Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * AMR narrowband decoder
  3.  * Copyright (c) 2006-2007 Robert Swain
  4.  * Copyright (c) 2009 Colin McQuillan
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23.  
  24. /**
  25.  * @file
  26.  * AMR narrowband decoder
  27.  *
  28.  * This decoder uses floats for simplicity and so is not bit-exact. One
  29.  * difference is that differences in phase can accumulate. The test sequences
  30.  * in 3GPP TS 26.074 can still be useful.
  31.  *
  32.  * - Comparing this file's output to the output of the ref decoder gives a
  33.  *   PSNR of 30 to 80. Plotting the output samples shows a difference in
  34.  *   phase in some areas.
  35.  *
  36.  * - Comparing both decoders against their input, this decoder gives a similar
  37.  *   PSNR. If the test sequence homing frames are removed (this decoder does
  38.  *   not detect them), the PSNR is at least as good as the reference on 140
  39.  *   out of 169 tests.
  40.  */
  41.  
  42.  
  43. #include <string.h>
  44. #include <math.h>
  45.  
  46. #include "libavutil/channel_layout.h"
  47. #include "libavutil/float_dsp.h"
  48. #include "avcodec.h"
  49. #include "libavutil/common.h"
  50. #include "libavutil/avassert.h"
  51. #include "celp_math.h"
  52. #include "celp_filters.h"
  53. #include "acelp_filters.h"
  54. #include "acelp_vectors.h"
  55. #include "acelp_pitch_delay.h"
  56. #include "lsp.h"
  57. #include "amr.h"
  58. #include "internal.h"
  59.  
  60. #include "amrnbdata.h"
  61.  
  62. #define AMR_BLOCK_SIZE              160   ///< samples per frame
  63. #define AMR_SAMPLE_BOUND        32768.0   ///< threshold for synthesis overflow
  64.  
  65. /**
  66.  * Scale from constructed speech to [-1,1]
  67.  *
  68.  * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  69.  * upscales by two (section 6.2.2).
  70.  *
  71.  * Fundamentally, this scale is determined by energy_mean through
  72.  * the fixed vector contribution to the excitation vector.
  73.  */
  74. #define AMR_SAMPLE_SCALE  (2.0 / 32768.0)
  75.  
  76. /** Prediction factor for 12.2kbit/s mode */
  77. #define PRED_FAC_MODE_12k2             0.65
  78.  
  79. #define LSF_R_FAC          (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  80. #define MIN_LSF_SPACING    (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  81. #define PITCH_LAG_MIN_MODE_12k2          18   ///< Lower bound on decoded lag search in 12.2kbit/s mode
  82.  
  83. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  84. #define MIN_ENERGY -14.0
  85.  
  86. /** Maximum sharpening factor
  87.  *
  88.  * The specification says 0.8, which should be 13107, but the reference C code
  89.  * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
  90.  */
  91. #define SHARP_MAX 0.79449462890625
  92.  
  93. /** Number of impulse response coefficients used for tilt factor */
  94. #define AMR_TILT_RESPONSE   22
  95. /** Tilt factor = 1st reflection coefficient * gamma_t */
  96. #define AMR_TILT_GAMMA_T   0.8
  97. /** Adaptive gain control factor used in post-filter */
  98. #define AMR_AGC_ALPHA      0.9
  99.  
  100. typedef struct AMRContext {
  101.     AMRNBFrame                        frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  102.     uint8_t             bad_frame_indicator; ///< bad frame ? 1 : 0
  103.     enum Mode                cur_frame_mode;
  104.  
  105.     int16_t     prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  106.     double          lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  107.     double   prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  108.  
  109.     float         lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  110.     float          lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  111.  
  112.     float           lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  113.  
  114.     uint8_t                   pitch_lag_int; ///< integer part of pitch lag from current subframe
  115.  
  116.     float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  117.     float                       *excitation; ///< pointer to the current excitation vector in excitation_buf
  118.  
  119.     float   pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  120.     float   fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  121.  
  122.     float               prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  123.     float                     pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  124.     float                     fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  125.  
  126.     float                              beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  127.     uint8_t                      diff_count; ///< the number of subframes for which diff has been above 0.65
  128.     uint8_t                      hang_count; ///< the number of subframes since a hangover period started
  129.  
  130.     float            prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  131.     uint8_t               prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  132.     uint8_t                 ir_filter_onset; ///< flag for impulse response filter strength
  133.  
  134.     float                postfilter_mem[10]; ///< previous intermediate values in the formant filter
  135.     float                          tilt_mem; ///< previous input to tilt compensation filter
  136.     float                    postfilter_agc; ///< previous factor used for adaptive gain control
  137.     float                  high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  138.  
  139.     float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  140.  
  141.     ACELPFContext                     acelpf_ctx; ///< context for filters for ACELP-based codecs
  142.     ACELPVContext                     acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  143.     CELPFContext                       celpf_ctx; ///< context for filters for CELP-based codecs
  144.     CELPMContext                       celpm_ctx; ///< context for fixed point math operations
  145.  
  146. } AMRContext;
  147.  
  148. /** Double version of ff_weighted_vector_sumf() */
  149. static void weighted_vector_sumd(double *out, const double *in_a,
  150.                                  const double *in_b, double weight_coeff_a,
  151.                                  double weight_coeff_b, int length)
  152. {
  153.     int i;
  154.  
  155.     for (i = 0; i < length; i++)
  156.         out[i] = weight_coeff_a * in_a[i]
  157.                + weight_coeff_b * in_b[i];
  158. }
  159.  
  160. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  161. {
  162.     AMRContext *p = avctx->priv_data;
  163.     int i;
  164.  
  165.     if (avctx->channels > 1) {
  166.         avpriv_report_missing_feature(avctx, "multi-channel AMR");
  167.         return AVERROR_PATCHWELCOME;
  168.     }
  169.  
  170.     avctx->channels       = 1;
  171.     avctx->channel_layout = AV_CH_LAYOUT_MONO;
  172.     if (!avctx->sample_rate)
  173.         avctx->sample_rate = 8000;
  174.     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
  175.  
  176.     // p->excitation always points to the same position in p->excitation_buf
  177.     p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  178.  
  179.     for (i = 0; i < LP_FILTER_ORDER; i++) {
  180.         p->prev_lsp_sub4[i] =    lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  181.         p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  182.     }
  183.  
  184.     for (i = 0; i < 4; i++)
  185.         p->prediction_error[i] = MIN_ENERGY;
  186.  
  187.     ff_acelp_filter_init(&p->acelpf_ctx);
  188.     ff_acelp_vectors_init(&p->acelpv_ctx);
  189.     ff_celp_filter_init(&p->celpf_ctx);
  190.     ff_celp_math_init(&p->celpm_ctx);
  191.  
  192.     return 0;
  193. }
  194.  
  195.  
  196. /**
  197.  * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  198.  *
  199.  * The order of speech bits is specified by 3GPP TS 26.101.
  200.  *
  201.  * @param p the context
  202.  * @param buf               pointer to the input buffer
  203.  * @param buf_size          size of the input buffer
  204.  *
  205.  * @return the frame mode
  206.  */
  207. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  208.                                   int buf_size)
  209. {
  210.     enum Mode mode;
  211.  
  212.     // Decode the first octet.
  213.     mode = buf[0] >> 3 & 0x0F;                      // frame type
  214.     p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
  215.  
  216.     if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
  217.         return NO_DATA;
  218.     }
  219.  
  220.     if (mode < MODE_DTX)
  221.         ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  222.                            amr_unpacking_bitmaps_per_mode[mode]);
  223.  
  224.     return mode;
  225. }
  226.  
  227.  
  228. /// @name AMR pitch LPC coefficient decoding functions
  229. /// @{
  230.  
  231. /**
  232.  * Interpolate the LSF vector (used for fixed gain smoothing).
  233.  * The interpolation is done over all four subframes even in MODE_12k2.
  234.  *
  235.  * @param[in]     ctx       The Context
  236.  * @param[in,out] lsf_q     LSFs in [0,1] for each subframe
  237.  * @param[in]     lsf_new   New LSFs in [0,1] for subframe 4
  238.  */
  239. static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  240. {
  241.     int i;
  242.  
  243.     for (i = 0; i < 4; i++)
  244.         ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  245.                                 0.25 * (3 - i), 0.25 * (i + 1),
  246.                                 LP_FILTER_ORDER);
  247. }
  248.  
  249. /**
  250.  * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  251.  *
  252.  * @param p the context
  253.  * @param lsp output LSP vector
  254.  * @param lsf_no_r LSF vector without the residual vector added
  255.  * @param lsf_quantizer pointers to LSF dictionary tables
  256.  * @param quantizer_offset offset in tables
  257.  * @param sign for the 3 dictionary table
  258.  * @param update store data for computing the next frame's LSFs
  259.  */
  260. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  261.                                  const float lsf_no_r[LP_FILTER_ORDER],
  262.                                  const int16_t *lsf_quantizer[5],
  263.                                  const int quantizer_offset,
  264.                                  const int sign, const int update)
  265. {
  266.     int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  267.     float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  268.     int i;
  269.  
  270.     for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  271.         memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  272.                2 * sizeof(*lsf_r));
  273.  
  274.     if (sign) {
  275.         lsf_r[4] *= -1;
  276.         lsf_r[5] *= -1;
  277.     }
  278.  
  279.     if (update)
  280.         memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  281.  
  282.     for (i = 0; i < LP_FILTER_ORDER; i++)
  283.         lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  284.  
  285.     ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  286.  
  287.     if (update)
  288.         interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  289.  
  290.     ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  291. }
  292.  
  293. /**
  294.  * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  295.  *
  296.  * @param p                 pointer to the AMRContext
  297.  */
  298. static void lsf2lsp_5(AMRContext *p)
  299. {
  300.     const uint16_t *lsf_param = p->frame.lsf;
  301.     float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  302.     const int16_t *lsf_quantizer[5];
  303.     int i;
  304.  
  305.     lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  306.     lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  307.     lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  308.     lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  309.     lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  310.  
  311.     for (i = 0; i < LP_FILTER_ORDER; i++)
  312.         lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  313.  
  314.     lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  315.     lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  316.  
  317.     // interpolate LSP vectors at subframes 1 and 3
  318.     weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  319.     weighted_vector_sumd(p->lsp[2], p->lsp[1]       , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  320. }
  321.  
  322. /**
  323.  * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  324.  *
  325.  * @param p                 pointer to the AMRContext
  326.  */
  327. static void lsf2lsp_3(AMRContext *p)
  328. {
  329.     const uint16_t *lsf_param = p->frame.lsf;
  330.     int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  331.     float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  332.     const int16_t *lsf_quantizer;
  333.     int i, j;
  334.  
  335.     lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  336.     memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  337.  
  338.     lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  339.     memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  340.  
  341.     lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  342.     memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  343.  
  344.     // calculate mean-removed LSF vector and add mean
  345.     for (i = 0; i < LP_FILTER_ORDER; i++)
  346.         lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  347.  
  348.     ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  349.  
  350.     // store data for computing the next frame's LSFs
  351.     interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  352.     memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  353.  
  354.     ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  355.  
  356.     // interpolate LSP vectors at subframes 1, 2 and 3
  357.     for (i = 1; i <= 3; i++)
  358.         for(j = 0; j < LP_FILTER_ORDER; j++)
  359.             p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  360.                 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  361. }
  362.  
  363. /// @}
  364.  
  365.  
  366. /// @name AMR pitch vector decoding functions
  367. /// @{
  368.  
  369. /**
  370.  * Like ff_decode_pitch_lag(), but with 1/6 resolution
  371.  */
  372. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  373.                                  const int prev_lag_int, const int subframe)
  374. {
  375.     if (subframe == 0 || subframe == 2) {
  376.         if (pitch_index < 463) {
  377.             *lag_int  = (pitch_index + 107) * 10923 >> 16;
  378.             *lag_frac = pitch_index - *lag_int * 6 + 105;
  379.         } else {
  380.             *lag_int  = pitch_index - 368;
  381.             *lag_frac = 0;
  382.         }
  383.     } else {
  384.         *lag_int  = ((pitch_index + 5) * 10923 >> 16) - 1;
  385.         *lag_frac = pitch_index - *lag_int * 6 - 3;
  386.         *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  387.                             PITCH_DELAY_MAX - 9);
  388.     }
  389. }
  390.  
  391. static void decode_pitch_vector(AMRContext *p,
  392.                                 const AMRNBSubframe *amr_subframe,
  393.                                 const int subframe)
  394. {
  395.     int pitch_lag_int, pitch_lag_frac;
  396.     enum Mode mode = p->cur_frame_mode;
  397.  
  398.     if (p->cur_frame_mode == MODE_12k2) {
  399.         decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  400.                              amr_subframe->p_lag, p->pitch_lag_int,
  401.                              subframe);
  402.     } else
  403.         ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  404.                             amr_subframe->p_lag,
  405.                             p->pitch_lag_int, subframe,
  406.                             mode != MODE_4k75 && mode != MODE_5k15,
  407.                             mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  408.  
  409.     p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  410.  
  411.     pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  412.  
  413.     pitch_lag_int += pitch_lag_frac > 0;
  414.  
  415.     /* Calculate the pitch vector by interpolating the past excitation at the
  416.        pitch lag using a b60 hamming windowed sinc function.   */
  417.     p->acelpf_ctx.acelp_interpolatef(p->excitation,
  418.                           p->excitation + 1 - pitch_lag_int,
  419.                           ff_b60_sinc, 6,
  420.                           pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  421.                           10, AMR_SUBFRAME_SIZE);
  422.  
  423.     memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  424. }
  425.  
  426. /// @}
  427.  
  428.  
  429. /// @name AMR algebraic code book (fixed) vector decoding functions
  430. /// @{
  431.  
  432. /**
  433.  * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  434.  */
  435. static void decode_10bit_pulse(int code, int pulse_position[8],
  436.                                int i1, int i2, int i3)
  437. {
  438.     // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  439.     // the 3 pulses and the upper 7 bits being coded in base 5
  440.     const uint8_t *positions = base_five_table[code >> 3];
  441.     pulse_position[i1] = (positions[2] << 1) + ( code       & 1);
  442.     pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  443.     pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  444. }
  445.  
  446. /**
  447.  * Decode the algebraic codebook index to pulse positions and signs and
  448.  * construct the algebraic codebook vector for MODE_10k2.
  449.  *
  450.  * @param fixed_index          positions of the eight pulses
  451.  * @param fixed_sparse         pointer to the algebraic codebook vector
  452.  */
  453. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  454.                                    AMRFixed *fixed_sparse)
  455. {
  456.     int pulse_position[8];
  457.     int i, temp;
  458.  
  459.     decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  460.     decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  461.  
  462.     // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  463.     // the 2 pulses and the upper 5 bits being coded in base 5
  464.     temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  465.     pulse_position[3] = temp % 5;
  466.     pulse_position[7] = temp / 5;
  467.     if (pulse_position[7] & 1)
  468.         pulse_position[3] = 4 - pulse_position[3];
  469.     pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6]       & 1);
  470.     pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  471.  
  472.     fixed_sparse->n = 8;
  473.     for (i = 0; i < 4; i++) {
  474.         const int pos1   = (pulse_position[i]     << 2) + i;
  475.         const int pos2   = (pulse_position[i + 4] << 2) + i;
  476.         const float sign = fixed_index[i] ? -1.0 : 1.0;
  477.         fixed_sparse->x[i    ] = pos1;
  478.         fixed_sparse->x[i + 4] = pos2;
  479.         fixed_sparse->y[i    ] = sign;
  480.         fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  481.     }
  482. }
  483.  
  484. /**
  485.  * Decode the algebraic codebook index to pulse positions and signs,
  486.  * then construct the algebraic codebook vector.
  487.  *
  488.  *                              nb of pulses | bits encoding pulses
  489.  * For MODE_4k75 or MODE_5k15,             2 | 1-3, 4-6, 7
  490.  *                  MODE_5k9,              2 | 1,   2-4, 5-6, 7-9
  491.  *                  MODE_6k7,              3 | 1-3, 4,   5-7, 8,  9-11
  492.  *      MODE_7k4 or MODE_7k95,             4 | 1-3, 4-6, 7-9, 10, 11-13
  493.  *
  494.  * @param fixed_sparse pointer to the algebraic codebook vector
  495.  * @param pulses       algebraic codebook indexes
  496.  * @param mode         mode of the current frame
  497.  * @param subframe     current subframe number
  498.  */
  499. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  500.                                 const enum Mode mode, const int subframe)
  501. {
  502.     av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);
  503.  
  504.     if (mode == MODE_12k2) {
  505.         ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  506.     } else if (mode == MODE_10k2) {
  507.         decode_8_pulses_31bits(pulses, fixed_sparse);
  508.     } else {
  509.         int *pulse_position = fixed_sparse->x;
  510.         int i, pulse_subset;
  511.         const int fixed_index = pulses[0];
  512.  
  513.         if (mode <= MODE_5k15) {
  514.             pulse_subset      = ((fixed_index >> 3) & 8)     + (subframe << 1);
  515.             pulse_position[0] = ( fixed_index       & 7) * 5 + track_position[pulse_subset];
  516.             pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  517.             fixed_sparse->n = 2;
  518.         } else if (mode == MODE_5k9) {
  519.             pulse_subset      = ((fixed_index & 1) << 1) + 1;
  520.             pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  521.             pulse_subset      = (fixed_index  >> 4) & 3;
  522.             pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  523.             fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  524.         } else if (mode == MODE_6k7) {
  525.             pulse_position[0] = (fixed_index        & 7) * 5;
  526.             pulse_subset      = (fixed_index  >> 2) & 2;
  527.             pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  528.             pulse_subset      = (fixed_index  >> 6) & 2;
  529.             pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  530.             fixed_sparse->n = 3;
  531.         } else { // mode <= MODE_7k95
  532.             pulse_position[0] = gray_decode[ fixed_index        & 7];
  533.             pulse_position[1] = gray_decode[(fixed_index >> 3)  & 7] + 1;
  534.             pulse_position[2] = gray_decode[(fixed_index >> 6)  & 7] + 2;
  535.             pulse_subset      = (fixed_index >> 9) & 1;
  536.             pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  537.             fixed_sparse->n = 4;
  538.         }
  539.         for (i = 0; i < fixed_sparse->n; i++)
  540.             fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  541.     }
  542. }
  543.  
  544. /**
  545.  * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  546.  *
  547.  * @param p the context
  548.  * @param subframe unpacked amr subframe
  549.  * @param mode mode of the current frame
  550.  * @param fixed_sparse sparse respresentation of the fixed vector
  551.  */
  552. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  553.                              AMRFixed *fixed_sparse)
  554. {
  555.     // The spec suggests the current pitch gain is always used, but in other
  556.     // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  557.     // so the codebook gain cannot depend on the quantized pitch gain.
  558.     if (mode == MODE_12k2)
  559.         p->beta = FFMIN(p->pitch_gain[4], 1.0);
  560.  
  561.     fixed_sparse->pitch_lag  = p->pitch_lag_int;
  562.     fixed_sparse->pitch_fac  = p->beta;
  563.  
  564.     // Save pitch sharpening factor for the next subframe
  565.     // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  566.     // the fact that the gains for two subframes are jointly quantized.
  567.     if (mode != MODE_4k75 || subframe & 1)
  568.         p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  569. }
  570. /// @}
  571.  
  572.  
  573. /// @name AMR gain decoding functions
  574. /// @{
  575.  
  576. /**
  577.  * fixed gain smoothing
  578.  * Note that where the spec specifies the "spectrum in the q domain"
  579.  * in section 6.1.4, in fact frequencies should be used.
  580.  *
  581.  * @param p the context
  582.  * @param lsf LSFs for the current subframe, in the range [0,1]
  583.  * @param lsf_avg averaged LSFs
  584.  * @param mode mode of the current frame
  585.  *
  586.  * @return fixed gain smoothed
  587.  */
  588. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  589.                                const float *lsf_avg, const enum Mode mode)
  590. {
  591.     float diff = 0.0;
  592.     int i;
  593.  
  594.     for (i = 0; i < LP_FILTER_ORDER; i++)
  595.         diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  596.  
  597.     // If diff is large for ten subframes, disable smoothing for a 40-subframe
  598.     // hangover period.
  599.     p->diff_count++;
  600.     if (diff <= 0.65)
  601.         p->diff_count = 0;
  602.  
  603.     if (p->diff_count > 10) {
  604.         p->hang_count = 0;
  605.         p->diff_count--; // don't let diff_count overflow
  606.     }
  607.  
  608.     if (p->hang_count < 40) {
  609.         p->hang_count++;
  610.     } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  611.         const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  612.         const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  613.                                        p->fixed_gain[2] + p->fixed_gain[3] +
  614.                                        p->fixed_gain[4]) * 0.2;
  615.         return smoothing_factor * p->fixed_gain[4] +
  616.                (1.0 - smoothing_factor) * fixed_gain_mean;
  617.     }
  618.     return p->fixed_gain[4];
  619. }
  620.  
  621. /**
  622.  * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  623.  *
  624.  * @param p the context
  625.  * @param amr_subframe unpacked amr subframe
  626.  * @param mode mode of the current frame
  627.  * @param subframe current subframe number
  628.  * @param fixed_gain_factor decoded gain correction factor
  629.  */
  630. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  631.                          const enum Mode mode, const int subframe,
  632.                          float *fixed_gain_factor)
  633. {
  634.     if (mode == MODE_12k2 || mode == MODE_7k95) {
  635.         p->pitch_gain[4]   = qua_gain_pit [amr_subframe->p_gain    ]
  636.             * (1.0 / 16384.0);
  637.         *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  638.             * (1.0 /  2048.0);
  639.     } else {
  640.         const uint16_t *gains;
  641.  
  642.         if (mode >= MODE_6k7) {
  643.             gains = gains_high[amr_subframe->p_gain];
  644.         } else if (mode >= MODE_5k15) {
  645.             gains = gains_low [amr_subframe->p_gain];
  646.         } else {
  647.             // gain index is only coded in subframes 0,2 for MODE_4k75
  648.             gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  649.         }
  650.  
  651.         p->pitch_gain[4]   = gains[0] * (1.0 / 16384.0);
  652.         *fixed_gain_factor = gains[1] * (1.0 /  4096.0);
  653.     }
  654. }
  655.  
  656. /// @}
  657.  
  658.  
  659. /// @name AMR preprocessing functions
  660. /// @{
  661.  
  662. /**
  663.  * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  664.  * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  665.  *
  666.  * @param out vector with filter applied
  667.  * @param in source vector
  668.  * @param filter phase filter coefficients
  669.  *
  670.  *  out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  671.  */
  672. static void apply_ir_filter(float *out, const AMRFixed *in,
  673.                             const float *filter)
  674. {
  675.     float filter1[AMR_SUBFRAME_SIZE],     ///< filters at pitch lag*1 and *2
  676.           filter2[AMR_SUBFRAME_SIZE];
  677.     int   lag = in->pitch_lag;
  678.     float fac = in->pitch_fac;
  679.     int i;
  680.  
  681.     if (lag < AMR_SUBFRAME_SIZE) {
  682.         ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  683.                           AMR_SUBFRAME_SIZE);
  684.  
  685.         if (lag < AMR_SUBFRAME_SIZE >> 1)
  686.             ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  687.                               AMR_SUBFRAME_SIZE);
  688.     }
  689.  
  690.     memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  691.     for (i = 0; i < in->n; i++) {
  692.         int   x = in->x[i];
  693.         float y = in->y[i];
  694.         const float *filterp;
  695.  
  696.         if (x >= AMR_SUBFRAME_SIZE - lag) {
  697.             filterp = filter;
  698.         } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  699.             filterp = filter1;
  700.         } else
  701.             filterp = filter2;
  702.  
  703.         ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  704.     }
  705. }
  706.  
  707. /**
  708.  * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  709.  * Also know as "adaptive phase dispersion".
  710.  *
  711.  * This implements 3GPP TS 26.090 section 6.1(5).
  712.  *
  713.  * @param p the context
  714.  * @param fixed_sparse algebraic codebook vector
  715.  * @param fixed_vector unfiltered fixed vector
  716.  * @param fixed_gain smoothed gain
  717.  * @param out space for modified vector if necessary
  718.  */
  719. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  720.                                     const float *fixed_vector,
  721.                                     float fixed_gain, float *out)
  722. {
  723.     int ir_filter_nr;
  724.  
  725.     if (p->pitch_gain[4] < 0.6) {
  726.         ir_filter_nr = 0;      // strong filtering
  727.     } else if (p->pitch_gain[4] < 0.9) {
  728.         ir_filter_nr = 1;      // medium filtering
  729.     } else
  730.         ir_filter_nr = 2;      // no filtering
  731.  
  732.     // detect 'onset'
  733.     if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  734.         p->ir_filter_onset = 2;
  735.     } else if (p->ir_filter_onset)
  736.         p->ir_filter_onset--;
  737.  
  738.     if (!p->ir_filter_onset) {
  739.         int i, count = 0;
  740.  
  741.         for (i = 0; i < 5; i++)
  742.             if (p->pitch_gain[i] < 0.6)
  743.                 count++;
  744.         if (count > 2)
  745.             ir_filter_nr = 0;
  746.  
  747.         if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  748.             ir_filter_nr--;
  749.     } else if (ir_filter_nr < 2)
  750.         ir_filter_nr++;
  751.  
  752.     // Disable filtering for very low level of fixed_gain.
  753.     // Note this step is not specified in the technical description but is in
  754.     // the reference source in the function Ph_disp.
  755.     if (fixed_gain < 5.0)
  756.         ir_filter_nr = 2;
  757.  
  758.     if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  759.          && ir_filter_nr < 2) {
  760.         apply_ir_filter(out, fixed_sparse,
  761.                         (p->cur_frame_mode == MODE_7k95 ?
  762.                              ir_filters_lookup_MODE_7k95 :
  763.                              ir_filters_lookup)[ir_filter_nr]);
  764.         fixed_vector = out;
  765.     }
  766.  
  767.     // update ir filter strength history
  768.     p->prev_ir_filter_nr       = ir_filter_nr;
  769.     p->prev_sparse_fixed_gain  = fixed_gain;
  770.  
  771.     return fixed_vector;
  772. }
  773.  
  774. /// @}
  775.  
  776.  
  777. /// @name AMR synthesis functions
  778. /// @{
  779.  
  780. /**
  781.  * Conduct 10th order linear predictive coding synthesis.
  782.  *
  783.  * @param p             pointer to the AMRContext
  784.  * @param lpc           pointer to the LPC coefficients
  785.  * @param fixed_gain    fixed codebook gain for synthesis
  786.  * @param fixed_vector  algebraic codebook vector
  787.  * @param samples       pointer to the output speech samples
  788.  * @param overflow      16-bit overflow flag
  789.  */
  790. static int synthesis(AMRContext *p, float *lpc,
  791.                      float fixed_gain, const float *fixed_vector,
  792.                      float *samples, uint8_t overflow)
  793. {
  794.     int i;
  795.     float excitation[AMR_SUBFRAME_SIZE];
  796.  
  797.     // if an overflow has been detected, the pitch vector is scaled down by a
  798.     // factor of 4
  799.     if (overflow)
  800.         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  801.             p->pitch_vector[i] *= 0.25;
  802.  
  803.     p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  804.                             p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  805.  
  806.     // emphasize pitch vector contribution
  807.     if (p->pitch_gain[4] > 0.5 && !overflow) {
  808.         float energy = p->celpm_ctx.dot_productf(excitation, excitation,
  809.                                                     AMR_SUBFRAME_SIZE);
  810.         float pitch_factor =
  811.             p->pitch_gain[4] *
  812.             (p->cur_frame_mode == MODE_12k2 ?
  813.                 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  814.                 0.5  * FFMIN(p->pitch_gain[4], SHARP_MAX));
  815.  
  816.         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  817.             excitation[i] += pitch_factor * p->pitch_vector[i];
  818.  
  819.         ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  820.                                                 AMR_SUBFRAME_SIZE);
  821.     }
  822.  
  823.     p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  824.                                  AMR_SUBFRAME_SIZE,
  825.                                  LP_FILTER_ORDER);
  826.  
  827.     // detect overflow
  828.     for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  829.         if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  830.             return 1;
  831.         }
  832.  
  833.     return 0;
  834. }
  835.  
  836. /// @}
  837.  
  838.  
  839. /// @name AMR update functions
  840. /// @{
  841.  
  842. /**
  843.  * Update buffers and history at the end of decoding a subframe.
  844.  *
  845.  * @param p             pointer to the AMRContext
  846.  */
  847. static void update_state(AMRContext *p)
  848. {
  849.     memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  850.  
  851.     memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  852.             (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  853.  
  854.     memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  855.     memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  856.  
  857.     memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  858.             LP_FILTER_ORDER * sizeof(float));
  859. }
  860.  
  861. /// @}
  862.  
  863.  
  864. /// @name AMR Postprocessing functions
  865. /// @{
  866.  
  867. /**
  868.  * Get the tilt factor of a formant filter from its transfer function
  869.  *
  870.  * @param p     The Context
  871.  * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  872.  * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  873.  */
  874. static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
  875. {
  876.     float rh0, rh1; // autocorrelation at lag 0 and 1
  877.  
  878.     // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  879.     float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  880.     float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  881.  
  882.     hf[0] = 1.0;
  883.     memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  884.     p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
  885.                                  AMR_TILT_RESPONSE,
  886.                                  LP_FILTER_ORDER);
  887.  
  888.     rh0 = p->celpm_ctx.dot_productf(hf, hf,     AMR_TILT_RESPONSE);
  889.     rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  890.  
  891.     // The spec only specifies this check for 12.2 and 10.2 kbit/s
  892.     // modes. But in the ref source the tilt is always non-negative.
  893.     return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  894. }
  895.  
  896. /**
  897.  * Perform adaptive post-filtering to enhance the quality of the speech.
  898.  * See section 6.2.1.
  899.  *
  900.  * @param p             pointer to the AMRContext
  901.  * @param lpc           interpolated LP coefficients for this subframe
  902.  * @param buf_out       output of the filter
  903.  */
  904. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  905. {
  906.     int i;
  907.     float *samples          = p->samples_in + LP_FILTER_ORDER; // Start of input
  908.  
  909.     float speech_gain       = p->celpm_ctx.dot_productf(samples, samples,
  910.                                                            AMR_SUBFRAME_SIZE);
  911.  
  912.     float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];  // Output of pole filter
  913.     const float *gamma_n, *gamma_d;                       // Formant filter factor table
  914.     float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  915.  
  916.     if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  917.         gamma_n = ff_pow_0_7;
  918.         gamma_d = ff_pow_0_75;
  919.     } else {
  920.         gamma_n = ff_pow_0_55;
  921.         gamma_d = ff_pow_0_7;
  922.     }
  923.  
  924.     for (i = 0; i < LP_FILTER_ORDER; i++) {
  925.          lpc_n[i] = lpc[i] * gamma_n[i];
  926.          lpc_d[i] = lpc[i] * gamma_d[i];
  927.     }
  928.  
  929.     memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  930.     p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  931.                                  AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  932.     memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  933.            sizeof(float) * LP_FILTER_ORDER);
  934.  
  935.     p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  936.                                       pole_out + LP_FILTER_ORDER,
  937.                                       AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  938.  
  939.     ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
  940.                          AMR_SUBFRAME_SIZE);
  941.  
  942.     ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  943.                              AMR_AGC_ALPHA, &p->postfilter_agc);
  944. }
  945.  
  946. /// @}
  947.  
  948. static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
  949.                               int *got_frame_ptr, AVPacket *avpkt)
  950. {
  951.  
  952.     AMRContext *p = avctx->priv_data;        // pointer to private data
  953.     AVFrame *frame     = data;
  954.     const uint8_t *buf = avpkt->data;
  955.     int buf_size       = avpkt->size;
  956.     float *buf_out;                          // pointer to the output data buffer
  957.     int i, subframe, ret;
  958.     float fixed_gain_factor;
  959.     AMRFixed fixed_sparse = {0};             // fixed vector up to anti-sparseness processing
  960.     float spare_vector[AMR_SUBFRAME_SIZE];   // extra stack space to hold result from anti-sparseness processing
  961.     float synth_fixed_gain;                  // the fixed gain that synthesis should use
  962.     const float *synth_fixed_vector;         // pointer to the fixed vector that synthesis should use
  963.  
  964.     /* get output buffer */
  965.     frame->nb_samples = AMR_BLOCK_SIZE;
  966.     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  967.         return ret;
  968.     buf_out = (float *)frame->data[0];
  969.  
  970.     p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  971.     if (p->cur_frame_mode == NO_DATA) {
  972.         av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
  973.         return AVERROR_INVALIDDATA;
  974.     }
  975.     if (p->cur_frame_mode == MODE_DTX) {
  976.         avpriv_report_missing_feature(avctx, "dtx mode");
  977.         av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
  978.         return AVERROR_PATCHWELCOME;
  979.     }
  980.  
  981.     if (p->cur_frame_mode == MODE_12k2) {
  982.         lsf2lsp_5(p);
  983.     } else
  984.         lsf2lsp_3(p);
  985.  
  986.     for (i = 0; i < 4; i++)
  987.         ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  988.  
  989.     for (subframe = 0; subframe < 4; subframe++) {
  990.         const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  991.  
  992.         decode_pitch_vector(p, amr_subframe, subframe);
  993.  
  994.         decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  995.                             p->cur_frame_mode, subframe);
  996.  
  997.         // The fixed gain (section 6.1.3) depends on the fixed vector
  998.         // (section 6.1.2), but the fixed vector calculation uses
  999.         // pitch sharpening based on the on the pitch gain (section 6.1.3).
  1000.         // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  1001.         decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  1002.                      &fixed_gain_factor);
  1003.  
  1004.         pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  1005.  
  1006.         if (fixed_sparse.pitch_lag == 0) {
  1007.             av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
  1008.             return AVERROR_INVALIDDATA;
  1009.         }
  1010.         ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  1011.                             AMR_SUBFRAME_SIZE);
  1012.  
  1013.         p->fixed_gain[4] =
  1014.             ff_amr_set_fixed_gain(fixed_gain_factor,
  1015.                        p->celpm_ctx.dot_productf(p->fixed_vector,
  1016.                                                                p->fixed_vector,
  1017.                                                                AMR_SUBFRAME_SIZE) /
  1018.                                   AMR_SUBFRAME_SIZE,
  1019.                        p->prediction_error,
  1020.                        energy_mean[p->cur_frame_mode], energy_pred_fac);
  1021.  
  1022.         // The excitation feedback is calculated without any processing such
  1023.         // as fixed gain smoothing. This isn't mentioned in the specification.
  1024.         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  1025.             p->excitation[i] *= p->pitch_gain[4];
  1026.         ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  1027.                             AMR_SUBFRAME_SIZE);
  1028.  
  1029.         // In the ref decoder, excitation is stored with no fractional bits.
  1030.         // This step prevents buzz in silent periods. The ref encoder can
  1031.         // emit long sequences with pitch factor greater than one. This
  1032.         // creates unwanted feedback if the excitation vector is nonzero.
  1033.         // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  1034.         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  1035.             p->excitation[i] = truncf(p->excitation[i]);
  1036.  
  1037.         // Smooth fixed gain.
  1038.         // The specification is ambiguous, but in the reference source, the
  1039.         // smoothed value is NOT fed back into later fixed gain smoothing.
  1040.         synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  1041.                                              p->lsf_avg, p->cur_frame_mode);
  1042.  
  1043.         synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  1044.                                              synth_fixed_gain, spare_vector);
  1045.  
  1046.         if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  1047.                       synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  1048.             // overflow detected -> rerun synthesis scaling pitch vector down
  1049.             // by a factor of 4, skipping pitch vector contribution emphasis
  1050.             // and adaptive gain control
  1051.             synthesis(p, p->lpc[subframe], synth_fixed_gain,
  1052.                       synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  1053.  
  1054.         postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  1055.  
  1056.         // update buffers and history
  1057.         ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  1058.         update_state(p);
  1059.     }
  1060.  
  1061.     p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
  1062.                                              buf_out, highpass_zeros,
  1063.                                              highpass_poles,
  1064.                                              highpass_gain * AMR_SAMPLE_SCALE,
  1065.                                              p->high_pass_mem, AMR_BLOCK_SIZE);
  1066.  
  1067.     /* Update averaged lsf vector (used for fixed gain smoothing).
  1068.      *
  1069.      * Note that lsf_avg should not incorporate the current frame's LSFs
  1070.      * for fixed_gain_smooth.
  1071.      * The specification has an incorrect formula: the reference decoder uses
  1072.      * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  1073.     p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  1074.                             0.84, 0.16, LP_FILTER_ORDER);
  1075.  
  1076.     *got_frame_ptr = 1;
  1077.  
  1078.     /* return the amount of bytes consumed if everything was OK */
  1079.     return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  1080. }
  1081.  
  1082.  
  1083. AVCodec ff_amrnb_decoder = {
  1084.     .name           = "amrnb",
  1085.     .long_name      = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
  1086.     .type           = AVMEDIA_TYPE_AUDIO,
  1087.     .id             = AV_CODEC_ID_AMR_NB,
  1088.     .priv_data_size = sizeof(AMRContext),
  1089.     .init           = amrnb_decode_init,
  1090.     .decode         = amrnb_decode_frame,
  1091.     .capabilities   = CODEC_CAP_DR1,
  1092.     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1093.                                                      AV_SAMPLE_FMT_NONE },
  1094. };
  1095.