Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2010 Mark Heath mjpeg0 @ silicontrip dot org
  3.  * Copyright (c) 2014 Clément Bœsch
  4.  * Copyright (c) 2014 Dave Rice @dericed
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. #include "libavutil/opt.h"
  24. #include "libavutil/pixdesc.h"
  25. #include "internal.h"
  26.  
  27. enum FilterMode {
  28.     FILTER_NONE = -1,
  29.     FILTER_TOUT,
  30.     FILTER_VREP,
  31.     FILTER_BRNG,
  32.     FILT_NUMB
  33. };
  34.  
  35. typedef struct {
  36.     const AVClass *class;
  37.     int chromah;    // height of chroma plane
  38.     int chromaw;    // width of chroma plane
  39.     int hsub;       // horizontal subsampling
  40.     int vsub;       // vertical subsampling
  41.     int fs;         // pixel count per frame
  42.     int cfs;        // pixel count per frame of chroma planes
  43.     int outfilter;  // FilterMode
  44.     int filters;
  45.     AVFrame *frame_prev;
  46.     uint8_t rgba_color[4];
  47.     int yuv_color[3];
  48.     int nb_jobs;
  49.     int *jobs_rets;
  50.  
  51.     AVFrame *frame_sat;
  52.     AVFrame *frame_hue;
  53. } SignalstatsContext;
  54.  
  55. typedef struct ThreadData {
  56.     const AVFrame *in;
  57.     AVFrame *out;
  58. } ThreadData;
  59.  
  60. typedef struct ThreadDataHueSatMetrics {
  61.     const AVFrame *src;
  62.     AVFrame *dst_sat, *dst_hue;
  63. } ThreadDataHueSatMetrics;
  64.  
  65. #define OFFSET(x) offsetof(SignalstatsContext, x)
  66. #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
  67.  
  68. static const AVOption signalstats_options[] = {
  69.     {"stat", "set statistics filters", OFFSET(filters), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, "filters"},
  70.         {"tout", "analyze pixels for temporal outliers",                0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_TOUT}, 0, 0, FLAGS, "filters"},
  71.         {"vrep", "analyze video lines for vertical line repetition",    0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_VREP}, 0, 0, FLAGS, "filters"},
  72.         {"brng", "analyze for pixels outside of broadcast range",       0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_BRNG}, 0, 0, FLAGS, "filters"},
  73.     {"out", "set video filter", OFFSET(outfilter), AV_OPT_TYPE_INT, {.i64=FILTER_NONE}, -1, FILT_NUMB-1, FLAGS, "out"},
  74.         {"tout", "highlight pixels that depict temporal outliers",              0, AV_OPT_TYPE_CONST, {.i64=FILTER_TOUT}, 0, 0, FLAGS, "out"},
  75.         {"vrep", "highlight video lines that depict vertical line repetition",  0, AV_OPT_TYPE_CONST, {.i64=FILTER_VREP}, 0, 0, FLAGS, "out"},
  76.         {"brng", "highlight pixels that are outside of broadcast range",        0, AV_OPT_TYPE_CONST, {.i64=FILTER_BRNG}, 0, 0, FLAGS, "out"},
  77.     {"c",     "set highlight color", OFFSET(rgba_color), AV_OPT_TYPE_COLOR, {.str="yellow"}, .flags=FLAGS},
  78.     {"color", "set highlight color", OFFSET(rgba_color), AV_OPT_TYPE_COLOR, {.str="yellow"}, .flags=FLAGS},
  79.     {NULL}
  80. };
  81.  
  82. AVFILTER_DEFINE_CLASS(signalstats);
  83.  
  84. static av_cold int init(AVFilterContext *ctx)
  85. {
  86.     uint8_t r, g, b;
  87.     SignalstatsContext *s = ctx->priv;
  88.  
  89.     if (s->outfilter != FILTER_NONE)
  90.         s->filters |= 1 << s->outfilter;
  91.  
  92.     r = s->rgba_color[0];
  93.     g = s->rgba_color[1];
  94.     b = s->rgba_color[2];
  95.     s->yuv_color[0] = (( 66*r + 129*g +  25*b + (1<<7)) >> 8) +  16;
  96.     s->yuv_color[1] = ((-38*r + -74*g + 112*b + (1<<7)) >> 8) + 128;
  97.     s->yuv_color[2] = ((112*r + -94*g + -18*b + (1<<7)) >> 8) + 128;
  98.     return 0;
  99. }
  100.  
  101. static av_cold void uninit(AVFilterContext *ctx)
  102. {
  103.     SignalstatsContext *s = ctx->priv;
  104.     av_frame_free(&s->frame_prev);
  105.     av_frame_free(&s->frame_sat);
  106.     av_frame_free(&s->frame_hue);
  107.     av_freep(&s->jobs_rets);
  108. }
  109.  
  110. static int query_formats(AVFilterContext *ctx)
  111. {
  112.     // TODO: add more
  113.     static const enum AVPixelFormat pix_fmts[] = {
  114.         AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P,
  115.         AV_PIX_FMT_YUV440P,
  116.         AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P,
  117.         AV_PIX_FMT_YUVJ440P,
  118.         AV_PIX_FMT_NONE
  119.     };
  120.  
  121.     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
  122.     if (!fmts_list)
  123.         return AVERROR(ENOMEM);
  124.     return ff_set_common_formats(ctx, fmts_list);
  125. }
  126.  
  127. static AVFrame *alloc_frame(enum AVPixelFormat pixfmt, int w, int h)
  128. {
  129.     AVFrame *frame = av_frame_alloc();
  130.     if (!frame)
  131.         return NULL;
  132.  
  133.     frame->format = pixfmt;
  134.     frame->width  = w;
  135.     frame->height = h;
  136.  
  137.     if (av_frame_get_buffer(frame, 32) < 0) {
  138.         av_frame_free(&frame);
  139.         return NULL;
  140.     }
  141.  
  142.     return frame;
  143. }
  144.  
  145. static int config_props(AVFilterLink *outlink)
  146. {
  147.     AVFilterContext *ctx = outlink->src;
  148.     SignalstatsContext *s = ctx->priv;
  149.     AVFilterLink *inlink = outlink->src->inputs[0];
  150.     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format);
  151.     s->hsub = desc->log2_chroma_w;
  152.     s->vsub = desc->log2_chroma_h;
  153.  
  154.     outlink->w = inlink->w;
  155.     outlink->h = inlink->h;
  156.  
  157.     s->chromaw = FF_CEIL_RSHIFT(inlink->w, s->hsub);
  158.     s->chromah = FF_CEIL_RSHIFT(inlink->h, s->vsub);
  159.  
  160.     s->fs = inlink->w * inlink->h;
  161.     s->cfs = s->chromaw * s->chromah;
  162.  
  163.     s->nb_jobs   = FFMAX(1, FFMIN(inlink->h, ctx->graph->nb_threads));
  164.     s->jobs_rets = av_malloc_array(s->nb_jobs, sizeof(*s->jobs_rets));
  165.     if (!s->jobs_rets)
  166.         return AVERROR(ENOMEM);
  167.  
  168.     s->frame_sat = alloc_frame(AV_PIX_FMT_GRAY8,  inlink->w, inlink->h);
  169.     s->frame_hue = alloc_frame(AV_PIX_FMT_GRAY16, inlink->w, inlink->h);
  170.     if (!s->frame_sat || !s->frame_hue)
  171.         return AVERROR(ENOMEM);
  172.  
  173.     return 0;
  174. }
  175.  
  176. static void burn_frame(const SignalstatsContext *s, AVFrame *f, int x, int y)
  177. {
  178.     const int chromax = x >> s->hsub;
  179.     const int chromay = y >> s->vsub;
  180.     f->data[0][y       * f->linesize[0] +       x] = s->yuv_color[0];
  181.     f->data[1][chromay * f->linesize[1] + chromax] = s->yuv_color[1];
  182.     f->data[2][chromay * f->linesize[2] + chromax] = s->yuv_color[2];
  183. }
  184.  
  185. static int filter_brng(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  186. {
  187.     ThreadData *td = arg;
  188.     const SignalstatsContext *s = ctx->priv;
  189.     const AVFrame *in = td->in;
  190.     AVFrame *out = td->out;
  191.     const int w = in->width;
  192.     const int h = in->height;
  193.     const int slice_start = (h *  jobnr   ) / nb_jobs;
  194.     const int slice_end   = (h * (jobnr+1)) / nb_jobs;
  195.     int x, y, score = 0;
  196.  
  197.     for (y = slice_start; y < slice_end; y++) {
  198.         const int yc = y >> s->vsub;
  199.         const uint8_t *pluma    = &in->data[0][y  * in->linesize[0]];
  200.         const uint8_t *pchromau = &in->data[1][yc * in->linesize[1]];
  201.         const uint8_t *pchromav = &in->data[2][yc * in->linesize[2]];
  202.  
  203.         for (x = 0; x < w; x++) {
  204.             const int xc = x >> s->hsub;
  205.             const int luma    = pluma[x];
  206.             const int chromau = pchromau[xc];
  207.             const int chromav = pchromav[xc];
  208.             const int filt = luma    < 16 || luma    > 235 ||
  209.                 chromau < 16 || chromau > 240 ||
  210.                 chromav < 16 || chromav > 240;
  211.             score += filt;
  212.             if (out && filt)
  213.                 burn_frame(s, out, x, y);
  214.         }
  215.     }
  216.     return score;
  217. }
  218.  
  219. static int filter_tout_outlier(uint8_t x, uint8_t y, uint8_t z)
  220. {
  221.     return ((abs(x - y) + abs (z - y)) / 2) - abs(z - x) > 4; // make 4 configurable?
  222. }
  223.  
  224. static int filter_tout(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  225. {
  226.     ThreadData *td = arg;
  227.     const SignalstatsContext *s = ctx->priv;
  228.     const AVFrame *in = td->in;
  229.     AVFrame *out = td->out;
  230.     const int w = in->width;
  231.     const int h = in->height;
  232.     const int slice_start = (h *  jobnr   ) / nb_jobs;
  233.     const int slice_end   = (h * (jobnr+1)) / nb_jobs;
  234.     const uint8_t *p = in->data[0];
  235.     int lw = in->linesize[0];
  236.     int x, y, score = 0, filt;
  237.  
  238.     for (y = slice_start; y < slice_end; y++) {
  239.  
  240.         if (y - 1 < 0 || y + 1 >= h)
  241.             continue;
  242.  
  243.         // detect two pixels above and below (to eliminate interlace artefacts)
  244.         // should check that video format is infact interlaced.
  245.  
  246. #define FILTER(i, j) \
  247.         filter_tout_outlier(p[(y-j) * lw + x + i], \
  248.                             p[    y * lw + x + i], \
  249.                             p[(y+j) * lw + x + i])
  250.  
  251. #define FILTER3(j) (FILTER(-1, j) && FILTER(0, j) && FILTER(1, j))
  252.  
  253.         if (y - 2 >= 0 && y + 2 < h) {
  254.             for (x = 1; x < w - 1; x++) {
  255.                 filt = FILTER3(2) && FILTER3(1);
  256.                 score += filt;
  257.                 if (filt && out)
  258.                     burn_frame(s, out, x, y);
  259.             }
  260.         } else {
  261.             for (x = 1; x < w - 1; x++) {
  262.                 filt = FILTER3(1);
  263.                 score += filt;
  264.                 if (filt && out)
  265.                     burn_frame(s, out, x, y);
  266.             }
  267.         }
  268.     }
  269.     return score;
  270. }
  271.  
  272. #define VREP_START 4
  273.  
  274. static int filter_vrep(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  275. {
  276.     ThreadData *td = arg;
  277.     const SignalstatsContext *s = ctx->priv;
  278.     const AVFrame *in = td->in;
  279.     AVFrame *out = td->out;
  280.     const int w = in->width;
  281.     const int h = in->height;
  282.     const int slice_start = (h *  jobnr   ) / nb_jobs;
  283.     const int slice_end   = (h * (jobnr+1)) / nb_jobs;
  284.     const uint8_t *p = in->data[0];
  285.     const int lw = in->linesize[0];
  286.     int x, y, score = 0;
  287.  
  288.     for (y = slice_start; y < slice_end; y++) {
  289.         const int y2lw = (y - VREP_START) * lw;
  290.         const int ylw  =  y               * lw;
  291.         int filt, totdiff = 0;
  292.  
  293.         if (y < VREP_START)
  294.             continue;
  295.  
  296.         for (x = 0; x < w; x++)
  297.             totdiff += abs(p[y2lw + x] - p[ylw + x]);
  298.         filt = totdiff < w;
  299.  
  300.         score += filt;
  301.         if (filt && out)
  302.             for (x = 0; x < w; x++)
  303.                 burn_frame(s, out, x, y);
  304.     }
  305.     return score * w;
  306. }
  307.  
  308. static const struct {
  309.     const char *name;
  310.     int (*process)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
  311. } filters_def[] = {
  312.     {"TOUT", filter_tout},
  313.     {"VREP", filter_vrep},
  314.     {"BRNG", filter_brng},
  315.     {NULL}
  316. };
  317.  
  318. #define DEPTH 256
  319.  
  320. static int compute_sat_hue_metrics(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  321. {
  322.     int i, j;
  323.     ThreadDataHueSatMetrics *td = arg;
  324.     const SignalstatsContext *s = ctx->priv;
  325.     const AVFrame *src = td->src;
  326.     AVFrame *dst_sat = td->dst_sat;
  327.     AVFrame *dst_hue = td->dst_hue;
  328.  
  329.     const int slice_start = (s->chromah *  jobnr   ) / nb_jobs;
  330.     const int slice_end   = (s->chromah * (jobnr+1)) / nb_jobs;
  331.  
  332.     const int lsz_u = src->linesize[1];
  333.     const int lsz_v = src->linesize[2];
  334.     const uint8_t *p_u = src->data[1] + slice_start * lsz_u;
  335.     const uint8_t *p_v = src->data[2] + slice_start * lsz_v;
  336.  
  337.     const int lsz_sat = dst_sat->linesize[0];
  338.     const int lsz_hue = dst_hue->linesize[0];
  339.     uint8_t *p_sat = dst_sat->data[0] + slice_start * lsz_sat;
  340.     uint8_t *p_hue = dst_hue->data[0] + slice_start * lsz_hue;
  341.  
  342.     for (j = slice_start; j < slice_end; j++) {
  343.         for (i = 0; i < s->chromaw; i++) {
  344.             const int yuvu = p_u[i];
  345.             const int yuvv = p_v[i];
  346.             p_sat[i] = hypot(yuvu - 128, yuvv - 128); // int or round?
  347.             ((int16_t*)p_hue)[i] = floor((180 / M_PI) * atan2f(yuvu-128, yuvv-128) + 180);
  348.         }
  349.         p_u   += lsz_u;
  350.         p_v   += lsz_v;
  351.         p_sat += lsz_sat;
  352.         p_hue += lsz_hue;
  353.     }
  354.  
  355.     return 0;
  356. }
  357.  
  358. static int filter_frame(AVFilterLink *link, AVFrame *in)
  359. {
  360.     AVFilterContext *ctx = link->dst;
  361.     SignalstatsContext *s = ctx->priv;
  362.     AVFilterLink *outlink = ctx->outputs[0];
  363.     AVFrame *out = in;
  364.     int i, j;
  365.     int  w = 0,  cw = 0, // in
  366.         pw = 0, cpw = 0; // prev
  367.     int fil;
  368.     char metabuf[128];
  369.     unsigned int histy[DEPTH] = {0},
  370.                  histu[DEPTH] = {0},
  371.                  histv[DEPTH] = {0},
  372.                  histhue[360] = {0},
  373.                  histsat[DEPTH] = {0}; // limited to 8 bit data.
  374.     int miny  = -1, minu  = -1, minv  = -1;
  375.     int maxy  = -1, maxu  = -1, maxv  = -1;
  376.     int lowy  = -1, lowu  = -1, lowv  = -1;
  377.     int highy = -1, highu = -1, highv = -1;
  378.     int minsat = -1, maxsat = -1, lowsat = -1, highsat = -1;
  379.     int lowp, highp, clowp, chighp;
  380.     int accy, accu, accv;
  381.     int accsat, acchue = 0;
  382.     int medhue, maxhue;
  383.     int toty = 0, totu = 0, totv = 0, totsat=0;
  384.     int tothue = 0;
  385.     int dify = 0, difu = 0, difv = 0;
  386.  
  387.     int filtot[FILT_NUMB] = {0};
  388.     AVFrame *prev;
  389.  
  390.     AVFrame *sat = s->frame_sat;
  391.     AVFrame *hue = s->frame_hue;
  392.     const uint8_t *p_sat = sat->data[0];
  393.     const uint8_t *p_hue = hue->data[0];
  394.     const int lsz_sat = sat->linesize[0];
  395.     const int lsz_hue = hue->linesize[0];
  396.     ThreadDataHueSatMetrics td_huesat = {
  397.         .src     = in,
  398.         .dst_sat = sat,
  399.         .dst_hue = hue,
  400.     };
  401.  
  402.     if (!s->frame_prev)
  403.         s->frame_prev = av_frame_clone(in);
  404.  
  405.     prev = s->frame_prev;
  406.  
  407.     if (s->outfilter != FILTER_NONE) {
  408.         out = av_frame_clone(in);
  409.         av_frame_make_writable(out);
  410.     }
  411.  
  412.     ctx->internal->execute(ctx, compute_sat_hue_metrics, &td_huesat,
  413.                            NULL, FFMIN(s->chromah, ctx->graph->nb_threads));
  414.  
  415.     // Calculate luma histogram and difference with previous frame or field.
  416.     for (j = 0; j < link->h; j++) {
  417.         for (i = 0; i < link->w; i++) {
  418.             const int yuv = in->data[0][w + i];
  419.             histy[yuv]++;
  420.             dify += abs(yuv - prev->data[0][pw + i]);
  421.         }
  422.         w  += in->linesize[0];
  423.         pw += prev->linesize[0];
  424.     }
  425.  
  426.     // Calculate chroma histogram and difference with previous frame or field.
  427.     for (j = 0; j < s->chromah; j++) {
  428.         for (i = 0; i < s->chromaw; i++) {
  429.             const int yuvu = in->data[1][cw+i];
  430.             const int yuvv = in->data[2][cw+i];
  431.             histu[yuvu]++;
  432.             difu += abs(yuvu - prev->data[1][cpw+i]);
  433.             histv[yuvv]++;
  434.             difv += abs(yuvv - prev->data[2][cpw+i]);
  435.  
  436.             histsat[p_sat[i]]++;
  437.             histhue[((int16_t*)p_hue)[i]]++;
  438.         }
  439.         cw  += in->linesize[1];
  440.         cpw += prev->linesize[1];
  441.         p_sat += lsz_sat;
  442.         p_hue += lsz_hue;
  443.     }
  444.  
  445.     for (fil = 0; fil < FILT_NUMB; fil ++) {
  446.         if (s->filters & 1<<fil) {
  447.             ThreadData td = {
  448.                 .in = in,
  449.                 .out = out != in && s->outfilter == fil ? out : NULL,
  450.             };
  451.             memset(s->jobs_rets, 0, s->nb_jobs * sizeof(*s->jobs_rets));
  452.             ctx->internal->execute(ctx, filters_def[fil].process,
  453.                                    &td, s->jobs_rets, s->nb_jobs);
  454.             for (i = 0; i < s->nb_jobs; i++)
  455.                 filtot[fil] += s->jobs_rets[i];
  456.         }
  457.     }
  458.  
  459.     // find low / high based on histogram percentile
  460.     // these only need to be calculated once.
  461.  
  462.     lowp   = lrint(s->fs  * 10 / 100.);
  463.     highp  = lrint(s->fs  * 90 / 100.);
  464.     clowp  = lrint(s->cfs * 10 / 100.);
  465.     chighp = lrint(s->cfs * 90 / 100.);
  466.  
  467.     accy = accu = accv = accsat = 0;
  468.     for (fil = 0; fil < DEPTH; fil++) {
  469.         if (miny   < 0 && histy[fil])   miny = fil;
  470.         if (minu   < 0 && histu[fil])   minu = fil;
  471.         if (minv   < 0 && histv[fil])   minv = fil;
  472.         if (minsat < 0 && histsat[fil]) minsat = fil;
  473.  
  474.         if (histy[fil])   maxy   = fil;
  475.         if (histu[fil])   maxu   = fil;
  476.         if (histv[fil])   maxv   = fil;
  477.         if (histsat[fil]) maxsat = fil;
  478.  
  479.         toty   += histy[fil]   * fil;
  480.         totu   += histu[fil]   * fil;
  481.         totv   += histv[fil]   * fil;
  482.         totsat += histsat[fil] * fil;
  483.  
  484.         accy   += histy[fil];
  485.         accu   += histu[fil];
  486.         accv   += histv[fil];
  487.         accsat += histsat[fil];
  488.  
  489.         if (lowy   == -1 && accy   >=  lowp) lowy   = fil;
  490.         if (lowu   == -1 && accu   >= clowp) lowu   = fil;
  491.         if (lowv   == -1 && accv   >= clowp) lowv   = fil;
  492.         if (lowsat == -1 && accsat >= clowp) lowsat = fil;
  493.  
  494.         if (highy   == -1 && accy   >=  highp) highy   = fil;
  495.         if (highu   == -1 && accu   >= chighp) highu   = fil;
  496.         if (highv   == -1 && accv   >= chighp) highv   = fil;
  497.         if (highsat == -1 && accsat >= chighp) highsat = fil;
  498.     }
  499.  
  500.     maxhue = histhue[0];
  501.     medhue = -1;
  502.     for (fil = 0; fil < 360; fil++) {
  503.         tothue += histhue[fil] * fil;
  504.         acchue += histhue[fil];
  505.  
  506.         if (medhue == -1 && acchue > s->cfs / 2)
  507.             medhue = fil;
  508.         if (histhue[fil] > maxhue) {
  509.             maxhue = histhue[fil];
  510.         }
  511.     }
  512.  
  513.     av_frame_free(&s->frame_prev);
  514.     s->frame_prev = av_frame_clone(in);
  515.  
  516. #define SET_META(key, fmt, val) do {                                \
  517.     snprintf(metabuf, sizeof(metabuf), fmt, val);                   \
  518.     av_dict_set(&out->metadata, "lavfi.signalstats." key, metabuf, 0);   \
  519. } while (0)
  520.  
  521.     SET_META("YMIN",    "%d", miny);
  522.     SET_META("YLOW",    "%d", lowy);
  523.     SET_META("YAVG",    "%g", 1.0 * toty / s->fs);
  524.     SET_META("YHIGH",   "%d", highy);
  525.     SET_META("YMAX",    "%d", maxy);
  526.  
  527.     SET_META("UMIN",    "%d", minu);
  528.     SET_META("ULOW",    "%d", lowu);
  529.     SET_META("UAVG",    "%g", 1.0 * totu / s->cfs);
  530.     SET_META("UHIGH",   "%d", highu);
  531.     SET_META("UMAX",    "%d", maxu);
  532.  
  533.     SET_META("VMIN",    "%d", minv);
  534.     SET_META("VLOW",    "%d", lowv);
  535.     SET_META("VAVG",    "%g", 1.0 * totv / s->cfs);
  536.     SET_META("VHIGH",   "%d", highv);
  537.     SET_META("VMAX",    "%d", maxv);
  538.  
  539.     SET_META("SATMIN",  "%d", minsat);
  540.     SET_META("SATLOW",  "%d", lowsat);
  541.     SET_META("SATAVG",  "%g", 1.0 * totsat / s->cfs);
  542.     SET_META("SATHIGH", "%d", highsat);
  543.     SET_META("SATMAX",  "%d", maxsat);
  544.  
  545.     SET_META("HUEMED",  "%d", medhue);
  546.     SET_META("HUEAVG",  "%g", 1.0 * tothue / s->cfs);
  547.  
  548.     SET_META("YDIF",    "%g", 1.0 * dify / s->fs);
  549.     SET_META("UDIF",    "%g", 1.0 * difu / s->cfs);
  550.     SET_META("VDIF",    "%g", 1.0 * difv / s->cfs);
  551.  
  552.     for (fil = 0; fil < FILT_NUMB; fil ++) {
  553.         if (s->filters & 1<<fil) {
  554.             char metaname[128];
  555.             snprintf(metabuf,  sizeof(metabuf),  "%g", 1.0 * filtot[fil] / s->fs);
  556.             snprintf(metaname, sizeof(metaname), "lavfi.signalstats.%s", filters_def[fil].name);
  557.             av_dict_set(&out->metadata, metaname, metabuf, 0);
  558.         }
  559.     }
  560.  
  561.     if (in != out)
  562.         av_frame_free(&in);
  563.     return ff_filter_frame(outlink, out);
  564. }
  565.  
  566. static const AVFilterPad signalstats_inputs[] = {
  567.     {
  568.         .name           = "default",
  569.         .type           = AVMEDIA_TYPE_VIDEO,
  570.         .filter_frame   = filter_frame,
  571.     },
  572.     { NULL }
  573. };
  574.  
  575. static const AVFilterPad signalstats_outputs[] = {
  576.     {
  577.         .name           = "default",
  578.         .config_props   = config_props,
  579.         .type           = AVMEDIA_TYPE_VIDEO,
  580.     },
  581.     { NULL }
  582. };
  583.  
  584. AVFilter ff_vf_signalstats = {
  585.     .name          = "signalstats",
  586.     .description   = "Generate statistics from video analysis.",
  587.     .init          = init,
  588.     .uninit        = uninit,
  589.     .query_formats = query_formats,
  590.     .priv_size     = sizeof(SignalstatsContext),
  591.     .inputs        = signalstats_inputs,
  592.     .outputs       = signalstats_outputs,
  593.     .priv_class    = &signalstats_class,
  594.     .flags         = AVFILTER_FLAG_SLICE_THREADS,
  595. };
  596.