Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * adaptive and fixed codebook vector operations for ACELP-based codecs
  3.  *
  4.  * Copyright (c) 2008 Vladimir Voroshilov
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. #include <inttypes.h>
  24.  
  25. #include "libavutil/common.h"
  26. #include "libavutil/float_dsp.h"
  27. #include "avcodec.h"
  28. #include "acelp_vectors.h"
  29.  
  30. const uint8_t ff_fc_2pulses_9bits_track1[16] =
  31. {
  32.     1,  3,
  33.     6,  8,
  34.     11, 13,
  35.     16, 18,
  36.     21, 23,
  37.     26, 28,
  38.     31, 33,
  39.     36, 38
  40. };
  41. const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
  42. {
  43.   1,  3,
  44.   8,  6,
  45.   18, 16,
  46.   11, 13,
  47.   38, 36,
  48.   31, 33,
  49.   21, 23,
  50.   28, 26,
  51. };
  52.  
  53. const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
  54. {
  55.   0,  2,
  56.   5,  4,
  57.   12, 10,
  58.   7,  9,
  59.   25, 24,
  60.   20, 22,
  61.   14, 15,
  62.   19, 17,
  63.   36, 31,
  64.   21, 26,
  65.   1,  6,
  66.   16, 11,
  67.   27, 29,
  68.   32, 30,
  69.   39, 37,
  70.   34, 35,
  71. };
  72.  
  73. const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
  74. {
  75.   0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
  76. };
  77.  
  78. const uint8_t ff_fc_4pulses_8bits_track_4[32] =
  79. {
  80.     3,  4,
  81.     8,  9,
  82.     13, 14,
  83.     18, 19,
  84.     23, 24,
  85.     28, 29,
  86.     33, 34,
  87.     38, 39,
  88.     43, 44,
  89.     48, 49,
  90.     53, 54,
  91.     58, 59,
  92.     63, 64,
  93.     68, 69,
  94.     73, 74,
  95.     78, 79,
  96. };
  97.  
  98. const float ff_pow_0_7[10] = {
  99.     0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
  100.     0.117649, 0.082354, 0.057648, 0.040354, 0.028248
  101. };
  102.  
  103. const float ff_pow_0_75[10] = {
  104.     0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
  105.     0.177979, 0.133484, 0.100113, 0.075085, 0.056314
  106. };
  107.  
  108. const float ff_pow_0_55[10] = {
  109.     0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
  110.     0.027681, 0.015224, 0.008373, 0.004605, 0.002533
  111. };
  112.  
  113. const float ff_b60_sinc[61] = {
  114.  0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
  115.  0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
  116. -0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
  117.  0.0689392 ,  0.0357056 ,  0.0       , -0.0305481 , -0.0504150 , -0.0570068  ,
  118. -0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
  119.  0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
  120. -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.0       ,  0.00582886 ,
  121.  0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
  122. -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
  123.  0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
  124.  0.
  125. };
  126.  
  127. void ff_acelp_fc_pulse_per_track(
  128.         int16_t* fc_v,
  129.         const uint8_t *tab1,
  130.         const uint8_t *tab2,
  131.         int pulse_indexes,
  132.         int pulse_signs,
  133.         int pulse_count,
  134.         int bits)
  135. {
  136.     int mask = (1 << bits) - 1;
  137.     int i;
  138.  
  139.     for(i=0; i<pulse_count; i++)
  140.     {
  141.         fc_v[i + tab1[pulse_indexes & mask]] +=
  142.                 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
  143.  
  144.         pulse_indexes >>= bits;
  145.         pulse_signs >>= 1;
  146.     }
  147.  
  148.     fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
  149. }
  150.  
  151. void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
  152.                                 AMRFixed *fixed_sparse,
  153.                                 const uint8_t *gray_decode,
  154.                                 int half_pulse_count, int bits)
  155. {
  156.     int i;
  157.     int mask = (1 << bits) - 1;
  158.  
  159.     fixed_sparse->no_repeat_mask = 0;
  160.     fixed_sparse->n = 2 * half_pulse_count;
  161.     for (i = 0; i < half_pulse_count; i++) {
  162.         const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
  163.         const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
  164.         const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
  165.         fixed_sparse->x[2*i+1] = pos1;
  166.         fixed_sparse->x[2*i  ] = pos2;
  167.         fixed_sparse->y[2*i+1] = sign;
  168.         fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
  169.     }
  170. }
  171.  
  172. void ff_acelp_weighted_vector_sum(
  173.         int16_t* out,
  174.         const int16_t *in_a,
  175.         const int16_t *in_b,
  176.         int16_t weight_coeff_a,
  177.         int16_t weight_coeff_b,
  178.         int16_t rounder,
  179.         int shift,
  180.         int length)
  181. {
  182.     int i;
  183.  
  184.     // Clipping required here; breaks OVERFLOW test.
  185.     for(i=0; i<length; i++)
  186.         out[i] = av_clip_int16((
  187.                  in_a[i] * weight_coeff_a +
  188.                  in_b[i] * weight_coeff_b +
  189.                  rounder) >> shift);
  190. }
  191.  
  192. void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
  193.                              float weight_coeff_a, float weight_coeff_b, int length)
  194. {
  195.     int i;
  196.  
  197.     for(i=0; i<length; i++)
  198.         out[i] = weight_coeff_a * in_a[i]
  199.                + weight_coeff_b * in_b[i];
  200. }
  201.  
  202. void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
  203.                               int size, float alpha, float *gain_mem)
  204. {
  205.     int i;
  206.     float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
  207.     float gain_scale_factor = 1.0;
  208.     float mem = *gain_mem;
  209.  
  210.     if (postfilter_energ)
  211.         gain_scale_factor = sqrt(speech_energ / postfilter_energ);
  212.  
  213.     gain_scale_factor *= 1.0 - alpha;
  214.  
  215.     for (i = 0; i < size; i++) {
  216.         mem = alpha * mem + gain_scale_factor;
  217.         out[i] = in[i] * mem;
  218.     }
  219.  
  220.     *gain_mem = mem;
  221. }
  222.  
  223. void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
  224.                                              float sum_of_squares, const int n)
  225. {
  226.     int i;
  227.     float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
  228.     if (scalefactor)
  229.         scalefactor = sqrt(sum_of_squares / scalefactor);
  230.     for (i = 0; i < n; i++)
  231.         out[i] = in[i] * scalefactor;
  232. }
  233.  
  234. void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
  235. {
  236.     int i;
  237.  
  238.     for (i=0; i < in->n; i++) {
  239.         int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
  240.         float y = in->y[i] * scale;
  241.  
  242.         if (in->pitch_lag > 0)
  243.             do {
  244.                 out[x] += y;
  245.                 y *= in->pitch_fac;
  246.                 x += in->pitch_lag;
  247.             } while (x < size && repeats);
  248.     }
  249. }
  250.  
  251. void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
  252. {
  253.     int i;
  254.  
  255.     for (i=0; i < in->n; i++) {
  256.         int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
  257.  
  258.         if (in->pitch_lag > 0)
  259.             do {
  260.                 out[x] = 0.0;
  261.                 x += in->pitch_lag;
  262.             } while (x < size && repeats);
  263.     }
  264. }
  265.  
  266. void ff_acelp_vectors_init(ACELPVContext *c)
  267. {
  268.     c->weighted_vector_sumf   = ff_weighted_vector_sumf;
  269.  
  270.     if(HAVE_MIPSFPU)
  271.         ff_acelp_vectors_init_mips(c);
  272. }
  273.