Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
  3.  * Copyright (c) 2002 Fabrice Bellard
  4.  *
  5.  * This file is part of libswresample
  6.  *
  7.  * libswresample is free software; you can redistribute it and/or modify
  8.  * it under the terms of the GNU General Public License as published by
  9.  * the Free Software Foundation; either version 2 of the License, or
  10.  * (at your option) any later version.
  11.  *
  12.  * libswresample is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.  * GNU General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU General Public License
  18.  * along with libswresample; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. #include "libavutil/avassert.h"
  23. #include "libavutil/channel_layout.h"
  24. #include "libavutil/common.h"
  25. #include "libavutil/opt.h"
  26. #include "swresample.h"
  27.  
  28. #undef time
  29. #include "time.h"
  30. #undef fprintf
  31.  
  32. #define SAMPLES 1000
  33.  
  34. #define SWR_CH_MAX 32
  35.  
  36. #define ASSERT_LEVEL 2
  37.  
  38. static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){
  39.     const uint8_t *p;
  40.     if(av_sample_fmt_is_planar(f)){
  41.         f= av_get_alt_sample_fmt(f, 0);
  42.         p= a[ch];
  43.     }else{
  44.         p= a[0];
  45.         index= ch + index*ch_count;
  46.     }
  47.  
  48.     switch(f){
  49.     case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0;
  50.     case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0;
  51.     case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0;
  52.     case AV_SAMPLE_FMT_FLT: return ((const float  *)p)[index];
  53.     case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index];
  54.     default: av_assert0(0);
  55.     }
  56. }
  57.  
  58. static void  set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){
  59.     uint8_t *p;
  60.     if(av_sample_fmt_is_planar(f)){
  61.         f= av_get_alt_sample_fmt(f, 0);
  62.         p= a[ch];
  63.     }else{
  64.         p= a[0];
  65.         index= ch + index*ch_count;
  66.     }
  67.     switch(f){
  68.     case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127));     break;
  69.     case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767));         break;
  70.     case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647));   break;
  71.     case AV_SAMPLE_FMT_FLT: ((float  *)p)[index]= v;                                      break;
  72.     case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v;                                      break;
  73.     default: av_assert2(0);
  74.     }
  75. }
  76.  
  77. static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){
  78.     int ch;
  79.  
  80.     if(av_sample_fmt_is_planar(f)){
  81.         f= av_get_alt_sample_fmt(f, 0);
  82.         for(ch= 0; ch<ch_count; ch++)
  83.             a[ch] += index*av_get_bytes_per_sample(f);
  84.     }else{
  85.         a[0] += index*ch_count*av_get_bytes_per_sample(f);
  86.     }
  87. }
  88.  
  89. static const enum AVSampleFormat formats[] = {
  90.     AV_SAMPLE_FMT_S16,
  91.     AV_SAMPLE_FMT_FLTP,
  92.     AV_SAMPLE_FMT_S16P,
  93.     AV_SAMPLE_FMT_FLT,
  94.     AV_SAMPLE_FMT_S32P,
  95.     AV_SAMPLE_FMT_S32,
  96.     AV_SAMPLE_FMT_U8P,
  97.     AV_SAMPLE_FMT_U8,
  98.     AV_SAMPLE_FMT_DBLP,
  99.     AV_SAMPLE_FMT_DBL,
  100. };
  101.  
  102. static const int rates[] = {
  103.     8000,
  104.     11025,
  105.     16000,
  106.     22050,
  107.     32000,
  108.     48000,
  109. };
  110.  
  111. static const uint64_t layouts[]={
  112.     AV_CH_LAYOUT_MONO                    ,
  113.     AV_CH_LAYOUT_STEREO                  ,
  114.     AV_CH_LAYOUT_2_1                     ,
  115.     AV_CH_LAYOUT_SURROUND                ,
  116.     AV_CH_LAYOUT_4POINT0                 ,
  117.     AV_CH_LAYOUT_2_2                     ,
  118.     AV_CH_LAYOUT_QUAD                    ,
  119.     AV_CH_LAYOUT_5POINT0                 ,
  120.     AV_CH_LAYOUT_5POINT1                 ,
  121.     AV_CH_LAYOUT_5POINT0_BACK            ,
  122.     AV_CH_LAYOUT_5POINT1_BACK            ,
  123.     AV_CH_LAYOUT_7POINT0                 ,
  124.     AV_CH_LAYOUT_7POINT1                 ,
  125.     AV_CH_LAYOUT_7POINT1_WIDE            ,
  126. };
  127.  
  128. static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){
  129.     if(av_sample_fmt_is_planar(format)){
  130.         int i;
  131.         int plane_size= av_get_bytes_per_sample(format&0xFF)*samples;
  132.         format&=0xFF;
  133.         for(i=0; i<SWR_CH_MAX; i++){
  134.             out[i]= in + i*plane_size;
  135.         }
  136.     }else{
  137.         out[0]= in;
  138.     }
  139. }
  140.  
  141. static int cmp(const int *a, const int *b){
  142.     return *a - *b;
  143. }
  144.  
  145. static void audiogen(void *data, enum AVSampleFormat sample_fmt,
  146.                      int channels, int sample_rate, int nb_samples)
  147. {
  148.     int i, ch, k;
  149.     double v, f, a, ampa;
  150.     double tabf1[SWR_CH_MAX];
  151.     double tabf2[SWR_CH_MAX];
  152.     double taba[SWR_CH_MAX];
  153.     unsigned static rnd;
  154.  
  155. #define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v);
  156. #define uint_rand(x) ((x) = (x) * 1664525 + 1013904223)
  157. #define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1)
  158.     k = 0;
  159.  
  160.     /* 1 second of single freq sinus at 1000 Hz */
  161.     a = 0;
  162.     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
  163.         v = sin(a) * 0.30;
  164.         for (ch = 0; ch < channels; ch++)
  165.             PUT_SAMPLE
  166.         a += M_PI * 1000.0 * 2.0 / sample_rate;
  167.     }
  168.  
  169.     /* 1 second of varying frequency between 100 and 10000 Hz */
  170.     a = 0;
  171.     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
  172.         v = sin(a) * 0.30;
  173.         for (ch = 0; ch < channels; ch++)
  174.             PUT_SAMPLE
  175.         f  = 100.0 + (((10000.0 - 100.0) * i) / sample_rate);
  176.         a += M_PI * f * 2.0 / sample_rate;
  177.     }
  178.  
  179.     /* 0.5 second of low amplitude white noise */
  180.     for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
  181.         v = dbl_rand(rnd) * 0.30;
  182.         for (ch = 0; ch < channels; ch++)
  183.             PUT_SAMPLE
  184.     }
  185.  
  186.     /* 0.5 second of high amplitude white noise */
  187.     for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
  188.         v = dbl_rand(rnd);
  189.         for (ch = 0; ch < channels; ch++)
  190.             PUT_SAMPLE
  191.     }
  192.  
  193.     /* 1 second of unrelated ramps for each channel */
  194.     for (ch = 0; ch < channels; ch++) {
  195.         taba[ch]  = 0;
  196.         tabf1[ch] = 100 + uint_rand(rnd) % 5000;
  197.         tabf2[ch] = 100 + uint_rand(rnd) % 5000;
  198.     }
  199.     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
  200.         for (ch = 0; ch < channels; ch++) {
  201.             v = sin(taba[ch]) * 0.30;
  202.             PUT_SAMPLE
  203.             f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate);
  204.             taba[ch] += M_PI * f * 2.0 / sample_rate;
  205.         }
  206.     }
  207.  
  208.     /* 2 seconds of 500 Hz with varying volume */
  209.     a    = 0;
  210.     ampa = 0;
  211.     for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) {
  212.         for (ch = 0; ch < channels; ch++) {
  213.             double amp = (1.0 + sin(ampa)) * 0.15;
  214.             if (ch & 1)
  215.                 amp = 0.30 - amp;
  216.             v = sin(a) * amp;
  217.             PUT_SAMPLE
  218.             a    += M_PI * 500.0 * 2.0 / sample_rate;
  219.             ampa += M_PI *  2.0 / sample_rate;
  220.         }
  221.     }
  222. }
  223.  
  224. int main(int argc, char **argv){
  225.     int in_sample_rate, out_sample_rate, ch ,i, flush_count;
  226.     uint64_t in_ch_layout, out_ch_layout;
  227.     enum AVSampleFormat in_sample_fmt, out_sample_fmt;
  228.     uint8_t array_in[SAMPLES*8*8];
  229.     uint8_t array_mid[SAMPLES*8*8*3];
  230.     uint8_t array_out[SAMPLES*8*8+100];
  231.     uint8_t *ain[SWR_CH_MAX];
  232.     uint8_t *aout[SWR_CH_MAX];
  233.     uint8_t *amid[SWR_CH_MAX];
  234.     int flush_i=0;
  235.     int mode;
  236.     int num_tests = 10000;
  237.     uint32_t seed = 0;
  238.     uint32_t rand_seed = 0;
  239.     int remaining_tests[FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats)];
  240.     int max_tests = FF_ARRAY_ELEMS(remaining_tests);
  241.     int test;
  242.     int specific_test= -1;
  243.  
  244.     struct SwrContext * forw_ctx= NULL;
  245.     struct SwrContext *backw_ctx= NULL;
  246.  
  247.     if (argc > 1) {
  248.         if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
  249.             av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]]  \n"
  250.                    "num_tests           Default is %d\n", num_tests);
  251.             return 0;
  252.         }
  253.         num_tests = strtol(argv[1], NULL, 0);
  254.         if(num_tests < 0) {
  255.             num_tests = -num_tests;
  256.             rand_seed = time(0);
  257.         }
  258.         if(num_tests<= 0 || num_tests>max_tests)
  259.             num_tests = max_tests;
  260.         if(argc > 2) {
  261.             specific_test = strtol(argv[1], NULL, 0);
  262.         }
  263.     }
  264.  
  265.     for(i=0; i<max_tests; i++)
  266.         remaining_tests[i] = i;
  267.  
  268.     for(test=0; test<num_tests; test++){
  269.         unsigned r;
  270.         uint_rand(seed);
  271.         r = (seed * (uint64_t)(max_tests - test)) >>32;
  272.         FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]);
  273.     }
  274.     qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), (void*)cmp);
  275.     in_sample_rate=16000;
  276.     for(test=0; test<num_tests; test++){
  277.         char  in_layout_string[256];
  278.         char out_layout_string[256];
  279.         unsigned vector= remaining_tests[max_tests - test - 1];
  280.         int in_ch_count;
  281.         int out_count, mid_count, out_ch_count;
  282.  
  283.         in_ch_layout    = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
  284.         out_ch_layout   = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
  285.         in_sample_fmt   = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
  286.         out_sample_fmt  = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
  287.         out_sample_rate = rates  [vector % FF_ARRAY_ELEMS(rates  )]; vector /= FF_ARRAY_ELEMS(rates);
  288.         av_assert0(!vector);
  289.  
  290.         if(specific_test == 0){
  291.             if(out_sample_rate != in_sample_rate || in_ch_layout != out_ch_layout)
  292.                 continue;
  293.         }
  294.  
  295.         in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout);
  296.         out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout);
  297.         av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string),  in_ch_count,  in_ch_layout);
  298.         av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout);
  299.         fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n",
  300.                 in_layout_string, out_layout_string,
  301.                 in_sample_rate, out_sample_rate,
  302.                 av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt));
  303.         forw_ctx  = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt,  out_sample_rate,
  304.                                                     in_ch_layout,  in_sample_fmt,  in_sample_rate,
  305.                                         0, 0);
  306.         backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout,  in_sample_fmt,             in_sample_rate,
  307.                                                     out_ch_layout, out_sample_fmt, out_sample_rate,
  308.                                         0, 0);
  309.         if(!forw_ctx) {
  310.             fprintf(stderr, "Failed to init forw_cts\n");
  311.             return 1;
  312.         }
  313.         if(!backw_ctx) {
  314.             fprintf(stderr, "Failed to init backw_ctx\n");
  315.             return 1;
  316.         }
  317.         if (uint_rand(rand_seed) % 3 == 0)
  318.             av_opt_set_int(forw_ctx, "ich", 0, 0);
  319.         if (uint_rand(rand_seed) % 3 == 0)
  320.             av_opt_set_int(forw_ctx, "och", 0, 0);
  321.  
  322.         if(swr_init( forw_ctx) < 0)
  323.             fprintf(stderr, "swr_init(->) failed\n");
  324.         if(swr_init(backw_ctx) < 0)
  325.             fprintf(stderr, "swr_init(<-) failed\n");
  326.                 //FIXME test planar
  327.         setup_array(ain , array_in ,  in_sample_fmt,   SAMPLES);
  328.         setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES);
  329.         setup_array(aout, array_out,  in_sample_fmt           ,   SAMPLES);
  330. #if 0
  331.         for(ch=0; ch<in_ch_count; ch++){
  332.             for(i=0; i<SAMPLES; i++)
  333.                 set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES));
  334.         }
  335. #else
  336.         audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES);
  337. #endif
  338.         mode = uint_rand(rand_seed) % 3;
  339.         if(mode==0 /*|| out_sample_rate == in_sample_rate*/) {
  340.             mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES);
  341.         } else if(mode==1){
  342.             mid_count= swr_convert(forw_ctx, amid,         0, (const uint8_t **)ain, SAMPLES);
  343.             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
  344.         } else {
  345.             int tmp_count;
  346.             mid_count= swr_convert(forw_ctx, amid,         0, (const uint8_t **)ain,       1);
  347.             av_assert0(mid_count==0);
  348.             shift(ain,  1, in_ch_count, in_sample_fmt);
  349.             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
  350.             shift(amid,  mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
  351.             mid_count+=swr_convert(forw_ctx, amid,         2, (const uint8_t **)ain,       2);
  352.             shift(amid,  mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
  353.             shift(ain,  2, in_ch_count, in_sample_fmt);
  354.             mid_count+=swr_convert(forw_ctx, amid,         1, (const uint8_t **)ain, SAMPLES-3);
  355.             shift(amid,  mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
  356.             shift(ain, -3, in_ch_count, in_sample_fmt);
  357.             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
  358.             shift(amid,  -tmp_count, out_ch_count, out_sample_fmt);
  359.         }
  360.         out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count);
  361.  
  362.         for(ch=0; ch<in_ch_count; ch++){
  363.             double sse, maxdiff=0;
  364.             double sum_a= 0;
  365.             double sum_b= 0;
  366.             double sum_aa= 0;
  367.             double sum_bb= 0;
  368.             double sum_ab= 0;
  369.             for(i=0; i<out_count; i++){
  370.                 double a= get(ain , ch, i, in_ch_count, in_sample_fmt);
  371.                 double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
  372.                 sum_a += a;
  373.                 sum_b += b;
  374.                 sum_aa+= a*a;
  375.                 sum_bb+= b*b;
  376.                 sum_ab+= a*b;
  377.                 maxdiff= FFMAX(maxdiff, FFABS(a-b));
  378.             }
  379.             sse= sum_aa + sum_bb - 2*sum_ab;
  380.             if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
  381.  
  382.             fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count);
  383.         }
  384.  
  385.         flush_i++;
  386.         flush_i%=21;
  387.         flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0);
  388.         shift(aout,  flush_i, in_ch_count, in_sample_fmt);
  389.         flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0);
  390.         shift(aout, -flush_i, in_ch_count, in_sample_fmt);
  391.         if(flush_count){
  392.             for(ch=0; ch<in_ch_count; ch++){
  393.                 double sse, maxdiff=0;
  394.                 double sum_a= 0;
  395.                 double sum_b= 0;
  396.                 double sum_aa= 0;
  397.                 double sum_bb= 0;
  398.                 double sum_ab= 0;
  399.                 for(i=0; i<flush_count; i++){
  400.                     double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt);
  401.                     double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
  402.                     sum_a += a;
  403.                     sum_b += b;
  404.                     sum_aa+= a*a;
  405.                     sum_bb+= b*b;
  406.                     sum_ab+= a*b;
  407.                     maxdiff= FFMAX(maxdiff, FFABS(a-b));
  408.                 }
  409.                 sse= sum_aa + sum_bb - 2*sum_ab;
  410.                 if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
  411.  
  412.                 fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i);
  413.             }
  414.         }
  415.  
  416.  
  417.         fprintf(stderr, "\n");
  418.     }
  419.  
  420.     return 0;
  421. }
  422.