Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2015 Stupeflix
  3.  *
  4.  * This file is part of FFmpeg.
  5.  *
  6.  * FFmpeg is free software; you can redistribute it and/or
  7.  * modify it under the terms of the GNU Lesser General Public
  8.  * License as published by the Free Software Foundation; either
  9.  * version 2.1 of the License, or (at your option) any later version.
  10.  *
  11.  * FFmpeg is distributed in the hope that it will be useful,
  12.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14.  * Lesser General Public License for more details.
  15.  *
  16.  * You should have received a copy of the GNU Lesser General Public
  17.  * License along with FFmpeg; if not, write to the Free Software
  18.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19.  */
  20.  
  21. /**
  22.  * @file
  23.  * Generate one palette for a whole video stream.
  24.  */
  25.  
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/internal.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/qsort.h"
  30. #include "avfilter.h"
  31. #include "internal.h"
  32.  
  33. /* Reference a color and how much it's used */
  34. struct color_ref {
  35.     uint32_t color;
  36.     uint64_t count;
  37. };
  38.  
  39. /* Store a range of colors */
  40. struct range_box {
  41.     uint32_t color;     // average color
  42.     int64_t variance;   // overall variance of the box (how much the colors are spread)
  43.     int start;          // index in PaletteGenContext->refs
  44.     int len;            // number of referenced colors
  45.     int sorted_by;      // whether range of colors is sorted by red (0), green (1) or blue (2)
  46. };
  47.  
  48. struct hist_node {
  49.     struct color_ref *entries;
  50.     int nb_entries;
  51. };
  52.  
  53. enum {
  54.     STATS_MODE_ALL_FRAMES,
  55.     STATS_MODE_DIFF_FRAMES,
  56.     NB_STATS_MODE
  57. };
  58.  
  59. #define NBITS 5
  60. #define HIST_SIZE (1<<(3*NBITS))
  61.  
  62. typedef struct {
  63.     const AVClass *class;
  64.  
  65.     int max_colors;
  66.     int reserve_transparent;
  67.     int stats_mode;
  68.  
  69.     AVFrame *prev_frame;                    // previous frame used for the diff stats_mode
  70.     struct hist_node histogram[HIST_SIZE];  // histogram/hashtable of the colors
  71.     struct color_ref **refs;                // references of all the colors used in the stream
  72.     int nb_refs;                            // number of color references (or number of different colors)
  73.     struct range_box boxes[256];            // define the segmentation of the colorspace (the final palette)
  74.     int nb_boxes;                           // number of boxes (increase will segmenting them)
  75.     int palette_pushed;                     // if the palette frame is pushed into the outlink or not
  76. } PaletteGenContext;
  77.  
  78. #define OFFSET(x) offsetof(PaletteGenContext, x)
  79. #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
  80. static const AVOption palettegen_options[] = {
  81.     { "max_colors", "set the maximum number of colors to use in the palette", OFFSET(max_colors), AV_OPT_TYPE_INT, {.i64=256}, 4, 256, FLAGS },
  82.     { "reserve_transparent", "reserve a palette entry for transparency", OFFSET(reserve_transparent), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS },
  83.     { "stats_mode", "set statistics mode", OFFSET(stats_mode), AV_OPT_TYPE_INT, {.i64=STATS_MODE_ALL_FRAMES}, 0, NB_STATS_MODE, FLAGS, "mode" },
  84.         { "full", "compute full frame histograms", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_ALL_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
  85.         { "diff", "compute histograms only for the part that differs from previous frame", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_DIFF_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
  86.     { NULL }
  87. };
  88.  
  89. AVFILTER_DEFINE_CLASS(palettegen);
  90.  
  91. static int query_formats(AVFilterContext *ctx)
  92. {
  93.     static const enum AVPixelFormat in_fmts[]  = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
  94.     static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
  95.     AVFilterFormats *in  = ff_make_format_list(in_fmts);
  96.     AVFilterFormats *out = ff_make_format_list(out_fmts);
  97.     if (!in || !out) {
  98.         av_freep(&in);
  99.         av_freep(&out);
  100.         return AVERROR(ENOMEM);
  101.     }
  102.     ff_formats_ref(in,  &ctx->inputs[0]->out_formats);
  103.     ff_formats_ref(out, &ctx->outputs[0]->in_formats);
  104.     return 0;
  105. }
  106.  
  107. typedef int (*cmp_func)(const void *, const void *);
  108.  
  109. #define DECLARE_CMP_FUNC(name, pos)                     \
  110. static int cmp_##name(const void *pa, const void *pb)   \
  111. {                                                       \
  112.     const struct color_ref * const *a = pa;             \
  113.     const struct color_ref * const *b = pb;             \
  114.     return   ((*a)->color >> (8 * (2 - (pos))) & 0xff)  \
  115.            - ((*b)->color >> (8 * (2 - (pos))) & 0xff); \
  116. }
  117.  
  118. DECLARE_CMP_FUNC(r, 0)
  119. DECLARE_CMP_FUNC(g, 1)
  120. DECLARE_CMP_FUNC(b, 2)
  121.  
  122. static const cmp_func cmp_funcs[] = {cmp_r, cmp_g, cmp_b};
  123.  
  124. /**
  125.  * Simple color comparison for sorting the final palette
  126.  */
  127. static int cmp_color(const void *a, const void *b)
  128. {
  129.     const struct range_box *box1 = a;
  130.     const struct range_box *box2 = b;
  131.     return box1->color - box2->color;
  132. }
  133.  
  134. static av_always_inline int diff(const uint32_t a, const uint32_t b)
  135. {
  136.     const uint8_t c1[] = {a >> 16 & 0xff, a >> 8 & 0xff, a & 0xff};
  137.     const uint8_t c2[] = {b >> 16 & 0xff, b >> 8 & 0xff, b & 0xff};
  138.     const int dr = c1[0] - c2[0];
  139.     const int dg = c1[1] - c2[1];
  140.     const int db = c1[2] - c2[2];
  141.     return dr*dr + dg*dg + db*db;
  142. }
  143.  
  144. /**
  145.  * Find the next box to split: pick the one with the highest variance
  146.  */
  147. static int get_next_box_id_to_split(PaletteGenContext *s)
  148. {
  149.     int box_id, i, best_box_id = -1;
  150.     int64_t max_variance = -1;
  151.  
  152.     if (s->nb_boxes == s->max_colors - s->reserve_transparent)
  153.         return -1;
  154.  
  155.     for (box_id = 0; box_id < s->nb_boxes; box_id++) {
  156.         struct range_box *box = &s->boxes[box_id];
  157.  
  158.         if (s->boxes[box_id].len >= 2) {
  159.  
  160.             if (box->variance == -1) {
  161.                 int64_t variance = 0;
  162.  
  163.                 for (i = 0; i < box->len; i++) {
  164.                     const struct color_ref *ref = s->refs[box->start + i];
  165.                     variance += diff(ref->color, box->color) * ref->count;
  166.                 }
  167.                 box->variance = variance;
  168.             }
  169.             if (box->variance > max_variance) {
  170.                 best_box_id = box_id;
  171.                 max_variance = box->variance;
  172.             }
  173.         } else {
  174.             box->variance = -1;
  175.         }
  176.     }
  177.     return best_box_id;
  178. }
  179.  
  180. /**
  181.  * Get the 32-bit average color for the range of RGB colors enclosed in the
  182.  * specified box. Takes into account the weight of each color.
  183.  */
  184. static uint32_t get_avg_color(struct color_ref * const *refs,
  185.                               const struct range_box *box)
  186. {
  187.     int i;
  188.     const int n = box->len;
  189.     uint64_t r = 0, g = 0, b = 0, div = 0;
  190.  
  191.     for (i = 0; i < n; i++) {
  192.         const struct color_ref *ref = refs[box->start + i];
  193.         r += (ref->color >> 16 & 0xff) * ref->count;
  194.         g += (ref->color >>  8 & 0xff) * ref->count;
  195.         b += (ref->color       & 0xff) * ref->count;
  196.         div += ref->count;
  197.     }
  198.  
  199.     r = r / div;
  200.     g = g / div;
  201.     b = b / div;
  202.  
  203.     return 0xffU<<24 | r<<16 | g<<8 | b;
  204. }
  205.  
  206. /**
  207.  * Split given box in two at position n. The original box becomes the left part
  208.  * of the split, and the new index box is the right part.
  209.  */
  210. static void split_box(PaletteGenContext *s, struct range_box *box, int n)
  211. {
  212.     struct range_box *new_box = &s->boxes[s->nb_boxes++];
  213.     new_box->start     = n + 1;
  214.     new_box->len       = box->start + box->len - new_box->start;
  215.     new_box->sorted_by = box->sorted_by;
  216.     box->len -= new_box->len;
  217.  
  218.     av_assert0(box->len     >= 1);
  219.     av_assert0(new_box->len >= 1);
  220.  
  221.     box->color     = get_avg_color(s->refs, box);
  222.     new_box->color = get_avg_color(s->refs, new_box);
  223.     box->variance     = -1;
  224.     new_box->variance = -1;
  225. }
  226.  
  227. /**
  228.  * Write the palette into the output frame.
  229.  */
  230. static void write_palette(AVFilterContext *ctx, AVFrame *out)
  231. {
  232.     const PaletteGenContext *s = ctx->priv;
  233.     int x, y, box_id = 0;
  234.     uint32_t *pal = (uint32_t *)out->data[0];
  235.     const int pal_linesize = out->linesize[0] >> 2;
  236.     uint32_t last_color = 0;
  237.  
  238.     for (y = 0; y < out->height; y++) {
  239.         for (x = 0; x < out->width; x++) {
  240.             if (box_id < s->nb_boxes) {
  241.                 pal[x] = s->boxes[box_id++].color;
  242.                 if ((x || y) && pal[x] == last_color)
  243.                     av_log(ctx, AV_LOG_WARNING, "Dupped color: %08X\n", pal[x]);
  244.                 last_color = pal[x];
  245.             } else {
  246.                 pal[x] = 0xff000000; // pad with black
  247.             }
  248.         }
  249.         pal += pal_linesize;
  250.     }
  251.  
  252.     if (s->reserve_transparent) {
  253.         av_assert0(s->nb_boxes < 256);
  254.         pal[out->width - pal_linesize - 1] = 0x0000ff00; // add a green transparent color
  255.     }
  256. }
  257.  
  258. /**
  259.  * Crawl the histogram to get all the defined colors, and create a linear list
  260.  * of them (each color reference entry is a pointer to the value in the
  261.  * histogram/hash table).
  262.  */
  263. static struct color_ref **load_color_refs(const struct hist_node *hist, int nb_refs)
  264. {
  265.     int i, j, k = 0;
  266.     struct color_ref **refs = av_malloc_array(nb_refs, sizeof(*refs));
  267.  
  268.     if (!refs)
  269.         return NULL;
  270.  
  271.     for (j = 0; j < HIST_SIZE; j++) {
  272.         const struct hist_node *node = &hist[j];
  273.  
  274.         for (i = 0; i < node->nb_entries; i++)
  275.             refs[k++] = &node->entries[i];
  276.     }
  277.  
  278.     return refs;
  279. }
  280.  
  281. static double set_colorquant_ratio_meta(AVFrame *out, int nb_out, int nb_in)
  282. {
  283.     char buf[32];
  284.     const double ratio = (double)nb_out / nb_in;
  285.     snprintf(buf, sizeof(buf), "%f", ratio);
  286.     av_dict_set(&out->metadata, "lavfi.color_quant_ratio", buf, 0);
  287.     return ratio;
  288. }
  289.  
  290. /**
  291.  * Main function implementing the Median Cut Algorithm defined by Paul Heckbert
  292.  * in Color Image Quantization for Frame Buffer Display (1982)
  293.  */
  294. static AVFrame *get_palette_frame(AVFilterContext *ctx)
  295. {
  296.     AVFrame *out;
  297.     PaletteGenContext *s = ctx->priv;
  298.     AVFilterLink *outlink = ctx->outputs[0];
  299.     double ratio;
  300.     int box_id = 0;
  301.     struct range_box *box;
  302.  
  303.     /* reference only the used colors from histogram */
  304.     s->refs = load_color_refs(s->histogram, s->nb_refs);
  305.     if (!s->refs) {
  306.         av_log(ctx, AV_LOG_ERROR, "Unable to allocate references for %d different colors\n", s->nb_refs);
  307.         return NULL;
  308.     }
  309.  
  310.     /* create the palette frame */
  311.     out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  312.     if (!out)
  313.         return NULL;
  314.     out->pts = 0;
  315.  
  316.     /* set first box for 0..nb_refs */
  317.     box = &s->boxes[box_id];
  318.     box->len = s->nb_refs;
  319.     box->sorted_by = -1;
  320.     box->color = get_avg_color(s->refs, box);
  321.     box->variance = -1;
  322.     s->nb_boxes = 1;
  323.  
  324.     while (box && box->len > 1) {
  325.         int i, rr, gr, br, longest;
  326.         uint64_t median, box_weight = 0;
  327.  
  328.         /* compute the box weight (sum all the weights of the colors in the
  329.          * range) and its boundings */
  330.         uint8_t min[3] = {0xff, 0xff, 0xff};
  331.         uint8_t max[3] = {0x00, 0x00, 0x00};
  332.         for (i = box->start; i < box->start + box->len; i++) {
  333.             const struct color_ref *ref = s->refs[i];
  334.             const uint32_t rgb = ref->color;
  335.             const uint8_t r = rgb >> 16 & 0xff, g = rgb >> 8 & 0xff, b = rgb & 0xff;
  336.             min[0] = FFMIN(r, min[0]), max[0] = FFMAX(r, max[0]);
  337.             min[1] = FFMIN(g, min[1]), max[1] = FFMAX(g, max[1]);
  338.             min[2] = FFMIN(b, min[2]), max[2] = FFMAX(b, max[2]);
  339.             box_weight += ref->count;
  340.         }
  341.  
  342.         /* define the axis to sort by according to the widest range of colors */
  343.         rr = max[0] - min[0];
  344.         gr = max[1] - min[1];
  345.         br = max[2] - min[2];
  346.         longest = 1; // pick green by default (the color the eye is the most sensitive to)
  347.         if (br >= rr && br >= gr) longest = 2;
  348.         if (rr >= gr && rr >= br) longest = 0;
  349.         if (gr >= rr && gr >= br) longest = 1; // prefer green again
  350.  
  351.         ff_dlog(ctx, "box #%02X [%6d..%-6d] (%6d) w:%-6"PRIu64" ranges:[%2x %2x %2x] sort by %c (already sorted:%c) ",
  352.                 box_id, box->start, box->start + box->len - 1, box->len, box_weight,
  353.                 rr, gr, br, "rgb"[longest], box->sorted_by == longest ? 'y':'n');
  354.  
  355.         /* sort the range by its longest axis if it's not already sorted */
  356.         if (box->sorted_by != longest) {
  357.             cmp_func cmpf = cmp_funcs[longest];
  358.             AV_QSORT(&s->refs[box->start], box->len, const struct color_ref *, cmpf);
  359.             box->sorted_by = longest;
  360.         }
  361.  
  362.         /* locate the median where to split */
  363.         median = (box_weight + 1) >> 1;
  364.         box_weight = 0;
  365.         /* if you have 2 boxes, the maximum is actually #0: you must have at
  366.          * least 1 color on each side of the split, hence the -2 */
  367.         for (i = box->start; i < box->start + box->len - 2; i++) {
  368.             box_weight += s->refs[i]->count;
  369.             if (box_weight > median)
  370.                 break;
  371.         }
  372.         ff_dlog(ctx, "split @ i=%-6d with w=%-6"PRIu64" (target=%6"PRIu64")\n", i, box_weight, median);
  373.         split_box(s, box, i);
  374.  
  375.         box_id = get_next_box_id_to_split(s);
  376.         box = box_id >= 0 ? &s->boxes[box_id] : NULL;
  377.     }
  378.  
  379.     ratio = set_colorquant_ratio_meta(out, s->nb_boxes, s->nb_refs);
  380.     av_log(ctx, AV_LOG_INFO, "%d%s colors generated out of %d colors; ratio=%f\n",
  381.            s->nb_boxes, s->reserve_transparent ? "(+1)" : "", s->nb_refs, ratio);
  382.  
  383.     qsort(s->boxes, s->nb_boxes, sizeof(*s->boxes), cmp_color);
  384.  
  385.     write_palette(ctx, out);
  386.  
  387.     return out;
  388. }
  389.  
  390. /**
  391.  * Hashing function for the color.
  392.  * It keeps the NBITS least significant bit of each component to make it
  393.  * "random" even if the scene doesn't have much different colors.
  394.  */
  395. static inline unsigned color_hash(uint32_t color)
  396. {
  397.     const uint8_t r = color >> 16 & ((1<<NBITS)-1);
  398.     const uint8_t g = color >>  8 & ((1<<NBITS)-1);
  399.     const uint8_t b = color       & ((1<<NBITS)-1);
  400.     return r<<(NBITS*2) | g<<NBITS | b;
  401. }
  402.  
  403. /**
  404.  * Locate the color in the hash table and increment its counter.
  405.  */
  406. static int color_inc(struct hist_node *hist, uint32_t color)
  407. {
  408.     int i;
  409.     const unsigned hash = color_hash(color);
  410.     struct hist_node *node = &hist[hash];
  411.     struct color_ref *e;
  412.  
  413.     for (i = 0; i < node->nb_entries; i++) {
  414.         e = &node->entries[i];
  415.         if (e->color == color) {
  416.             e->count++;
  417.             return 0;
  418.         }
  419.     }
  420.  
  421.     e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
  422.                          sizeof(*node->entries), NULL);
  423.     if (!e)
  424.         return AVERROR(ENOMEM);
  425.     e->color = color;
  426.     e->count = 1;
  427.     return 1;
  428. }
  429.  
  430. /**
  431.  * Update histogram when pixels differ from previous frame.
  432.  */
  433. static int update_histogram_diff(struct hist_node *hist,
  434.                                  const AVFrame *f1, const AVFrame *f2)
  435. {
  436.     int x, y, ret, nb_diff_colors = 0;
  437.  
  438.     for (y = 0; y < f1->height; y++) {
  439.         const uint32_t *p = (const uint32_t *)(f1->data[0] + y*f1->linesize[0]);
  440.         const uint32_t *q = (const uint32_t *)(f2->data[0] + y*f2->linesize[0]);
  441.  
  442.         for (x = 0; x < f1->width; x++) {
  443.             if (p[x] == q[x])
  444.                 continue;
  445.             ret = color_inc(hist, p[x]);
  446.             if (ret < 0)
  447.                 return ret;
  448.             nb_diff_colors += ret;
  449.         }
  450.     }
  451.     return nb_diff_colors;
  452. }
  453.  
  454. /**
  455.  * Simple histogram of the frame.
  456.  */
  457. static int update_histogram_frame(struct hist_node *hist, const AVFrame *f)
  458. {
  459.     int x, y, ret, nb_diff_colors = 0;
  460.  
  461.     for (y = 0; y < f->height; y++) {
  462.         const uint32_t *p = (const uint32_t *)(f->data[0] + y*f->linesize[0]);
  463.  
  464.         for (x = 0; x < f->width; x++) {
  465.             ret = color_inc(hist, p[x]);
  466.             if (ret < 0)
  467.                 return ret;
  468.             nb_diff_colors += ret;
  469.         }
  470.     }
  471.     return nb_diff_colors;
  472. }
  473.  
  474. /**
  475.  * Update the histogram for each passing frame. No frame will be pushed here.
  476.  */
  477. static int filter_frame(AVFilterLink *inlink, AVFrame *in)
  478. {
  479.     AVFilterContext *ctx = inlink->dst;
  480.     PaletteGenContext *s = ctx->priv;
  481.     const int ret = s->prev_frame ? update_histogram_diff(s->histogram, s->prev_frame, in)
  482.                                   : update_histogram_frame(s->histogram, in);
  483.  
  484.     if (ret > 0)
  485.         s->nb_refs += ret;
  486.  
  487.     if (s->stats_mode == STATS_MODE_DIFF_FRAMES) {
  488.         av_frame_free(&s->prev_frame);
  489.         s->prev_frame = in;
  490.     } else {
  491.         av_frame_free(&in);
  492.     }
  493.  
  494.     return ret;
  495. }
  496.  
  497. /**
  498.  * Returns only one frame at the end containing the full palette.
  499.  */
  500. static int request_frame(AVFilterLink *outlink)
  501. {
  502.     AVFilterContext *ctx = outlink->src;
  503.     AVFilterLink *inlink = ctx->inputs[0];
  504.     PaletteGenContext *s = ctx->priv;
  505.     int r;
  506.  
  507.     r = ff_request_frame(inlink);
  508.     if (r == AVERROR_EOF && !s->palette_pushed && s->nb_refs) {
  509.         r = ff_filter_frame(outlink, get_palette_frame(ctx));
  510.         s->palette_pushed = 1;
  511.         return r;
  512.     }
  513.     return r;
  514. }
  515.  
  516. /**
  517.  * The output is one simple 16x16 squared-pixels palette.
  518.  */
  519. static int config_output(AVFilterLink *outlink)
  520. {
  521.     outlink->w = outlink->h = 16;
  522.     outlink->sample_aspect_ratio = av_make_q(1, 1);
  523.     outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
  524.     return 0;
  525. }
  526.  
  527. static av_cold void uninit(AVFilterContext *ctx)
  528. {
  529.     int i;
  530.     PaletteGenContext *s = ctx->priv;
  531.  
  532.     for (i = 0; i < HIST_SIZE; i++)
  533.         av_freep(&s->histogram[i].entries);
  534.     av_freep(&s->refs);
  535.     av_frame_free(&s->prev_frame);
  536. }
  537.  
  538. static const AVFilterPad palettegen_inputs[] = {
  539.     {
  540.         .name         = "default",
  541.         .type         = AVMEDIA_TYPE_VIDEO,
  542.         .filter_frame = filter_frame,
  543.     },
  544.     { NULL }
  545. };
  546.  
  547. static const AVFilterPad palettegen_outputs[] = {
  548.     {
  549.         .name          = "default",
  550.         .type          = AVMEDIA_TYPE_VIDEO,
  551.         .config_props  = config_output,
  552.         .request_frame = request_frame,
  553.     },
  554.     { NULL }
  555. };
  556.  
  557. AVFilter ff_vf_palettegen = {
  558.     .name          = "palettegen",
  559.     .description   = NULL_IF_CONFIG_SMALL("Find the optimal palette for a given stream."),
  560.     .priv_size     = sizeof(PaletteGenContext),
  561.     .uninit        = uninit,
  562.     .query_formats = query_formats,
  563.     .inputs        = palettegen_inputs,
  564.     .outputs       = palettegen_outputs,
  565.     .priv_class    = &palettegen_class,
  566. };
  567.