Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2003-2013 Loren Merritt
  3.  *
  4.  * This program is free software; you can redistribute it and/or modify
  5.  * it under the terms of the GNU General Public License as published by
  6.  * the Free Software Foundation; either version 2 of the License, or
  7.  * (at your option) any later version.
  8.  *
  9.  * This program is distributed in the hope that it will be useful,
  10.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12.  * GNU General Public License for more details.
  13.  *
  14.  * You should have received a copy of the GNU General Public License
  15.  * along with this program; if not, write to the Free Software
  16.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 USA
  17.  */
  18. /*
  19.  * tiny_ssim.c
  20.  * Computes the Structural Similarity Metric between two rawYV12 video files.
  21.  * original algorithm:
  22.  * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
  23.  *   "Image quality assessment: From error visibility to structural similarity,"
  24.  *   IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
  25.  *
  26.  * To improve speed, this implementation uses the standard approximation of
  27.  * overlapped 8x8 block sums, rather than the original gaussian weights.
  28.  */
  29.  
  30. #include "config.h"
  31. #include <inttypes.h>
  32. #include <limits.h>
  33. #include <math.h>
  34. #include <stdio.h>
  35. #include <stdlib.h>
  36.  
  37. #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
  38. #define FFMIN(a,b) ((a) > (b) ? (b) : (a))
  39.  
  40. #define BIT_DEPTH 8
  41. #define PIXEL_MAX ((1 << BIT_DEPTH)-1)
  42. typedef uint8_t  pixel;
  43.  
  44. /****************************************************************************
  45.  * structural similarity metric
  46.  ****************************************************************************/
  47. static void ssim_4x4x2_core( const pixel *pix1, intptr_t stride1,
  48.                              const pixel *pix2, intptr_t stride2,
  49.                              int sums[2][4] )
  50. {
  51.     int x,y,z;
  52.  
  53.     for( z = 0; z < 2; z++ )
  54.     {
  55.         uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
  56.         for( y = 0; y < 4; y++ )
  57.             for( x = 0; x < 4; x++ )
  58.             {
  59.                 int a = pix1[x+y*stride1];
  60.                 int b = pix2[x+y*stride2];
  61.                 s1  += a;
  62.                 s2  += b;
  63.                 ss  += a*a;
  64.                 ss  += b*b;
  65.                 s12 += a*b;
  66.             }
  67.         sums[z][0] = s1;
  68.         sums[z][1] = s2;
  69.         sums[z][2] = ss;
  70.         sums[z][3] = s12;
  71.         pix1 += 4;
  72.         pix2 += 4;
  73.     }
  74. }
  75.  
  76. static float ssim_end1( int s1, int s2, int ss, int s12 )
  77. {
  78. /* Maximum value for 10-bit is: ss*64 = (2^10-1)^2*16*4*64 = 4286582784, which will overflow in some cases.
  79.  * s1*s1, s2*s2, and s1*s2 also obtain this value for edge cases: ((2^10-1)*16*4)^2 = 4286582784.
  80.  * Maximum value for 9-bit is: ss*64 = (2^9-1)^2*16*4*64 = 1069551616, which will not overflow. */
  81. #if BIT_DEPTH > 9
  82. #define type float
  83.     static const float ssim_c1 = .01*.01*PIXEL_MAX*PIXEL_MAX*64;
  84.     static const float ssim_c2 = .03*.03*PIXEL_MAX*PIXEL_MAX*64*63;
  85. #else
  86. #define type int
  87.     static const int ssim_c1 = (int)(.01*.01*PIXEL_MAX*PIXEL_MAX*64 + .5);
  88.     static const int ssim_c2 = (int)(.03*.03*PIXEL_MAX*PIXEL_MAX*64*63 + .5);
  89. #endif
  90.     type fs1 = s1;
  91.     type fs2 = s2;
  92.     type fss = ss;
  93.     type fs12 = s12;
  94.     type vars = fss*64 - fs1*fs1 - fs2*fs2;
  95.     type covar = fs12*64 - fs1*fs2;
  96.     return (float)(2*fs1*fs2 + ssim_c1) * (float)(2*covar + ssim_c2)
  97.          / ((float)(fs1*fs1 + fs2*fs2 + ssim_c1) * (float)(vars + ssim_c2));
  98. #undef type
  99. }
  100.  
  101. static float ssim_end4( int sum0[5][4], int sum1[5][4], int width )
  102. {
  103.     float ssim = 0.0;
  104.     int i;
  105.  
  106.     for( i = 0; i < width; i++ )
  107.         ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0],
  108.                            sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1],
  109.                            sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2],
  110.                            sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] );
  111.     return ssim;
  112. }
  113.  
  114. float ssim_plane(
  115.                            pixel *pix1, intptr_t stride1,
  116.                            pixel *pix2, intptr_t stride2,
  117.                            int width, int height, void *buf, int *cnt )
  118. {
  119.     int z = 0;
  120.     int x, y;
  121.     float ssim = 0.0;
  122.     int (*sum0)[4] = buf;
  123.     int (*sum1)[4] = sum0 + (width >> 2) + 3;
  124.     width >>= 2;
  125.     height >>= 2;
  126.     for( y = 1; y < height; y++ )
  127.     {
  128.         for( ; z <= y; z++ )
  129.         {
  130.             FFSWAP( void*, sum0, sum1 );
  131.             for( x = 0; x < width; x+=2 )
  132.                 ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] );
  133.         }
  134.         for( x = 0; x < width-1; x += 4 )
  135.             ssim += ssim_end4( sum0+x, sum1+x, FFMIN(4,width-x-1) );
  136.     }
  137. //     *cnt = (height-1) * (width-1);
  138.     return ssim / ((height-1) * (width-1));
  139. }
  140.  
  141.  
  142. uint64_t ssd_plane( const uint8_t *pix1, const uint8_t *pix2, int size )
  143. {
  144.     uint64_t ssd = 0;
  145.     int i;
  146.     for( i=0; i<size; i++ )
  147.     {
  148.         int d = pix1[i] - pix2[i];
  149.         ssd += d*d;
  150.     }
  151.     return ssd;
  152. }
  153.  
  154. static double ssd_to_psnr( uint64_t ssd, uint64_t denom )
  155. {
  156.     return -10*log((double)ssd/(denom*255*255))/log(10);
  157. }
  158.  
  159. static double ssim_db( double ssim, double weight )
  160. {
  161.     return 10*(log(weight)/log(10)-log(weight-ssim)/log(10));
  162. }
  163.  
  164. static void print_results(uint64_t ssd[3], double ssim[3], int frames, int w, int h)
  165. {
  166.     printf( "PSNR Y:%.3f  U:%.3f  V:%.3f  All:%.3f | ",
  167.             ssd_to_psnr( ssd[0], (uint64_t)frames*w*h ),
  168.             ssd_to_psnr( ssd[1], (uint64_t)frames*w*h/4 ),
  169.             ssd_to_psnr( ssd[2], (uint64_t)frames*w*h/4 ),
  170.             ssd_to_psnr( ssd[0] + ssd[1] + ssd[2], (uint64_t)frames*w*h*3/2 ) );
  171.     printf( "SSIM Y:%.5f U:%.5f V:%.5f All:%.5f (%.5f)",
  172.             ssim[0] / frames,
  173.             ssim[1] / frames,
  174.             ssim[2] / frames,
  175.             (ssim[0]*4 + ssim[1] + ssim[2]) / (frames*6),
  176.             ssim_db(ssim[0] * 4 + ssim[1] + ssim[2], frames*6));
  177. }
  178.  
  179. int main(int argc, char* argv[])
  180. {
  181.     FILE *f[2];
  182.     uint8_t *buf[2], *plane[2][3];
  183.     int *temp;
  184.     uint64_t ssd[3] = {0,0,0};
  185.     double ssim[3] = {0,0,0};
  186.     int frame_size, w, h;
  187.     int frames, seek;
  188.     int i;
  189.  
  190.     if( argc<4 || 2 != sscanf(argv[3], "%dx%d", &w, &h) )
  191.     {
  192.         printf("tiny_ssim <file1.yuv> <file2.yuv> <width>x<height> [<seek>]\n");
  193.         return -1;
  194.     }
  195.  
  196.     f[0] = fopen(argv[1], "rb");
  197.     f[1] = fopen(argv[2], "rb");
  198.     sscanf(argv[3], "%dx%d", &w, &h);
  199.  
  200.     if (w<=0 || h<=0 || w*(int64_t)h >= INT_MAX/3 || 2LL*w+12 >= INT_MAX / sizeof(*temp)) {
  201.         fprintf(stderr, "Dimensions are too large, or invalid\n");
  202.         return -2;
  203.     }
  204.  
  205.     frame_size = w*h*3LL/2;
  206.     for( i=0; i<2; i++ )
  207.     {
  208.         buf[i] = malloc(frame_size);
  209.         plane[i][0] = buf[i];
  210.         plane[i][1] = plane[i][0] + w*h;
  211.         plane[i][2] = plane[i][1] + w*h/4;
  212.     }
  213.     temp = malloc((2*w+12)*sizeof(*temp));
  214.     seek = argc<5 ? 0 : atoi(argv[4]);
  215.     fseek(f[seek<0], seek < 0 ? -seek : seek, SEEK_SET);
  216.  
  217.     for( frames=0;; frames++ )
  218.     {
  219.         uint64_t ssd_one[3];
  220.         double ssim_one[3];
  221.         if( fread(buf[0], frame_size, 1, f[0]) != 1) break;
  222.         if( fread(buf[1], frame_size, 1, f[1]) != 1) break;
  223.         for( i=0; i<3; i++ )
  224.         {
  225.             ssd_one[i]  = ssd_plane ( plane[0][i], plane[1][i], w*h>>2*!!i );
  226.             ssim_one[i] = ssim_plane( plane[0][i], w>>!!i,
  227.                                      plane[1][i], w>>!!i,
  228.                                      w>>!!i, h>>!!i, temp, NULL );
  229.             ssd[i] += ssd_one[i];
  230.             ssim[i] += ssim_one[i];
  231.         }
  232.  
  233.         printf("Frame %d | ", frames);
  234.         print_results(ssd_one, ssim_one, 1, w, h);
  235.         printf("                \r");
  236.         fflush(stdout);
  237.     }
  238.  
  239.     if( !frames ) return 0;
  240.  
  241.     printf("Total %d frames | ", frames);
  242.     print_results(ssd, ssim, frames, w, h);
  243.     printf("\n");
  244.  
  245.     return 0;
  246. }
  247.