Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * An implementation of the CAMELLIA algorithm as mentioned in RFC3713
  3.  * Copyright (c) 2014 Supraja Meedinti
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21. #include "camellia.h"
  22. #include "common.h"
  23. #include "intreadwrite.h"
  24. #include "attributes.h"
  25.  
  26. #define LR32(x,c) ((x) << (c) | (x) >> (32 - (c)))
  27. #define RR32(x,c) ((x) >> (c) | (x) << (32 - (c)))
  28.  
  29. #define MASK8 0xff
  30. #define MASK32 0xffffffff
  31. #define MASK64 0xffffffffffffffff
  32.  
  33. #define Sigma1  0xA09E667F3BCC908B
  34. #define Sigma2  0xB67AE8584CAA73B2
  35. #define Sigma3  0xC6EF372FE94F82BE
  36. #define Sigma4  0x54FF53A5F1D36F1C
  37. #define Sigma5  0x10E527FADE682D1D
  38. #define Sigma6  0xB05688C2B3E6C1FD
  39.  
  40. static uint64_t SP[8][256];
  41.  
  42. typedef struct AVCAMELLIA {
  43.     uint64_t Kw[4];
  44.     uint64_t Ke[6];
  45.     uint64_t K[24];
  46.     int key_bits;
  47. } AVCAMELLIA;
  48.  
  49. static const uint8_t SBOX1[256] = {
  50. 112, 130,  44, 236, 179,  39, 192, 229, 228, 133,  87,  53, 234,  12, 174,  65,
  51.  35, 239, 107, 147,  69,  25, 165,  33, 237,  14,  79,  78,  29, 101, 146, 189,
  52. 134, 184, 175, 143, 124, 235,  31, 206,  62,  48, 220,  95,  94, 197,  11,  26,
  53. 166, 225,  57, 202, 213,  71,  93,  61, 217,   1,  90, 214,  81,  86, 108,  77,
  54. 139,  13, 154, 102, 251, 204, 176,  45, 116,  18,  43,  32, 240, 177, 132, 153,
  55. 223,  76, 203, 194,  52, 126, 118,   5, 109, 183, 169,  49, 209,  23,   4, 215,
  56.  20,  88,  58,  97, 222,  27,  17,  28,  50,  15, 156,  22,  83,  24, 242,  34,
  57. 254,  68, 207, 178, 195, 181, 122, 145,  36,   8, 232, 168,  96, 252, 105,  80,
  58. 170, 208, 160, 125, 161, 137,  98, 151,  84,  91,  30, 149, 224, 255, 100, 210,
  59.  16, 196,   0,  72, 163, 247, 117, 219, 138,   3, 230, 218,   9,  63, 221, 148,
  60. 135,  92, 131,   2, 205,  74, 144,  51, 115, 103, 246, 243, 157, 127, 191, 226,
  61.  82, 155, 216,  38, 200,  55, 198,  59, 129, 150, 111,  75,  19, 190,  99,  46,
  62. 233, 121, 167, 140, 159, 110, 188, 142,  41, 245, 249, 182,  47, 253, 180,  89,
  63. 120, 152,   6, 106, 231,  70, 113, 186, 212,  37, 171,  66, 136, 162, 141, 250,
  64. 114,   7, 185,  85, 248, 238, 172,  10,  54,  73,  42, 104,  60,  56, 241, 164,
  65.  64,  40, 211, 123, 187, 201,  67, 193,  21, 227, 173, 244, 119, 199, 128, 158
  66. };
  67.  
  68. static const uint8_t SBOX2[256] = {
  69. 224,   5,  88, 217, 103,  78, 129, 203, 201,  11, 174, 106, 213,  24,  93, 130,
  70.  70, 223, 214,  39, 138,  50,  75,  66, 219,  28, 158, 156,  58, 202,  37, 123,
  71.  13, 113,  95,  31, 248, 215,  62, 157, 124,  96, 185, 190, 188, 139,  22,  52,
  72.  77, 195, 114, 149, 171, 142, 186, 122, 179,   2, 180, 173, 162, 172, 216, 154,
  73.  23,  26,  53, 204, 247, 153,  97,  90, 232,  36,  86,  64, 225,  99,   9,  51,
  74. 191, 152, 151, 133, 104, 252, 236,  10, 218, 111,  83,  98, 163,  46,   8, 175,
  75.  40, 176, 116, 194, 189,  54,  34,  56, 100,  30,  57,  44, 166,  48, 229,  68,
  76. 253, 136, 159, 101, 135, 107, 244,  35,  72,  16, 209,  81, 192, 249, 210, 160,
  77.  85, 161,  65, 250,  67,  19, 196,  47, 168, 182,  60,  43, 193, 255, 200, 165,
  78.  32, 137,   0, 144,  71, 239, 234, 183,  21,   6, 205, 181,  18, 126, 187,  41,
  79.  15, 184,   7,   4, 155, 148,  33, 102, 230, 206, 237, 231,  59, 254, 127, 197,
  80. 164,  55, 177,  76, 145, 110, 141, 118,   3,  45, 222, 150,  38, 125, 198,  92,
  81. 211, 242,  79,  25,  63, 220, 121,  29,  82, 235, 243, 109,  94, 251, 105, 178,
  82. 240,  49,  12, 212, 207, 140, 226, 117, 169,  74,  87, 132,  17,  69,  27, 245,
  83. 228,  14, 115, 170, 241, 221,  89,  20, 108, 146,  84, 208, 120, 112, 227,  73,
  84. 128,  80, 167, 246, 119, 147, 134, 131,  42, 199,  91, 233, 238, 143,   1,  61
  85. };
  86.  
  87. static const uint8_t SBOX3[256] = {
  88.  56,  65,  22, 118, 217, 147,  96, 242, 114, 194, 171, 154, 117,   6,  87, 160,
  89. 145, 247, 181, 201, 162, 140, 210, 144, 246,   7, 167,  39, 142, 178,  73, 222,
  90.  67,  92, 215, 199,  62, 245, 143, 103,  31,  24, 110, 175,  47, 226, 133,  13,
  91.  83, 240, 156, 101, 234, 163, 174, 158, 236, 128,  45, 107, 168,  43,  54, 166,
  92. 197, 134,  77,  51, 253, 102,  88, 150,  58,   9, 149,  16, 120, 216,  66, 204,
  93. 239,  38, 229,  97,  26,  63,  59, 130, 182, 219, 212, 152, 232, 139,   2, 235,
  94.  10,  44,  29, 176, 111, 141, 136,  14,  25, 135,  78,  11, 169,  12, 121,  17,
  95. 127,  34, 231,  89, 225, 218,  61, 200,  18,   4, 116,  84,  48, 126, 180,  40,
  96.  85, 104,  80, 190, 208, 196,  49, 203,  42, 173,  15, 202, 112, 255,  50, 105,
  97.   8,  98,   0,  36, 209, 251, 186, 237,  69, 129, 115, 109, 132, 159, 238,  74,
  98. 195,  46, 193,   1, 230,  37,  72, 153, 185, 179, 123, 249, 206, 191, 223, 113,
  99.  41, 205, 108,  19, 100, 155,  99, 157, 192,  75, 183, 165, 137,  95, 177,  23,
  100. 244, 188, 211,  70, 207,  55,  94,  71, 148, 250, 252,  91, 151, 254,  90, 172,
  101.  60,  76,   3,  53, 243,  35, 184,  93, 106, 146, 213,  33,  68,  81, 198, 125,
  102.  57, 131, 220, 170, 124, 119,  86,   5,  27, 164,  21,  52,  30,  28, 248,  82,
  103.  32,  20, 233, 189, 221, 228, 161, 224, 138, 241, 214, 122, 187, 227,  64,  79
  104. };
  105.  
  106. static const uint8_t SBOX4[256] = {
  107. 112,  44, 179, 192, 228,  87, 234, 174,  35, 107,  69, 165, 237,  79,  29, 146,
  108. 134, 175, 124,  31,  62, 220,  94,  11, 166,  57, 213,  93, 217,  90,  81, 108,
  109. 139, 154, 251, 176, 116,  43, 240, 132, 223, 203,  52, 118, 109, 169, 209,   4,
  110.  20,  58, 222,  17,  50, 156,  83, 242, 254, 207, 195, 122,  36, 232,  96, 105,
  111. 170, 160, 161,  98,  84,  30, 224, 100,  16,   0, 163, 117, 138, 230,   9, 221,
  112. 135, 131, 205, 144, 115, 246, 157, 191,  82, 216, 200, 198, 129, 111,  19,  99,
  113. 233, 167, 159, 188,  41, 249,  47, 180, 120,   6, 231, 113, 212, 171, 136, 141,
  114. 114, 185, 248, 172,  54,  42,  60, 241,  64, 211, 187,  67,  21, 173, 119, 128,
  115. 130, 236,  39, 229, 133,  53,  12,  65, 239, 147,  25,  33,  14,  78, 101, 189,
  116. 184, 143, 235, 206,  48,  95, 197,  26, 225, 202,  71,  61,   1, 214,  86,  77,
  117.  13, 102, 204,  45,  18,  32, 177, 153,  76, 194, 126,   5, 183,  49,  23, 215,
  118.  88,  97,  27,  28,  15,  22,  24,  34,  68, 178, 181, 145,   8, 168, 252,  80,
  119. 208, 125, 137, 151,  91, 149, 255, 210, 196,  72, 247, 219,   3, 218,  63, 148,
  120.  92,   2,  74,  51, 103, 243, 127, 226, 155,  38,  55,  59, 150,  75, 190,  46,
  121. 121, 140, 110, 142, 245, 182, 253,  89, 152, 106,  70, 186,  37,  66, 162, 250,
  122.   7,  85, 238,  10,  73, 104,  56, 164,  40, 123, 201, 193, 227, 244, 199, 158
  123. };
  124.  
  125. const int av_camellia_size = sizeof(AVCAMELLIA);
  126.  
  127. static void LR128(uint64_t d[2], const uint64_t K[2], int x)
  128. {
  129.     int i = 0;
  130.     if (64 <= x && x < 128) {
  131.         i = 1;
  132.         x -= 64;
  133.     }
  134.     if (x <= 0 || x >= 128) {
  135.         d[0] = K[i];
  136.         d[1] = K[!i];
  137.         return;
  138.     }
  139.     d[0] = (K[i] << x | K[!i] >> (64 - x));
  140.     d[1] = (K[!i] << x | K[i] >> (64 - x));
  141. }
  142.  
  143. static uint64_t F(uint64_t F_IN, uint64_t KE)
  144. {
  145.     KE ^= F_IN;
  146.     F_IN=SP[0][KE >> 56]^SP[1][(KE >> 48) & MASK8]^SP[2][(KE >> 40) & MASK8]^SP[3][(KE >> 32) & MASK8]^SP[4][(KE >> 24) & MASK8]^SP[5][(KE >> 16) & MASK8]^SP[6][(KE >> 8) & MASK8]^SP[7][KE & MASK8];
  147.     return F_IN;
  148. }
  149.  
  150. static uint64_t FL(uint64_t FL_IN, uint64_t KE)
  151. {
  152.     uint32_t x1, x2, k1, k2;
  153.     x1 = FL_IN >> 32;
  154.     x2 = FL_IN & MASK32;
  155.     k1 = KE >> 32;
  156.     k2 = KE & MASK32;
  157.     x2 = x2 ^ LR32((x1 & k1), 1);
  158.     x1 = x1 ^ (x2 | k2);
  159.     return ((uint64_t)x1 << 32) | (uint64_t)x2;
  160. }
  161.  
  162. static uint64_t FLINV(uint64_t FLINV_IN, uint64_t KE)
  163. {
  164.     uint32_t x1, x2, k1, k2;
  165.     x1 = FLINV_IN >> 32;
  166.     x2 = FLINV_IN & MASK32;
  167.     k1 = KE >> 32;
  168.     k2 = KE & MASK32;
  169.     x1 = x1 ^ (x2 | k2);
  170.     x2 = x2 ^ LR32((x1 & k1), 1);
  171.     return ((uint64_t)x1 << 32) | (uint64_t)x2;
  172. }
  173.  
  174. static const uint8_t shifts[2][12] = {
  175.     {0, 15, 15, 45, 45, 60, 94, 94, 111},
  176.     {0, 15, 15, 30, 45, 45, 60, 60,  77, 94, 94, 111}
  177. };
  178.  
  179. static const uint8_t vars[2][12] = {
  180.     {2, 0, 2, 0, 2, 2, 0, 2, 0},
  181.     {3, 1, 2, 3, 0, 2, 1, 3, 0, 1, 2, 0}
  182. };
  183.  
  184. static void generate_round_keys(AVCAMELLIA *cs, uint64_t Kl[2], uint64_t Kr[2], uint64_t Ka[2], uint64_t Kb[2])
  185. {
  186.     int i;
  187.     uint64_t *Kd[4], d[2];
  188.     Kd[0] = Kl;
  189.     Kd[1] = Kr;
  190.     Kd[2] = Ka;
  191.     Kd[3] = Kb;
  192.     cs->Kw[0] = Kl[0];
  193.     cs->Kw[1] = Kl[1];
  194.     if (cs->key_bits == 128) {
  195.         for (i = 0; i < 9; i++) {
  196.             LR128(d, Kd[vars[0][i]], shifts[0][i]);
  197.             cs->K[2*i] = d[0];
  198.             cs->K[2*i+1] = d[1];
  199.         }
  200.         LR128(d, Kd[0], 60);
  201.         cs->K[9] = d[1];
  202.         LR128(d, Kd[2], 30);
  203.         cs->Ke[0] = d[0];
  204.         cs->Ke[1] = d[1];
  205.         LR128(d, Kd[0], 77);
  206.         cs->Ke[2] = d[0];
  207.         cs->Ke[3] = d[1];
  208.         LR128(d, Kd[2], 111);
  209.         cs->Kw[2] = d[0];
  210.         cs->Kw[3] = d[1];
  211.     } else {
  212.         for (i = 0; i < 12; i++) {
  213.             LR128(d, Kd[vars[1][i]], shifts[1][i]);
  214.             cs->K[2*i] = d[0];
  215.             cs->K[2*i+1] = d[1];
  216.         }
  217.         LR128(d, Kd[1], 30);
  218.         cs->Ke[0] = d[0];
  219.         cs->Ke[1] = d[1];
  220.         LR128(d, Kd[0], 60);
  221.         cs->Ke[2] = d[0];
  222.         cs->Ke[3] = d[1];
  223.         LR128(d, Kd[2], 77);
  224.         cs->Ke[4] = d[0];
  225.         cs->Ke[5] = d[1];
  226.         LR128(d, Kd[3], 111);
  227.         cs->Kw[2] = d[0];
  228.         cs->Kw[3] = d[1];
  229.     }
  230. }
  231.  
  232. static void camellia_encrypt(AVCAMELLIA *cs, uint8_t *dst, const uint8_t *src)
  233. {
  234.     uint64_t D1, D2;
  235.     D1 = AV_RB64(src);
  236.     D2 = AV_RB64(src + 8);
  237.     D1 ^= cs->Kw[0];
  238.     D2 ^= cs->Kw[1];
  239.     D2 ^= F(D1, cs->K[0]);
  240.     D1 ^= F(D2, cs->K[1]);
  241.     D2 ^= F(D1, cs->K[2]);
  242.     D1 ^= F(D2, cs->K[3]);
  243.     D2 ^= F(D1, cs->K[4]);
  244.     D1 ^= F(D2, cs->K[5]);
  245.     D1 = FL(D1, cs->Ke[0]);
  246.     D2 = FLINV(D2, cs->Ke[1]);
  247.     D2 ^= F(D1, cs->K[6]);
  248.     D1 ^= F(D2, cs->K[7]);
  249.     D2 ^= F(D1, cs->K[8]);
  250.     D1 ^= F(D2, cs->K[9]);
  251.     D2 ^= F(D1, cs->K[10]);
  252.     D1 ^= F(D2, cs->K[11]);
  253.     D1 = FL(D1, cs->Ke[2]);
  254.     D2 = FLINV(D2, cs->Ke[3]);
  255.     D2 ^= F(D1, cs->K[12]);
  256.     D1 ^= F(D2, cs->K[13]);
  257.     D2 ^= F(D1, cs->K[14]);
  258.     D1 ^= F(D2, cs->K[15]);
  259.     D2 ^= F(D1, cs->K[16]);
  260.     D1 ^= F(D2, cs->K[17]);
  261.     if (cs->key_bits != 128) {
  262.         D1 = FL(D1, cs->Ke[4]);
  263.         D2 = FLINV(D2, cs->Ke[5]);
  264.         D2 ^= F(D1, cs->K[18]);
  265.         D1 ^= F(D2, cs->K[19]);
  266.         D2 ^= F(D1, cs->K[20]);
  267.         D1 ^= F(D2, cs->K[21]);
  268.         D2 ^= F(D1, cs->K[22]);
  269.         D1 ^= F(D2, cs->K[23]);
  270.     }
  271.     D2 ^= cs->Kw[2];
  272.     D1 ^= cs->Kw[3];
  273.     AV_WB64(dst, D2);
  274.     AV_WB64(dst + 8, D1);
  275. }
  276.  
  277. static void camellia_decrypt(AVCAMELLIA *cs, uint8_t *dst, const uint8_t *src, uint8_t *iv)
  278. {
  279.     uint64_t D1, D2;
  280.     D1 = AV_RB64(src);
  281.     D2 = AV_RB64(src + 8);
  282.     D1 ^= cs->Kw[2];
  283.     D2 ^= cs->Kw[3];
  284.     if (cs->key_bits != 128) {
  285.         D2 ^= F(D1, cs->K[23]);
  286.         D1 ^= F(D2, cs->K[22]);
  287.         D2 ^= F(D1, cs->K[21]);
  288.         D1 ^= F(D2, cs->K[20]);
  289.         D2 ^= F(D1, cs->K[19]);
  290.         D1 ^= F(D2, cs->K[18]);
  291.         D1 = FL(D1, cs->Ke[5]);
  292.         D2 = FLINV(D2, cs->Ke[4]);
  293.     }
  294.     D2 ^= F(D1, cs->K[17]);
  295.     D1 ^= F(D2, cs->K[16]);
  296.     D2 ^= F(D1, cs->K[15]);
  297.     D1 ^= F(D2, cs->K[14]);
  298.     D2 ^= F(D1, cs->K[13]);
  299.     D1 ^= F(D2, cs->K[12]);
  300.     D1 = FL(D1, cs->Ke[3]);
  301.     D2 = FLINV(D2, cs->Ke[2]);
  302.     D2 ^= F(D1, cs->K[11]);
  303.     D1 ^= F(D2, cs->K[10]);
  304.     D2 ^= F(D1, cs->K[9]);
  305.     D1 ^= F(D2, cs->K[8]);
  306.     D2 ^= F(D1, cs->K[7]);
  307.     D1 ^= F(D2, cs->K[6]);
  308.     D1 = FL(D1, cs->Ke[1]);
  309.     D2 = FLINV(D2, cs->Ke[0]);
  310.     D2 ^= F(D1, cs->K[5]);
  311.     D1 ^= F(D2, cs->K[4]);
  312.     D2 ^= F(D1, cs->K[3]);
  313.     D1 ^= F(D2, cs->K[2]);
  314.     D2 ^= F(D1, cs->K[1]);
  315.     D1 ^= F(D2, cs->K[0]);
  316.     D2 ^= cs->Kw[0];
  317.     D1 ^= cs->Kw[1];
  318.     if (iv) {
  319.         D2 ^= AV_RB64(iv);
  320.         D1 ^= AV_RB64(iv + 8);
  321.         memcpy(iv, src, 16);
  322.     }
  323.     AV_WB64(dst, D2);
  324.     AV_WB64(dst + 8, D1);
  325. }
  326.  
  327. static void computeSP(void)
  328. {
  329.     uint64_t z;
  330.     int i;
  331.     for (i = 0; i < 256; i++) {
  332.         z = SBOX1[i];
  333.         SP[0][i] = (z << 56) ^ (z << 48) ^ (z << 40) ^ (z << 24) ^ z;
  334.         SP[7][i] = (z << 56) ^ (z << 48) ^ (z << 40) ^ (z << 24) ^ (z << 16) ^ (z << 8);
  335.         z = SBOX2[i];
  336.         SP[1][i] = (z << 48) ^ (z << 40) ^ (z << 32) ^ (z << 24) ^ (z << 16);
  337.         SP[4][i] = (z << 48) ^ (z << 40) ^ (z << 32) ^ (z << 16) ^ (z << 8) ^ z;
  338.         z = SBOX3[i];
  339.         SP[2][i] = (z << 56) ^ (z << 40) ^ (z << 32) ^ (z << 16) ^ (z << 8);
  340.         SP[5][i] = (z << 56) ^ (z << 40) ^ (z << 32) ^ (z << 24) ^ (z << 8) ^ z;
  341.         z = SBOX4[i];
  342.         SP[3][i] = (z << 56) ^ (z << 48) ^ (z << 32) ^ (z << 8) ^ z;
  343.         SP[6][i] = (z << 56) ^ (z << 48) ^ (z << 32) ^ (z << 24) ^ (z << 16) ^ z;
  344.     }
  345. }
  346.  
  347. struct AVCAMELLIA *av_camellia_alloc(void)
  348. {
  349.     return av_mallocz(sizeof(struct AVCAMELLIA));
  350. }
  351.  
  352. av_cold int av_camellia_init(AVCAMELLIA *cs, const uint8_t *key, int key_bits)
  353. {
  354.     uint64_t Kl[2], Kr[2], Ka[2], Kb[2];
  355.     uint64_t D1, D2;
  356.     if (key_bits != 128 && key_bits != 192 && key_bits != 256)
  357.         return -1;
  358.     memset(Kb, 0, sizeof(Kb));
  359.     memset(Kr, 0, sizeof(Kr));
  360.     cs->key_bits = key_bits;
  361.     Kl[0] = AV_RB64(key);
  362.     Kl[1] = AV_RB64(key + 8);
  363.     if (key_bits == 192) {
  364.         Kr[0] = AV_RB64(key + 16);
  365.         Kr[1] = ~Kr[0];
  366.     } else if (key_bits == 256) {
  367.         Kr[0] = AV_RB64(key + 16);
  368.         Kr[1] = AV_RB64(key + 24);
  369.     }
  370.     computeSP();
  371.     D1 = Kl[0] ^ Kr[0];
  372.     D2 = Kl[1] ^ Kr[1];
  373.     D2 ^= F(D1, Sigma1);
  374.     D1 ^= F(D2, Sigma2);
  375.     D1 ^= Kl[0];
  376.     D2 ^= Kl[1];
  377.     D2 ^= F(D1, Sigma3);
  378.     D1 ^= F(D2, Sigma4);
  379.     Ka[0] = D1;
  380.     Ka[1] = D2;
  381.     if (key_bits != 128) {
  382.         D1 = Ka[0] ^ Kr[0];
  383.         D2 = Ka[1] ^ Kr[1];
  384.         D2 ^= F(D1, Sigma5);
  385.         D1 ^= F(D2, Sigma6);
  386.         Kb[0] = D1;
  387.         Kb[1] = D2;
  388.     }
  389.     generate_round_keys(cs, Kl, Kr, Ka, Kb);
  390.     return 0;
  391. }
  392.  
  393. void av_camellia_crypt(AVCAMELLIA *cs, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int decrypt)
  394. {
  395.     int i;
  396.     while (count--) {
  397.         if (decrypt) {
  398.             camellia_decrypt(cs, dst, src, iv);
  399.         } else {
  400.             if (iv) {
  401.                 for (i = 0; i < 16; i++)
  402.                     dst[i] = src[i] ^ iv[i];
  403.                 camellia_encrypt(cs, dst, dst);
  404.                 memcpy(iv, dst, 16);
  405.             } else {
  406.                 camellia_encrypt(cs, dst, src);
  407.             }
  408.         }
  409.         src = src + 16;
  410.         dst = dst + 16;
  411.     }
  412. }
  413.  
  414. #ifdef TEST
  415. #include<stdio.h>
  416. #include<stdlib.h>
  417. #include"log.h"
  418.  
  419. int main(int argc, char *argv[])
  420. {
  421.     const uint8_t Key[3][32] = {
  422.         {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10},
  423.         {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77},
  424.         {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff}
  425.     };
  426.     const uint8_t rct[3][16] = {
  427.         {0x67, 0x67, 0x31, 0x38, 0x54, 0x96, 0x69, 0x73, 0x08, 0x57, 0x06, 0x56, 0x48, 0xea, 0xbe, 0x43},
  428.         {0xb4, 0x99, 0x34, 0x01, 0xb3, 0xe9,0x96, 0xf8, 0x4e, 0xe5, 0xce, 0xe7, 0xd7, 0x9b, 0x09, 0xb9},
  429.         {0x9a, 0xcc, 0x23, 0x7d, 0xff, 0x16, 0xd7, 0x6c, 0x20, 0xef, 0x7c, 0x91, 0x9e, 0x3a, 0x75, 0x09}
  430.     };
  431.     const uint8_t rpt[32] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10};
  432.     const int kbits[3] = {128, 192, 256};
  433.     int i, j, err = 0;
  434.     uint8_t temp[32], iv[16];
  435.     AVCAMELLIA *cs;
  436.     cs = av_camellia_alloc();
  437.     if (!cs)
  438.         return 1;
  439.     for (j = 0; j < 3; j++) {
  440.         av_camellia_init(cs, Key[j], kbits[j]);
  441.         av_camellia_crypt(cs, temp, rpt, 1, NULL, 0);
  442.         for (i = 0; i < 16; i++) {
  443.             if (rct[j][i] != temp[i]) {
  444.                 av_log(NULL, AV_LOG_ERROR, "%d %02x %02x\n", i, rct[j][i], temp[i]);
  445.                 err = 1;
  446.             }
  447.         }
  448.         av_camellia_crypt(cs, temp, rct[j], 1, NULL, 1);
  449.         for (i = 0; i < 16; i++) {
  450.             if (rpt[i] != temp[i]) {
  451.                 av_log(NULL, AV_LOG_ERROR, "%d %02x %02x\n", i, rpt[i], temp[i]);
  452.                 err = 1;
  453.             }
  454.         }
  455.     }
  456.     av_camellia_init(cs, Key[0], 128);
  457.     memcpy(iv, "HALLO123HALLO123", 16);
  458.     av_camellia_crypt(cs, temp, rpt, 2, iv, 0);
  459.     memcpy(iv, "HALLO123HALLO123", 16);
  460.     av_camellia_crypt(cs, temp, temp, 2, iv, 1);
  461.     for (i = 0; i < 32; i++) {
  462.         if (rpt[i] != temp[i]) {
  463.             av_log(NULL, AV_LOG_ERROR, "%d %02x %02x\n", i, rpt[i], temp[i]);
  464.             err = 1;
  465.         }
  466.     }
  467.     av_free(cs);
  468.     return err;
  469. }
  470. #endif
  471.