Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * MPEG-4 Parametric Stereo decoding functions
  3.  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. #include <stdint.h>
  23. #include "libavutil/common.h"
  24. #include "libavutil/internal.h"
  25. #include "libavutil/mathematics.h"
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "aacps.h"
  29. #include "aacps_tablegen.h"
  30. #include "aacpsdata.c"
  31.  
  32. #define PS_BASELINE 0  ///< Operate in Baseline PS mode
  33.                        ///< Baseline implies 10 or 20 stereo bands,
  34.                        ///< mixing mode A, and no ipd/opd
  35.  
  36. #define numQMFSlots 32 //numTimeSlots * RATE
  37.  
  38. static const int8_t num_env_tab[2][4] = {
  39.     { 0, 1, 2, 4, },
  40.     { 1, 2, 3, 4, },
  41. };
  42.  
  43. static const int8_t nr_iidicc_par_tab[] = {
  44.     10, 20, 34, 10, 20, 34,
  45. };
  46.  
  47. static const int8_t nr_iidopd_par_tab[] = {
  48.      5, 11, 17,  5, 11, 17,
  49. };
  50.  
  51. enum {
  52.     huff_iid_df1,
  53.     huff_iid_dt1,
  54.     huff_iid_df0,
  55.     huff_iid_dt0,
  56.     huff_icc_df,
  57.     huff_icc_dt,
  58.     huff_ipd_df,
  59.     huff_ipd_dt,
  60.     huff_opd_df,
  61.     huff_opd_dt,
  62. };
  63.  
  64. static const int huff_iid[] = {
  65.     huff_iid_df0,
  66.     huff_iid_df1,
  67.     huff_iid_dt0,
  68.     huff_iid_dt1,
  69. };
  70.  
  71. static VLC vlc_ps[10];
  72.  
  73. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  74. /** \
  75.  * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
  76.  * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
  77.  * bitstream. \
  78.  * \
  79.  * @param avctx contains the current codec context \
  80.  * @param gb    pointer to the input bitstream \
  81.  * @param ps    pointer to the Parametric Stereo context \
  82.  * @param PAR   pointer to the parameter to be read \
  83.  * @param e     envelope to decode \
  84.  * @param dt    1: time delta-coded, 0: frequency delta-coded \
  85.  */ \
  86. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  87.                         int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  88. { \
  89.     int b, num = ps->nr_ ## PAR ## _par; \
  90.     VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  91.     if (dt) { \
  92.         int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  93.         e_prev = FFMAX(e_prev, 0); \
  94.         for (b = 0; b < num; b++) { \
  95.             int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  96.             if (MASK) val &= MASK; \
  97.             PAR[e][b] = val; \
  98.             if (ERR_CONDITION) \
  99.                 goto err; \
  100.         } \
  101.     } else { \
  102.         int val = 0; \
  103.         for (b = 0; b < num; b++) { \
  104.             val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  105.             if (MASK) val &= MASK; \
  106.             PAR[e][b] = val; \
  107.             if (ERR_CONDITION) \
  108.                 goto err; \
  109.         } \
  110.     } \
  111.     return 0; \
  112. err: \
  113.     av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  114.     return -1; \
  115. }
  116.  
  117. READ_PAR_DATA(iid,    huff_offset[table_idx],    0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  118. READ_PAR_DATA(icc,    huff_offset[table_idx],    0, ps->icc_par[e][b] > 7U)
  119. READ_PAR_DATA(ipdopd,                      0, 0x07, 0)
  120.  
  121. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  122. {
  123.     int e;
  124.     int count = get_bits_count(gb);
  125.  
  126.     if (ps_extension_id)
  127.         return 0;
  128.  
  129.     ps->enable_ipdopd = get_bits1(gb);
  130.     if (ps->enable_ipdopd) {
  131.         for (e = 0; e < ps->num_env; e++) {
  132.             int dt = get_bits1(gb);
  133.             read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  134.             dt = get_bits1(gb);
  135.             read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  136.         }
  137.     }
  138.     skip_bits1(gb);      //reserved_ps
  139.     return get_bits_count(gb) - count;
  140. }
  141.  
  142. static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
  143. {
  144.     int i;
  145.     for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  146.         opd_hist[i] = 0;
  147.         ipd_hist[i] = 0;
  148.     }
  149. }
  150.  
  151. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  152. {
  153.     int e;
  154.     int bit_count_start = get_bits_count(gb_host);
  155.     int header;
  156.     int bits_consumed;
  157.     GetBitContext gbc = *gb_host, *gb = &gbc;
  158.  
  159.     header = get_bits1(gb);
  160.     if (header) {     //enable_ps_header
  161.         ps->enable_iid = get_bits1(gb);
  162.         if (ps->enable_iid) {
  163.             int iid_mode = get_bits(gb, 3);
  164.             if (iid_mode > 5) {
  165.                 av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  166.                        iid_mode);
  167.                 goto err;
  168.             }
  169.             ps->nr_iid_par    = nr_iidicc_par_tab[iid_mode];
  170.             ps->iid_quant     = iid_mode > 2;
  171.             ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  172.         }
  173.         ps->enable_icc = get_bits1(gb);
  174.         if (ps->enable_icc) {
  175.             ps->icc_mode = get_bits(gb, 3);
  176.             if (ps->icc_mode > 5) {
  177.                 av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  178.                        ps->icc_mode);
  179.                 goto err;
  180.             }
  181.             ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  182.         }
  183.         ps->enable_ext = get_bits1(gb);
  184.     }
  185.  
  186.     ps->frame_class = get_bits1(gb);
  187.     ps->num_env_old = ps->num_env;
  188.     ps->num_env     = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  189.  
  190.     ps->border_position[0] = -1;
  191.     if (ps->frame_class) {
  192.         for (e = 1; e <= ps->num_env; e++)
  193.             ps->border_position[e] = get_bits(gb, 5);
  194.     } else
  195.         for (e = 1; e <= ps->num_env; e++)
  196.             ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  197.  
  198.     if (ps->enable_iid) {
  199.         for (e = 0; e < ps->num_env; e++) {
  200.             int dt = get_bits1(gb);
  201.             if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  202.                 goto err;
  203.         }
  204.     } else
  205.         memset(ps->iid_par, 0, sizeof(ps->iid_par));
  206.  
  207.     if (ps->enable_icc)
  208.         for (e = 0; e < ps->num_env; e++) {
  209.             int dt = get_bits1(gb);
  210.             if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  211.                 goto err;
  212.         }
  213.     else
  214.         memset(ps->icc_par, 0, sizeof(ps->icc_par));
  215.  
  216.     if (ps->enable_ext) {
  217.         int cnt = get_bits(gb, 4);
  218.         if (cnt == 15) {
  219.             cnt += get_bits(gb, 8);
  220.         }
  221.         cnt *= 8;
  222.         while (cnt > 7) {
  223.             int ps_extension_id = get_bits(gb, 2);
  224.             cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  225.         }
  226.         if (cnt < 0) {
  227.             av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
  228.             goto err;
  229.         }
  230.         skip_bits(gb, cnt);
  231.     }
  232.  
  233.     ps->enable_ipdopd &= !PS_BASELINE;
  234.  
  235.     //Fix up envelopes
  236.     if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  237.         //Create a fake envelope
  238.         int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  239.         int b;
  240.         if (source >= 0 && source != ps->num_env) {
  241.             if (ps->enable_iid) {
  242.                 memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  243.             }
  244.             if (ps->enable_icc) {
  245.                 memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  246.             }
  247.             if (ps->enable_ipdopd) {
  248.                 memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  249.                 memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  250.             }
  251.         }
  252.         if (ps->enable_iid){
  253.             for (b = 0; b < ps->nr_iid_par; b++) {
  254.                 if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
  255.                     av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
  256.                     goto err;
  257.                 }
  258.             }
  259.         }
  260.         if (ps->enable_icc){
  261.             for (b = 0; b < ps->nr_iid_par; b++) {
  262.                 if (ps->icc_par[ps->num_env][b] > 7U) {
  263.                     av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
  264.                     goto err;
  265.                 }
  266.             }
  267.         }
  268.         ps->num_env++;
  269.         ps->border_position[ps->num_env] = numQMFSlots - 1;
  270.     }
  271.  
  272.  
  273.     ps->is34bands_old = ps->is34bands;
  274.     if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  275.         ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  276.                         (ps->enable_icc && ps->nr_icc_par == 34);
  277.  
  278.     //Baseline
  279.     if (!ps->enable_ipdopd) {
  280.         memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  281.         memset(ps->opd_par, 0, sizeof(ps->opd_par));
  282.     }
  283.  
  284.     if (header)
  285.         ps->start = 1;
  286.  
  287.     bits_consumed = get_bits_count(gb) - bit_count_start;
  288.     if (bits_consumed <= bits_left) {
  289.         skip_bits_long(gb_host, bits_consumed);
  290.         return bits_consumed;
  291.     }
  292.     av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  293. err:
  294.     ps->start = 0;
  295.     skip_bits_long(gb_host, bits_left);
  296.     memset(ps->iid_par, 0, sizeof(ps->iid_par));
  297.     memset(ps->icc_par, 0, sizeof(ps->icc_par));
  298.     memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  299.     memset(ps->opd_par, 0, sizeof(ps->opd_par));
  300.     return bits_left;
  301. }
  302.  
  303. /** Split one subband into 2 subsubbands with a symmetric real filter.
  304.  * The filter must have its non-center even coefficients equal to zero. */
  305. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[8], int len, int reverse)
  306. {
  307.     int i, j;
  308.     for (i = 0; i < len; i++, in++) {
  309.         float re_in = filter[6] * in[6][0];          //real inphase
  310.         float re_op = 0.0f;                          //real out of phase
  311.         float im_in = filter[6] * in[6][1];          //imag inphase
  312.         float im_op = 0.0f;                          //imag out of phase
  313.         for (j = 0; j < 6; j += 2) {
  314.             re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  315.             im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  316.         }
  317.         out[ reverse][i][0] = re_in + re_op;
  318.         out[ reverse][i][1] = im_in + im_op;
  319.         out[!reverse][i][0] = re_in - re_op;
  320.         out[!reverse][i][1] = im_in - im_op;
  321.     }
  322. }
  323.  
  324. /** Split one subband into 6 subsubbands with a complex filter */
  325. static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], const float (*filter)[8][2], int len)
  326. {
  327.     int i;
  328.     int N = 8;
  329.     LOCAL_ALIGNED_16(float, temp, [8], [2]);
  330.  
  331.     for (i = 0; i < len; i++, in++) {
  332.         dsp->hybrid_analysis(temp, in, filter, 1, N);
  333.         out[0][i][0] = temp[6][0];
  334.         out[0][i][1] = temp[6][1];
  335.         out[1][i][0] = temp[7][0];
  336.         out[1][i][1] = temp[7][1];
  337.         out[2][i][0] = temp[0][0];
  338.         out[2][i][1] = temp[0][1];
  339.         out[3][i][0] = temp[1][0];
  340.         out[3][i][1] = temp[1][1];
  341.         out[4][i][0] = temp[2][0] + temp[5][0];
  342.         out[4][i][1] = temp[2][1] + temp[5][1];
  343.         out[5][i][0] = temp[3][0] + temp[4][0];
  344.         out[5][i][1] = temp[3][1] + temp[4][1];
  345.     }
  346. }
  347.  
  348. static void hybrid4_8_12_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], const float (*filter)[8][2], int N, int len)
  349. {
  350.     int i;
  351.  
  352.     for (i = 0; i < len; i++, in++) {
  353.         dsp->hybrid_analysis(out[0] + i, in, filter, 32, N);
  354.     }
  355. }
  356.  
  357. static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2],
  358.                             float in[5][44][2], float L[2][38][64],
  359.                             int is34, int len)
  360. {
  361.     int i, j;
  362.     for (i = 0; i < 5; i++) {
  363.         for (j = 0; j < 38; j++) {
  364.             in[i][j+6][0] = L[0][j][i];
  365.             in[i][j+6][1] = L[1][j][i];
  366.         }
  367.     }
  368.     if (is34) {
  369.         hybrid4_8_12_cx(dsp, in[0], out,    f34_0_12, 12, len);
  370.         hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8,   8, len);
  371.         hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4,   4, len);
  372.         hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4,   4, len);
  373.         hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4,   4, len);
  374.         dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
  375.     } else {
  376.         hybrid6_cx(dsp, in[0], out, f20_0_8, len);
  377.         hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  378.         hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  379.         dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
  380.     }
  381.     //update in_buf
  382.     for (i = 0; i < 5; i++) {
  383.         memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  384.     }
  385. }
  386.  
  387. static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64],
  388.                              float in[91][32][2], int is34, int len)
  389. {
  390.     int i, n;
  391.     if (is34) {
  392.         for (n = 0; n < len; n++) {
  393.             memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  394.             memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  395.             for (i = 0; i < 12; i++) {
  396.                 out[0][n][0] += in[   i][n][0];
  397.                 out[1][n][0] += in[   i][n][1];
  398.             }
  399.             for (i = 0; i < 8; i++) {
  400.                 out[0][n][1] += in[12+i][n][0];
  401.                 out[1][n][1] += in[12+i][n][1];
  402.             }
  403.             for (i = 0; i < 4; i++) {
  404.                 out[0][n][2] += in[20+i][n][0];
  405.                 out[1][n][2] += in[20+i][n][1];
  406.                 out[0][n][3] += in[24+i][n][0];
  407.                 out[1][n][3] += in[24+i][n][1];
  408.                 out[0][n][4] += in[28+i][n][0];
  409.                 out[1][n][4] += in[28+i][n][1];
  410.             }
  411.         }
  412.         dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
  413.     } else {
  414.         for (n = 0; n < len; n++) {
  415.             out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  416.                            in[3][n][0] + in[4][n][0] + in[5][n][0];
  417.             out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  418.                            in[3][n][1] + in[4][n][1] + in[5][n][1];
  419.             out[0][n][1] = in[6][n][0] + in[7][n][0];
  420.             out[1][n][1] = in[6][n][1] + in[7][n][1];
  421.             out[0][n][2] = in[8][n][0] + in[9][n][0];
  422.             out[1][n][2] = in[8][n][1] + in[9][n][1];
  423.         }
  424.         dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
  425.     }
  426. }
  427.  
  428. /// All-pass filter decay slope
  429. #define DECAY_SLOPE      0.05f
  430. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  431. static const int   NR_PAR_BANDS[]      = { 20, 34 };
  432. /// Number of frequency bands that can be addressed by the sub subband index, k
  433. static const int   NR_BANDS[]          = { 71, 91 };
  434. /// Start frequency band for the all-pass filter decay slope
  435. static const int   DECAY_CUTOFF[]      = { 10, 32 };
  436. /// Number of all-pass filer bands
  437. static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
  438. /// First stereo band using the short one sample delay
  439. static const int   SHORT_DELAY_BAND[]  = { 42, 62 };
  440.  
  441. /** Table 8.46 */
  442. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  443. {
  444.     int b;
  445.     if (full)
  446.         b = 9;
  447.     else {
  448.         b = 4;
  449.         par_mapped[10] = 0;
  450.     }
  451.     for (; b >= 0; b--) {
  452.         par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  453.     }
  454. }
  455.  
  456. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  457. {
  458.     par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
  459.     par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
  460.     par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
  461.     par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
  462.     par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
  463.     par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
  464.     par_mapped[ 6] =    par[10];
  465.     par_mapped[ 7] =    par[11];
  466.     par_mapped[ 8] = (  par[12] +   par[13]) / 2;
  467.     par_mapped[ 9] = (  par[14] +   par[15]) / 2;
  468.     par_mapped[10] =    par[16];
  469.     if (full) {
  470.         par_mapped[11] =    par[17];
  471.         par_mapped[12] =    par[18];
  472.         par_mapped[13] =    par[19];
  473.         par_mapped[14] = (  par[20] +   par[21]) / 2;
  474.         par_mapped[15] = (  par[22] +   par[23]) / 2;
  475.         par_mapped[16] = (  par[24] +   par[25]) / 2;
  476.         par_mapped[17] = (  par[26] +   par[27]) / 2;
  477.         par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
  478.         par_mapped[19] = (  par[32] +   par[33]) / 2;
  479.     }
  480. }
  481.  
  482. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  483. {
  484.     par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
  485.     par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
  486.     par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
  487.     par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
  488.     par[ 4] = (  par[ 6] +   par[ 7]) * 0.5f;
  489.     par[ 5] = (  par[ 8] +   par[ 9]) * 0.5f;
  490.     par[ 6] =    par[10];
  491.     par[ 7] =    par[11];
  492.     par[ 8] = (  par[12] +   par[13]) * 0.5f;
  493.     par[ 9] = (  par[14] +   par[15]) * 0.5f;
  494.     par[10] =    par[16];
  495.     par[11] =    par[17];
  496.     par[12] =    par[18];
  497.     par[13] =    par[19];
  498.     par[14] = (  par[20] +   par[21]) * 0.5f;
  499.     par[15] = (  par[22] +   par[23]) * 0.5f;
  500.     par[16] = (  par[24] +   par[25]) * 0.5f;
  501.     par[17] = (  par[26] +   par[27]) * 0.5f;
  502.     par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
  503.     par[19] = (  par[32] +   par[33]) * 0.5f;
  504. }
  505.  
  506. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  507. {
  508.     if (full) {
  509.         par_mapped[33] = par[9];
  510.         par_mapped[32] = par[9];
  511.         par_mapped[31] = par[9];
  512.         par_mapped[30] = par[9];
  513.         par_mapped[29] = par[9];
  514.         par_mapped[28] = par[9];
  515.         par_mapped[27] = par[8];
  516.         par_mapped[26] = par[8];
  517.         par_mapped[25] = par[8];
  518.         par_mapped[24] = par[8];
  519.         par_mapped[23] = par[7];
  520.         par_mapped[22] = par[7];
  521.         par_mapped[21] = par[7];
  522.         par_mapped[20] = par[7];
  523.         par_mapped[19] = par[6];
  524.         par_mapped[18] = par[6];
  525.         par_mapped[17] = par[5];
  526.         par_mapped[16] = par[5];
  527.     } else {
  528.         par_mapped[16] =      0;
  529.     }
  530.     par_mapped[15] = par[4];
  531.     par_mapped[14] = par[4];
  532.     par_mapped[13] = par[4];
  533.     par_mapped[12] = par[4];
  534.     par_mapped[11] = par[3];
  535.     par_mapped[10] = par[3];
  536.     par_mapped[ 9] = par[2];
  537.     par_mapped[ 8] = par[2];
  538.     par_mapped[ 7] = par[2];
  539.     par_mapped[ 6] = par[2];
  540.     par_mapped[ 5] = par[1];
  541.     par_mapped[ 4] = par[1];
  542.     par_mapped[ 3] = par[1];
  543.     par_mapped[ 2] = par[0];
  544.     par_mapped[ 1] = par[0];
  545.     par_mapped[ 0] = par[0];
  546. }
  547.  
  548. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  549. {
  550.     if (full) {
  551.         par_mapped[33] =  par[19];
  552.         par_mapped[32] =  par[19];
  553.         par_mapped[31] =  par[18];
  554.         par_mapped[30] =  par[18];
  555.         par_mapped[29] =  par[18];
  556.         par_mapped[28] =  par[18];
  557.         par_mapped[27] =  par[17];
  558.         par_mapped[26] =  par[17];
  559.         par_mapped[25] =  par[16];
  560.         par_mapped[24] =  par[16];
  561.         par_mapped[23] =  par[15];
  562.         par_mapped[22] =  par[15];
  563.         par_mapped[21] =  par[14];
  564.         par_mapped[20] =  par[14];
  565.         par_mapped[19] =  par[13];
  566.         par_mapped[18] =  par[12];
  567.         par_mapped[17] =  par[11];
  568.     }
  569.     par_mapped[16] =  par[10];
  570.     par_mapped[15] =  par[ 9];
  571.     par_mapped[14] =  par[ 9];
  572.     par_mapped[13] =  par[ 8];
  573.     par_mapped[12] =  par[ 8];
  574.     par_mapped[11] =  par[ 7];
  575.     par_mapped[10] =  par[ 6];
  576.     par_mapped[ 9] =  par[ 5];
  577.     par_mapped[ 8] =  par[ 5];
  578.     par_mapped[ 7] =  par[ 4];
  579.     par_mapped[ 6] =  par[ 4];
  580.     par_mapped[ 5] =  par[ 3];
  581.     par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  582.     par_mapped[ 3] =  par[ 2];
  583.     par_mapped[ 2] =  par[ 1];
  584.     par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  585.     par_mapped[ 0] =  par[ 0];
  586. }
  587.  
  588. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  589. {
  590.     par[33] =  par[19];
  591.     par[32] =  par[19];
  592.     par[31] =  par[18];
  593.     par[30] =  par[18];
  594.     par[29] =  par[18];
  595.     par[28] =  par[18];
  596.     par[27] =  par[17];
  597.     par[26] =  par[17];
  598.     par[25] =  par[16];
  599.     par[24] =  par[16];
  600.     par[23] =  par[15];
  601.     par[22] =  par[15];
  602.     par[21] =  par[14];
  603.     par[20] =  par[14];
  604.     par[19] =  par[13];
  605.     par[18] =  par[12];
  606.     par[17] =  par[11];
  607.     par[16] =  par[10];
  608.     par[15] =  par[ 9];
  609.     par[14] =  par[ 9];
  610.     par[13] =  par[ 8];
  611.     par[12] =  par[ 8];
  612.     par[11] =  par[ 7];
  613.     par[10] =  par[ 6];
  614.     par[ 9] =  par[ 5];
  615.     par[ 8] =  par[ 5];
  616.     par[ 7] =  par[ 4];
  617.     par[ 6] =  par[ 4];
  618.     par[ 5] =  par[ 3];
  619.     par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  620.     par[ 3] =  par[ 2];
  621.     par[ 2] =  par[ 1];
  622.     par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  623. }
  624.  
  625. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  626. {
  627.     LOCAL_ALIGNED_16(float, power, [34], [PS_QMF_TIME_SLOTS]);
  628.     LOCAL_ALIGNED_16(float, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
  629.     float *peak_decay_nrg = ps->peak_decay_nrg;
  630.     float *power_smooth = ps->power_smooth;
  631.     float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  632.     float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  633.     float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  634.     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  635.     const float peak_decay_factor = 0.76592833836465f;
  636.     const float transient_impact  = 1.5f;
  637.     const float a_smooth          = 0.25f; ///< Smoothing coefficient
  638.     int i, k, m, n;
  639.     int n0 = 0, nL = 32;
  640.  
  641.     memset(power, 0, 34 * sizeof(*power));
  642.  
  643.     if (is34 != ps->is34bands_old) {
  644.         memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
  645.         memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
  646.         memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  647.         memset(ps->delay,                  0, sizeof(ps->delay));
  648.         memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
  649.     }
  650.  
  651.     for (k = 0; k < NR_BANDS[is34]; k++) {
  652.         int i = k_to_i[k];
  653.         ps->dsp.add_squares(power[i], s[k], nL - n0);
  654.     }
  655.  
  656.     //Transient detection
  657.     for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  658.         for (n = n0; n < nL; n++) {
  659.             float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  660.             float denom;
  661.             peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  662.             power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  663.             peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  664.             denom = transient_impact * peak_decay_diff_smooth[i];
  665.             transient_gain[i][n]   = (denom > power_smooth[i]) ?
  666.                                          power_smooth[i] / denom : 1.0f;
  667.         }
  668.     }
  669.  
  670.     //Decorrelation and transient reduction
  671.     //                         PS_AP_LINKS - 1
  672.     //                               -----
  673.     //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  674.     //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  675.     //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  676.     //                               m = 0
  677.     //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  678.     for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  679.         int b = k_to_i[k];
  680.         float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  681.         g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  682.         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  683.         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  684.         for (m = 0; m < PS_AP_LINKS; m++) {
  685.             memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
  686.         }
  687.         ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
  688.                             phi_fract[is34][k], Q_fract_allpass[is34][k],
  689.                             transient_gain[b], g_decay_slope, nL - n0);
  690.     }
  691.     for (; k < SHORT_DELAY_BAND[is34]; k++) {
  692.         int i = k_to_i[k];
  693.         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  694.         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  695.         //H = delay 14
  696.         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
  697.                                 transient_gain[i], nL - n0);
  698.     }
  699.     for (; k < NR_BANDS[is34]; k++) {
  700.         int i = k_to_i[k];
  701.         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  702.         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  703.         //H = delay 1
  704.         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
  705.                                 transient_gain[i], nL - n0);
  706.     }
  707. }
  708.  
  709. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  710.                     int8_t           (*par)[PS_MAX_NR_IIDICC],
  711.                     int num_par, int num_env, int full)
  712. {
  713.     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  714.     int e;
  715.     if (num_par == 20 || num_par == 11) {
  716.         for (e = 0; e < num_env; e++) {
  717.             map_idx_20_to_34(par_mapped[e], par[e], full);
  718.         }
  719.     } else if (num_par == 10 || num_par == 5) {
  720.         for (e = 0; e < num_env; e++) {
  721.             map_idx_10_to_34(par_mapped[e], par[e], full);
  722.         }
  723.     } else {
  724.         *p_par_mapped = par;
  725.     }
  726. }
  727.  
  728. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  729.                     int8_t           (*par)[PS_MAX_NR_IIDICC],
  730.                     int num_par, int num_env, int full)
  731. {
  732.     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  733.     int e;
  734.     if (num_par == 34 || num_par == 17) {
  735.         for (e = 0; e < num_env; e++) {
  736.             map_idx_34_to_20(par_mapped[e], par[e], full);
  737.         }
  738.     } else if (num_par == 10 || num_par == 5) {
  739.         for (e = 0; e < num_env; e++) {
  740.             map_idx_10_to_20(par_mapped[e], par[e], full);
  741.         }
  742.     } else {
  743.         *p_par_mapped = par;
  744.     }
  745. }
  746.  
  747. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  748. {
  749.     int e, b, k;
  750.  
  751.     float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  752.     float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  753.     float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  754.     float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  755.     int8_t *opd_hist = ps->opd_hist;
  756.     int8_t *ipd_hist = ps->ipd_hist;
  757.     int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  758.     int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  759.     int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  760.     int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  761.     int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  762.     int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  763.     int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  764.     int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  765.     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  766.     const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  767.  
  768.     //Remapping
  769.     if (ps->num_env_old) {
  770.         memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  771.         memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  772.         memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  773.         memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  774.         memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  775.         memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  776.         memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  777.         memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  778.     }
  779.  
  780.     if (is34) {
  781.         remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  782.         remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  783.         if (ps->enable_ipdopd) {
  784.             remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  785.             remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  786.         }
  787.         if (!ps->is34bands_old) {
  788.             map_val_20_to_34(H11[0][0]);
  789.             map_val_20_to_34(H11[1][0]);
  790.             map_val_20_to_34(H12[0][0]);
  791.             map_val_20_to_34(H12[1][0]);
  792.             map_val_20_to_34(H21[0][0]);
  793.             map_val_20_to_34(H21[1][0]);
  794.             map_val_20_to_34(H22[0][0]);
  795.             map_val_20_to_34(H22[1][0]);
  796.             ipdopd_reset(ipd_hist, opd_hist);
  797.         }
  798.     } else {
  799.         remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  800.         remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  801.         if (ps->enable_ipdopd) {
  802.             remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  803.             remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  804.         }
  805.         if (ps->is34bands_old) {
  806.             map_val_34_to_20(H11[0][0]);
  807.             map_val_34_to_20(H11[1][0]);
  808.             map_val_34_to_20(H12[0][0]);
  809.             map_val_34_to_20(H12[1][0]);
  810.             map_val_34_to_20(H21[0][0]);
  811.             map_val_34_to_20(H21[1][0]);
  812.             map_val_34_to_20(H22[0][0]);
  813.             map_val_34_to_20(H22[1][0]);
  814.             ipdopd_reset(ipd_hist, opd_hist);
  815.         }
  816.     }
  817.  
  818.     //Mixing
  819.     for (e = 0; e < ps->num_env; e++) {
  820.         for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  821.             float h11, h12, h21, h22;
  822.             h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  823.             h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  824.             h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  825.             h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  826.  
  827.             if (!PS_BASELINE && ps->enable_ipdopd && 2*b <= NR_PAR_BANDS[is34]) {
  828.                 //The spec say says to only run this smoother when enable_ipdopd
  829.                 //is set but the reference decoder appears to run it constantly
  830.                 float h11i, h12i, h21i, h22i;
  831.                 float ipd_adj_re, ipd_adj_im;
  832.                 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  833.                 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  834.                 float opd_re = pd_re_smooth[opd_idx];
  835.                 float opd_im = pd_im_smooth[opd_idx];
  836.                 float ipd_re = pd_re_smooth[ipd_idx];
  837.                 float ipd_im = pd_im_smooth[ipd_idx];
  838.                 opd_hist[b] = opd_idx & 0x3F;
  839.                 ipd_hist[b] = ipd_idx & 0x3F;
  840.  
  841.                 ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  842.                 ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  843.                 h11i = h11 * opd_im;
  844.                 h11  = h11 * opd_re;
  845.                 h12i = h12 * ipd_adj_im;
  846.                 h12  = h12 * ipd_adj_re;
  847.                 h21i = h21 * opd_im;
  848.                 h21  = h21 * opd_re;
  849.                 h22i = h22 * ipd_adj_im;
  850.                 h22  = h22 * ipd_adj_re;
  851.                 H11[1][e+1][b] = h11i;
  852.                 H12[1][e+1][b] = h12i;
  853.                 H21[1][e+1][b] = h21i;
  854.                 H22[1][e+1][b] = h22i;
  855.             }
  856.             H11[0][e+1][b] = h11;
  857.             H12[0][e+1][b] = h12;
  858.             H21[0][e+1][b] = h21;
  859.             H22[0][e+1][b] = h22;
  860.         }
  861.         for (k = 0; k < NR_BANDS[is34]; k++) {
  862.             float h[2][4];
  863.             float h_step[2][4];
  864.             int start = ps->border_position[e];
  865.             int stop  = ps->border_position[e+1];
  866.             float width = 1.f / (stop - start);
  867.             b = k_to_i[k];
  868.             h[0][0] = H11[0][e][b];
  869.             h[0][1] = H12[0][e][b];
  870.             h[0][2] = H21[0][e][b];
  871.             h[0][3] = H22[0][e][b];
  872.             if (!PS_BASELINE && ps->enable_ipdopd) {
  873.             //Is this necessary? ps_04_new seems unchanged
  874.             if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  875.                 h[1][0] = -H11[1][e][b];
  876.                 h[1][1] = -H12[1][e][b];
  877.                 h[1][2] = -H21[1][e][b];
  878.                 h[1][3] = -H22[1][e][b];
  879.             } else {
  880.                 h[1][0] = H11[1][e][b];
  881.                 h[1][1] = H12[1][e][b];
  882.                 h[1][2] = H21[1][e][b];
  883.                 h[1][3] = H22[1][e][b];
  884.             }
  885.             }
  886.             //Interpolation
  887.             h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width;
  888.             h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width;
  889.             h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width;
  890.             h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width;
  891.             if (!PS_BASELINE && ps->enable_ipdopd) {
  892.                 h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width;
  893.                 h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width;
  894.                 h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width;
  895.                 h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width;
  896.             }
  897.             ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
  898.                 l[k] + start + 1, r[k] + start + 1,
  899.                 h, h_step, stop - start);
  900.         }
  901.     }
  902. }
  903.  
  904. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  905. {
  906.     LOCAL_ALIGNED_16(float, Lbuf, [91], [32][2]);
  907.     LOCAL_ALIGNED_16(float, Rbuf, [91], [32][2]);
  908.     const int len = 32;
  909.     int is34 = ps->is34bands;
  910.  
  911.     top += NR_BANDS[is34] - 64;
  912.     memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  913.     if (top < NR_ALLPASS_BANDS[is34])
  914.         memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  915.  
  916.     hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
  917.     decorrelation(ps, Rbuf, Lbuf, is34);
  918.     stereo_processing(ps, Lbuf, Rbuf, is34);
  919.     hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
  920.     hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
  921.  
  922.     return 0;
  923. }
  924.  
  925. #define PS_INIT_VLC_STATIC(num, size) \
  926.     INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size,    \
  927.                     ps_tmp[num].ps_bits, 1, 1,                                          \
  928.                     ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  929.                     size);
  930.  
  931. #define PS_VLC_ROW(name) \
  932.     { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  933.  
  934. av_cold void ff_ps_init(void) {
  935.     // Syntax initialization
  936.     static const struct {
  937.         const void *ps_codes, *ps_bits;
  938.         const unsigned int table_size, elem_size;
  939.     } ps_tmp[] = {
  940.         PS_VLC_ROW(huff_iid_df1),
  941.         PS_VLC_ROW(huff_iid_dt1),
  942.         PS_VLC_ROW(huff_iid_df0),
  943.         PS_VLC_ROW(huff_iid_dt0),
  944.         PS_VLC_ROW(huff_icc_df),
  945.         PS_VLC_ROW(huff_icc_dt),
  946.         PS_VLC_ROW(huff_ipd_df),
  947.         PS_VLC_ROW(huff_ipd_dt),
  948.         PS_VLC_ROW(huff_opd_df),
  949.         PS_VLC_ROW(huff_opd_dt),
  950.     };
  951.  
  952.     PS_INIT_VLC_STATIC(0, 1544);
  953.     PS_INIT_VLC_STATIC(1,  832);
  954.     PS_INIT_VLC_STATIC(2, 1024);
  955.     PS_INIT_VLC_STATIC(3, 1036);
  956.     PS_INIT_VLC_STATIC(4,  544);
  957.     PS_INIT_VLC_STATIC(5,  544);
  958.     PS_INIT_VLC_STATIC(6,  512);
  959.     PS_INIT_VLC_STATIC(7,  512);
  960.     PS_INIT_VLC_STATIC(8,  512);
  961.     PS_INIT_VLC_STATIC(9,  512);
  962.  
  963.     ps_tableinit();
  964. }
  965.  
  966. av_cold void ff_ps_ctx_init(PSContext *ps)
  967. {
  968.     ff_psdsp_init(&ps->dsp);
  969. }
  970.