp5 + tmp6;
  313.     tmp12 = tmp5 - tmp6;
  314.     tmp13 = tmp4 - tmp7;
  315.  
  316.     dataptr[DCTSIZE*1] = tmp10 + tmp11;
  317.     dataptr[DCTSIZE*5] = tmp10 - tmp11;
  318.  
  319.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
  320.     dataptr[DCTSIZE*3] = tmp13 + z1;
  321.     dataptr[DCTSIZE*7] = tmp13 - z1;
  322.  
  323.     dataptr++;                        /* advance pointer to next column */
  324.   }
  325. }
  326.  
  327.  
  328. #undef GLOBAL
  329. #undef CONST_BITS
  330. #undef DESCALE
  331. #undef FIX_0_541196100
  332. #undef FIX_1_306562965
  333.