Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2012 Clément Bœsch
  3.  *
  4.  * This file is part of FFmpeg.
  5.  *
  6.  * FFmpeg is free software; you can redistribute it and/or modify
  7.  * it under the terms of the GNU General Public License as published by
  8.  * the Free Software Foundation; either version 2 of the License, or
  9.  * (at your option) any later version.
  10.  *
  11.  * FFmpeg is distributed in the hope that it will be useful,
  12.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14.  * GNU General Public License for more details.
  15.  *
  16.  * You should have received a copy of the GNU General Public License along
  17.  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
  18.  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19.  */
  20.  
  21. /**
  22.  * @file
  23.  * EBU R.128 implementation
  24.  * @see http://tech.ebu.ch/loudness
  25.  * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
  26.  * @todo implement start/stop/reset through filter command injection
  27.  * @todo support other frequencies to avoid resampling
  28.  */
  29.  
  30. #include <math.h>
  31.  
  32. #include "libavutil/avassert.h"
  33. #include "libavutil/avstring.h"
  34. #include "libavutil/channel_layout.h"
  35. #include "libavutil/dict.h"
  36. #include "libavutil/xga_font_data.h"
  37. #include "libavutil/opt.h"
  38. #include "libavutil/timestamp.h"
  39. #include "libswresample/swresample.h"
  40. #include "audio.h"
  41. #include "avfilter.h"
  42. #include "formats.h"
  43. #include "internal.h"
  44.  
  45. #define MAX_CHANNELS 63
  46.  
  47. /* pre-filter coefficients */
  48. #define PRE_B0  1.53512485958697
  49. #define PRE_B1 -2.69169618940638
  50. #define PRE_B2  1.19839281085285
  51. #define PRE_A1 -1.69065929318241
  52. #define PRE_A2  0.73248077421585
  53.  
  54. /* RLB-filter coefficients */
  55. #define RLB_B0  1.0
  56. #define RLB_B1 -2.0
  57. #define RLB_B2  1.0
  58. #define RLB_A1 -1.99004745483398
  59. #define RLB_A2  0.99007225036621
  60.  
  61. #define ABS_THRES    -70            ///< silence gate: we discard anything below this absolute (LUFS) threshold
  62. #define ABS_UP_THRES  10            ///< upper loud limit to consider (ABS_THRES being the minimum)
  63. #define HIST_GRAIN   100            ///< defines histogram precision
  64. #define HIST_SIZE  ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
  65.  
  66. /**
  67.  * A histogram is an array of HIST_SIZE hist_entry storing all the energies
  68.  * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
  69.  * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
  70.  * This fixed-size system avoids the need of a list of energies growing
  71.  * infinitely over the time and is thus more scalable.
  72.  */
  73. struct hist_entry {
  74.     int count;                      ///< how many times the corresponding value occurred
  75.     double energy;                  ///< E = 10^((L + 0.691) / 10)
  76.     double loudness;                ///< L = -0.691 + 10 * log10(E)
  77. };
  78.  
  79. struct integrator {
  80.     double *cache[MAX_CHANNELS];    ///< window of filtered samples (N ms)
  81.     int cache_pos;                  ///< focus on the last added bin in the cache array
  82.     double sum[MAX_CHANNELS];       ///< sum of the last N ms filtered samples (cache content)
  83.     int filled;                     ///< 1 if the cache is completely filled, 0 otherwise
  84.     double rel_threshold;           ///< relative threshold
  85.     double sum_kept_powers;         ///< sum of the powers (weighted sums) above absolute threshold
  86.     int nb_kept_powers;             ///< number of sum above absolute threshold
  87.     struct hist_entry *histogram;   ///< histogram of the powers, used to compute LRA and I
  88. };
  89.  
  90. struct rect { int x, y, w, h; };
  91.  
  92. typedef struct {
  93.     const AVClass *class;           ///< AVClass context for log and options purpose
  94.  
  95.     /* peak metering */
  96.     int peak_mode;                  ///< enabled peak modes
  97.     double *true_peaks;             ///< true peaks per channel
  98.     double *sample_peaks;           ///< sample peaks per channel
  99.     double *true_peaks_per_frame;   ///< true peaks in a frame per channel
  100. #if CONFIG_SWRESAMPLE
  101.     SwrContext *swr_ctx;            ///< over-sampling context for true peak metering
  102.     double *swr_buf;                ///< resampled audio data for true peak metering
  103.     int swr_linesize;
  104. #endif
  105.  
  106.     /* video  */
  107.     int do_video;                   ///< 1 if video output enabled, 0 otherwise
  108.     int w, h;                       ///< size of the video output
  109.     struct rect text;               ///< rectangle for the LU legend on the left
  110.     struct rect graph;              ///< rectangle for the main graph in the center
  111.     struct rect gauge;              ///< rectangle for the gauge on the right
  112.     AVFrame *outpicref;             ///< output picture reference, updated regularly
  113.     int meter;                      ///< select a EBU mode between +9 and +18
  114.     int scale_range;                ///< the range of LU values according to the meter
  115.     int y_zero_lu;                  ///< the y value (pixel position) for 0 LU
  116.     int *y_line_ref;                ///< y reference values for drawing the LU lines in the graph and the gauge
  117.  
  118.     /* audio */
  119.     int nb_channels;                ///< number of channels in the input
  120.     double *ch_weighting;           ///< channel weighting mapping
  121.     int sample_count;               ///< sample count used for refresh frequency, reset at refresh
  122.  
  123.     /* Filter caches.
  124.      * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
  125.     double x[MAX_CHANNELS * 3];     ///< 3 input samples cache for each channel
  126.     double y[MAX_CHANNELS * 3];     ///< 3 pre-filter samples cache for each channel
  127.     double z[MAX_CHANNELS * 3];     ///< 3 RLB-filter samples cache for each channel
  128.  
  129. #define I400_BINS  (48000 * 4 / 10)
  130. #define I3000_BINS (48000 * 3)
  131.     struct integrator i400;         ///< 400ms integrator, used for Momentary loudness  (M), and Integrated loudness (I)
  132.     struct integrator i3000;        ///<    3s integrator, used for Short term loudness (S), and Loudness Range      (LRA)
  133.  
  134.     /* I and LRA specific */
  135.     double integrated_loudness;     ///< integrated loudness in LUFS (I)
  136.     double loudness_range;          ///< loudness range in LU (LRA)
  137.     double lra_low, lra_high;       ///< low and high LRA values
  138.  
  139.     /* misc */
  140.     int loglevel;                   ///< log level for frame logging
  141.     int metadata;                   ///< whether or not to inject loudness results in frames
  142. } EBUR128Context;
  143.  
  144. enum {
  145.     PEAK_MODE_NONE          = 0,
  146.     PEAK_MODE_SAMPLES_PEAKS = 1<<1,
  147.     PEAK_MODE_TRUE_PEAKS    = 1<<2,
  148. };
  149.  
  150. #define OFFSET(x) offsetof(EBUR128Context, x)
  151. #define A AV_OPT_FLAG_AUDIO_PARAM
  152. #define V AV_OPT_FLAG_VIDEO_PARAM
  153. #define F AV_OPT_FLAG_FILTERING_PARAM
  154. static const AVOption ebur128_options[] = {
  155.     { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
  156.     { "size",  "set video size",   OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
  157.     { "meter", "set scale meter (+9 to +18)",  OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
  158.     { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1},   INT_MIN, INT_MAX, A|V|F, "level" },
  159.         { "info",    "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO},    INT_MIN, INT_MAX, A|V|F, "level" },
  160.         { "verbose", "verbose logging level",     0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
  161.     { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, A|V|F },
  162.     { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
  163.         { "none",   "disable any peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE},          INT_MIN, INT_MAX, A|F, "mode" },
  164.         { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
  165.         { "true",   "enable true-peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS},    INT_MIN, INT_MAX, A|F, "mode" },
  166.     { NULL },
  167. };
  168.  
  169. AVFILTER_DEFINE_CLASS(ebur128);
  170.  
  171. static const uint8_t graph_colors[] = {
  172.     0xdd, 0x66, 0x66,   // value above 0LU non reached
  173.     0x66, 0x66, 0xdd,   // value below 0LU non reached
  174.     0x96, 0x33, 0x33,   // value above 0LU reached
  175.     0x33, 0x33, 0x96,   // value below 0LU reached
  176.     0xdd, 0x96, 0x96,   // value above 0LU line non reached
  177.     0x96, 0x96, 0xdd,   // value below 0LU line non reached
  178.     0xdd, 0x33, 0x33,   // value above 0LU line reached
  179.     0x33, 0x33, 0xdd,   // value below 0LU line reached
  180. };
  181.  
  182. static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
  183. {
  184.     const int below0  = y > ebur128->y_zero_lu;
  185.     const int reached = y >= v;
  186.     const int line    = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
  187.     const int colorid = 4*line + 2*reached + below0;
  188.     return graph_colors + 3*colorid;
  189. }
  190.  
  191. static inline int lu_to_y(const EBUR128Context *ebur128, double v)
  192. {
  193.     v += 2 * ebur128->meter;                            // make it in range [0;...]
  194.     v  = av_clipf(v, 0, ebur128->scale_range);          // make sure it's in the graph scale
  195.     v  = ebur128->scale_range - v;                      // invert value (y=0 is on top)
  196.     return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
  197. }
  198.  
  199. #define FONT8   0
  200. #define FONT16  1
  201.  
  202. static const uint8_t font_colors[] = {
  203.     0xdd, 0xdd, 0x00,
  204.     0x00, 0x96, 0x96,
  205. };
  206.  
  207. static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
  208. {
  209.     int i;
  210.     char buf[128] = {0};
  211.     const uint8_t *font;
  212.     int font_height;
  213.     va_list vl;
  214.  
  215.     if      (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
  216.     else if (ftid == FONT8)  font = avpriv_cga_font,   font_height =  8;
  217.     else return;
  218.  
  219.     va_start(vl, fmt);
  220.     vsnprintf(buf, sizeof(buf), fmt, vl);
  221.     va_end(vl);
  222.  
  223.     for (i = 0; buf[i]; i++) {
  224.         int char_y, mask;
  225.         uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
  226.  
  227.         for (char_y = 0; char_y < font_height; char_y++) {
  228.             for (mask = 0x80; mask; mask >>= 1) {
  229.                 if (font[buf[i] * font_height + char_y] & mask)
  230.                     memcpy(p, color, 3);
  231.                 else
  232.                     memcpy(p, "\x00\x00\x00", 3);
  233.                 p += 3;
  234.             }
  235.             p += pic->linesize[0] - 8*3;
  236.         }
  237.     }
  238. }
  239.  
  240. static void drawline(AVFrame *pic, int x, int y, int len, int step)
  241. {
  242.     int i;
  243.     uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
  244.  
  245.     for (i = 0; i < len; i++) {
  246.         memcpy(p, "\x00\xff\x00", 3);
  247.         p += step;
  248.     }
  249. }
  250.  
  251. static int config_video_output(AVFilterLink *outlink)
  252. {
  253.     int i, x, y;
  254.     uint8_t *p;
  255.     AVFilterContext *ctx = outlink->src;
  256.     EBUR128Context *ebur128 = ctx->priv;
  257.     AVFrame *outpicref;
  258.  
  259.     /* check if there is enough space to represent everything decently */
  260.     if (ebur128->w < 640 || ebur128->h < 480) {
  261.         av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
  262.                "minimum size is 640x480\n", ebur128->w, ebur128->h);
  263.         return AVERROR(EINVAL);
  264.     }
  265.     outlink->w = ebur128->w;
  266.     outlink->h = ebur128->h;
  267.  
  268. #define PAD 8
  269.  
  270.     /* configure text area position and size */
  271.     ebur128->text.x  = PAD;
  272.     ebur128->text.y  = 40;
  273.     ebur128->text.w  = 3 * 8;   // 3 characters
  274.     ebur128->text.h  = ebur128->h - PAD - ebur128->text.y;
  275.  
  276.     /* configure gauge position and size */
  277.     ebur128->gauge.w = 20;
  278.     ebur128->gauge.h = ebur128->text.h;
  279.     ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
  280.     ebur128->gauge.y = ebur128->text.y;
  281.  
  282.     /* configure graph position and size */
  283.     ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
  284.     ebur128->graph.y = ebur128->gauge.y;
  285.     ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
  286.     ebur128->graph.h = ebur128->gauge.h;
  287.  
  288.     /* graph and gauge share the LU-to-pixel code */
  289.     av_assert0(ebur128->graph.h == ebur128->gauge.h);
  290.  
  291.     /* prepare the initial picref buffer */
  292.     av_frame_free(&ebur128->outpicref);
  293.     ebur128->outpicref = outpicref =
  294.         ff_get_video_buffer(outlink, outlink->w, outlink->h);
  295.     if (!outpicref)
  296.         return AVERROR(ENOMEM);
  297.     outlink->sample_aspect_ratio = (AVRational){1,1};
  298.  
  299.     /* init y references values (to draw LU lines) */
  300.     ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
  301.     if (!ebur128->y_line_ref)
  302.         return AVERROR(ENOMEM);
  303.  
  304.     /* black background */
  305.     memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
  306.  
  307.     /* draw LU legends */
  308.     drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
  309.     for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
  310.         y = lu_to_y(ebur128, i);
  311.         x = PAD + (i < 10 && i > -10) * 8;
  312.         ebur128->y_line_ref[y] = i;
  313.         y -= 4; // -4 to center vertically
  314.         drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
  315.                  "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
  316.     }
  317.  
  318.     /* draw graph */
  319.     ebur128->y_zero_lu = lu_to_y(ebur128, 0);
  320.     p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
  321.                            + ebur128->graph.x * 3;
  322.     for (y = 0; y < ebur128->graph.h; y++) {
  323.         const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
  324.  
  325.         for (x = 0; x < ebur128->graph.w; x++)
  326.             memcpy(p + x*3, c, 3);
  327.         p += outpicref->linesize[0];
  328.     }
  329.  
  330.     /* draw fancy rectangles around the graph and the gauge */
  331. #define DRAW_RECT(r) do { \
  332.     drawline(outpicref, r.x,       r.y - 1,   r.w, 3); \
  333.     drawline(outpicref, r.x,       r.y + r.h, r.w, 3); \
  334.     drawline(outpicref, r.x - 1,   r.y,       r.h, outpicref->linesize[0]); \
  335.     drawline(outpicref, r.x + r.w, r.y,       r.h, outpicref->linesize[0]); \
  336. } while (0)
  337.     DRAW_RECT(ebur128->graph);
  338.     DRAW_RECT(ebur128->gauge);
  339.  
  340.     outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
  341.  
  342.     return 0;
  343. }
  344.  
  345. static int config_audio_input(AVFilterLink *inlink)
  346. {
  347.     AVFilterContext *ctx = inlink->dst;
  348.     EBUR128Context *ebur128 = ctx->priv;
  349.  
  350.     /* Force 100ms framing in case of metadata injection: the frames must have
  351.      * a granularity of the window overlap to be accurately exploited.
  352.      * As for the true peaks mode, it just simplifies the resampling buffer
  353.      * allocation and the lookup in it (since sample buffers differ in size, it
  354.      * can be more complex to integrate in the one-sample loop of
  355.      * filter_frame()). */
  356.     if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
  357.         inlink->min_samples =
  358.         inlink->max_samples =
  359.         inlink->partial_buf_size = inlink->sample_rate / 10;
  360.     return 0;
  361. }
  362.  
  363. static int config_audio_output(AVFilterLink *outlink)
  364. {
  365.     int i;
  366.     AVFilterContext *ctx = outlink->src;
  367.     EBUR128Context *ebur128 = ctx->priv;
  368.     const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
  369.  
  370. #define BACK_MASK (AV_CH_BACK_LEFT    |AV_CH_BACK_CENTER    |AV_CH_BACK_RIGHT| \
  371.                    AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
  372.                    AV_CH_SIDE_LEFT                          |AV_CH_SIDE_RIGHT| \
  373.                    AV_CH_SURROUND_DIRECT_LEFT               |AV_CH_SURROUND_DIRECT_RIGHT)
  374.  
  375.     ebur128->nb_channels  = nb_channels;
  376.     ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
  377.     if (!ebur128->ch_weighting)
  378.         return AVERROR(ENOMEM);
  379.  
  380.     for (i = 0; i < nb_channels; i++) {
  381.         /* channel weighting */
  382.         const uint16_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
  383.         if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) {
  384.             ebur128->ch_weighting[i] = 0;
  385.         } else if (chl & BACK_MASK) {
  386.             ebur128->ch_weighting[i] = 1.41;
  387.         } else {
  388.             ebur128->ch_weighting[i] = 1.0;
  389.         }
  390.  
  391.         if (!ebur128->ch_weighting[i])
  392.             continue;
  393.  
  394.         /* bins buffer for the two integration window (400ms and 3s) */
  395.         ebur128->i400.cache[i]  = av_calloc(I400_BINS,  sizeof(*ebur128->i400.cache[0]));
  396.         ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
  397.         if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
  398.             return AVERROR(ENOMEM);
  399.     }
  400.  
  401.     outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
  402.  
  403. #if CONFIG_SWRESAMPLE
  404.     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
  405.         int ret;
  406.  
  407.         ebur128->swr_buf    = av_malloc_array(nb_channels, 19200 * sizeof(double));
  408.         ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
  409.         ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
  410.         ebur128->swr_ctx    = swr_alloc();
  411.         if (!ebur128->swr_buf || !ebur128->true_peaks ||
  412.             !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
  413.             return AVERROR(ENOMEM);
  414.  
  415.         av_opt_set_int(ebur128->swr_ctx, "in_channel_layout",    outlink->channel_layout, 0);
  416.         av_opt_set_int(ebur128->swr_ctx, "in_sample_rate",       outlink->sample_rate, 0);
  417.         av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
  418.  
  419.         av_opt_set_int(ebur128->swr_ctx, "out_channel_layout",    outlink->channel_layout, 0);
  420.         av_opt_set_int(ebur128->swr_ctx, "out_sample_rate",       192000, 0);
  421.         av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
  422.  
  423.         ret = swr_init(ebur128->swr_ctx);
  424.         if (ret < 0)
  425.             return ret;
  426.     }
  427. #endif
  428.  
  429.     if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
  430.         ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
  431.         if (!ebur128->sample_peaks)
  432.             return AVERROR(ENOMEM);
  433.     }
  434.  
  435.     return 0;
  436. }
  437.  
  438. #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
  439. #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
  440. #define DBFS(energy) (20 * log10(energy))
  441.  
  442. static struct hist_entry *get_histogram(void)
  443. {
  444.     int i;
  445.     struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
  446.  
  447.     if (!h)
  448.         return NULL;
  449.     for (i = 0; i < HIST_SIZE; i++) {
  450.         h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
  451.         h[i].energy   = ENERGY(h[i].loudness);
  452.     }
  453.     return h;
  454. }
  455.  
  456. static av_cold int init(AVFilterContext *ctx)
  457. {
  458.     EBUR128Context *ebur128 = ctx->priv;
  459.     AVFilterPad pad;
  460.  
  461.     if (ebur128->loglevel != AV_LOG_INFO &&
  462.         ebur128->loglevel != AV_LOG_VERBOSE) {
  463.         if (ebur128->do_video || ebur128->metadata)
  464.             ebur128->loglevel = AV_LOG_VERBOSE;
  465.         else
  466.             ebur128->loglevel = AV_LOG_INFO;
  467.     }
  468.  
  469.     if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
  470.         av_log(ctx, AV_LOG_ERROR,
  471.                "True-peak mode requires libswresample to be performed\n");
  472.         return AVERROR(EINVAL);
  473.     }
  474.  
  475.     // if meter is  +9 scale, scale range is from -18 LU to  +9 LU (or 3*9)
  476.     // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
  477.     ebur128->scale_range = 3 * ebur128->meter;
  478.  
  479.     ebur128->i400.histogram  = get_histogram();
  480.     ebur128->i3000.histogram = get_histogram();
  481.     if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
  482.         return AVERROR(ENOMEM);
  483.  
  484.     ebur128->integrated_loudness = ABS_THRES;
  485.     ebur128->loudness_range = 0;
  486.  
  487.     /* insert output pads */
  488.     if (ebur128->do_video) {
  489.         pad = (AVFilterPad){
  490.             .name         = av_strdup("out0"),
  491.             .type         = AVMEDIA_TYPE_VIDEO,
  492.             .config_props = config_video_output,
  493.         };
  494.         if (!pad.name)
  495.             return AVERROR(ENOMEM);
  496.         ff_insert_outpad(ctx, 0, &pad);
  497.     }
  498.     pad = (AVFilterPad){
  499.         .name         = av_asprintf("out%d", ebur128->do_video),
  500.         .type         = AVMEDIA_TYPE_AUDIO,
  501.         .config_props = config_audio_output,
  502.     };
  503.     if (!pad.name)
  504.         return AVERROR(ENOMEM);
  505.     ff_insert_outpad(ctx, ebur128->do_video, &pad);
  506.  
  507.     /* summary */
  508.     av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
  509.  
  510.     return 0;
  511. }
  512.  
  513. #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
  514.  
  515. /* loudness and power should be set such as loudness = -0.691 +
  516.  * 10*log10(power), we just avoid doing that calculus two times */
  517. static int gate_update(struct integrator *integ, double power,
  518.                        double loudness, int gate_thres)
  519. {
  520.     int ipower;
  521.     double relative_threshold;
  522.     int gate_hist_pos;
  523.  
  524.     /* update powers histograms by incrementing current power count */
  525.     ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
  526.     integ->histogram[ipower].count++;
  527.  
  528.     /* compute relative threshold and get its position in the histogram */
  529.     integ->sum_kept_powers += power;
  530.     integ->nb_kept_powers++;
  531.     relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
  532.     if (!relative_threshold)
  533.         relative_threshold = 1e-12;
  534.     integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
  535.     gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
  536.  
  537.     return gate_hist_pos;
  538. }
  539.  
  540. static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
  541. {
  542.     int i, ch, idx_insample;
  543.     AVFilterContext *ctx = inlink->dst;
  544.     EBUR128Context *ebur128 = ctx->priv;
  545.     const int nb_channels = ebur128->nb_channels;
  546.     const int nb_samples  = insamples->nb_samples;
  547.     const double *samples = (double *)insamples->data[0];
  548.     AVFrame *pic = ebur128->outpicref;
  549.  
  550. #if CONFIG_SWRESAMPLE
  551.     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
  552.         const double *swr_samples = ebur128->swr_buf;
  553.         int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
  554.                               (const uint8_t **)insamples->data, nb_samples);
  555.         if (ret < 0)
  556.             return ret;
  557.         for (ch = 0; ch < nb_channels; ch++)
  558.             ebur128->true_peaks_per_frame[ch] = 0.0;
  559.         for (idx_insample = 0; idx_insample < ret; idx_insample++) {
  560.             for (ch = 0; ch < nb_channels; ch++) {
  561.                 ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], FFABS(*swr_samples));
  562.                 ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
  563.                                                           FFABS(*swr_samples));
  564.                 swr_samples++;
  565.             }
  566.         }
  567.     }
  568. #endif
  569.  
  570.     for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
  571.         const int bin_id_400  = ebur128->i400.cache_pos;
  572.         const int bin_id_3000 = ebur128->i3000.cache_pos;
  573.  
  574. #define MOVE_TO_NEXT_CACHED_ENTRY(time) do {                \
  575.     ebur128->i##time.cache_pos++;                           \
  576.     if (ebur128->i##time.cache_pos == I##time##_BINS) {     \
  577.         ebur128->i##time.filled    = 1;                     \
  578.         ebur128->i##time.cache_pos = 0;                     \
  579.     }                                                       \
  580. } while (0)
  581.  
  582.         MOVE_TO_NEXT_CACHED_ENTRY(400);
  583.         MOVE_TO_NEXT_CACHED_ENTRY(3000);
  584.  
  585.         for (ch = 0; ch < nb_channels; ch++) {
  586.             double bin;
  587.  
  588.             if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
  589.                 ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], FFABS(*samples));
  590.  
  591.             ebur128->x[ch * 3] = *samples++; // set X[i]
  592.  
  593.             if (!ebur128->ch_weighting[ch])
  594.                 continue;
  595.  
  596.             /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
  597. #define FILTER(Y, X, name) do {                                                 \
  598.             double *dst = ebur128->Y + ch*3;                                    \
  599.             double *src = ebur128->X + ch*3;                                    \
  600.             dst[2] = dst[1];                                                    \
  601.             dst[1] = dst[0];                                                    \
  602.             dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2     \
  603.                                       - dst[1]*name##_A1 - dst[2]*name##_A2;    \
  604. } while (0)
  605.  
  606.             // TODO: merge both filters in one?
  607.             FILTER(y, x, PRE);  // apply pre-filter
  608.             ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
  609.             ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3    ];
  610.             FILTER(z, y, RLB);  // apply RLB-filter
  611.  
  612.             bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
  613.  
  614.             /* add the new value, and limit the sum to the cache size (400ms or 3s)
  615.              * by removing the oldest one */
  616.             ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
  617.             ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
  618.  
  619.             /* override old cache entry with the new value */
  620.             ebur128->i400.cache [ch][bin_id_400 ] = bin;
  621.             ebur128->i3000.cache[ch][bin_id_3000] = bin;
  622.         }
  623.  
  624.         /* For integrated loudness, gating blocks are 400ms long with 75%
  625.          * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
  626.          * (4800 samples at 48kHz). */
  627.         if (++ebur128->sample_count == 4800) {
  628.             double loudness_400, loudness_3000;
  629.             double power_400 = 1e-12, power_3000 = 1e-12;
  630.             AVFilterLink *outlink = ctx->outputs[0];
  631.             const int64_t pts = insamples->pts +
  632.                 av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
  633.                              outlink->time_base);
  634.  
  635.             ebur128->sample_count = 0;
  636.  
  637. #define COMPUTE_LOUDNESS(m, time) do {                                              \
  638.     if (ebur128->i##time.filled) {                                                  \
  639.         /* weighting sum of the last <time> ms */                                   \
  640.         for (ch = 0; ch < nb_channels; ch++)                                        \
  641.             power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch];   \
  642.         power_##time /= I##time##_BINS;                                             \
  643.     }                                                                               \
  644.     loudness_##time = LOUDNESS(power_##time);                                       \
  645. } while (0)
  646.  
  647.             COMPUTE_LOUDNESS(M,  400);
  648.             COMPUTE_LOUDNESS(S, 3000);
  649.  
  650.             /* Integrated loudness */
  651. #define I_GATE_THRES -10  // initially defined to -8 LU in the first EBU standard
  652.  
  653.             if (loudness_400 >= ABS_THRES) {
  654.                 double integrated_sum = 0;
  655.                 int nb_integrated = 0;
  656.                 int gate_hist_pos = gate_update(&ebur128->i400, power_400,
  657.                                                 loudness_400, I_GATE_THRES);
  658.  
  659.                 /* compute integrated loudness by summing the histogram values
  660.                  * above the relative threshold */
  661.                 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  662.                     const int nb_v = ebur128->i400.histogram[i].count;
  663.                     nb_integrated  += nb_v;
  664.                     integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
  665.                 }
  666.                 if (nb_integrated)
  667.                     ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
  668.             }
  669.  
  670.             /* LRA */
  671. #define LRA_GATE_THRES -20
  672. #define LRA_LOWER_PRC   10
  673. #define LRA_HIGHER_PRC  95
  674.  
  675.             /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
  676.              * specs is ">" */
  677.             if (loudness_3000 >= ABS_THRES) {
  678.                 int nb_powers = 0;
  679.                 int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
  680.                                                 loudness_3000, LRA_GATE_THRES);
  681.  
  682.                 for (i = gate_hist_pos; i < HIST_SIZE; i++)
  683.                     nb_powers += ebur128->i3000.histogram[i].count;
  684.                 if (nb_powers) {
  685.                     int n, nb_pow;
  686.  
  687.                     /* get lower loudness to consider */
  688.                     n = 0;
  689.                     nb_pow = LRA_LOWER_PRC  * nb_powers / 100. + 0.5;
  690.                     for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  691.                         n += ebur128->i3000.histogram[i].count;
  692.                         if (n >= nb_pow) {
  693.                             ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
  694.                             break;
  695.                         }
  696.                     }
  697.  
  698.                     /* get higher loudness to consider */
  699.                     n = nb_powers;
  700.                     nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
  701.                     for (i = HIST_SIZE - 1; i >= 0; i--) {
  702.                         n -= ebur128->i3000.histogram[i].count;
  703.                         if (n < nb_pow) {
  704.                             ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
  705.                             break;
  706.                         }
  707.                     }
  708.  
  709.                     // XXX: show low & high on the graph?
  710.                     ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
  711.                 }
  712.             }
  713.  
  714. #define LOG_FMT "M:%6.1f S:%6.1f     I:%6.1f LUFS     LRA:%6.1f LU"
  715.  
  716.             /* push one video frame */
  717.             if (ebur128->do_video) {
  718.                 int x, y, ret;
  719.                 uint8_t *p;
  720.  
  721.                 const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
  722.                 const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400  + 23);
  723.  
  724.                 /* draw the graph using the short-term loudness */
  725.                 p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
  726.                 for (y = 0; y < ebur128->graph.h; y++) {
  727.                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
  728.  
  729.                     memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
  730.                     memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
  731.                     p += pic->linesize[0];
  732.                 }
  733.  
  734.                 /* draw the gauge using the momentary loudness */
  735.                 p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
  736.                 for (y = 0; y < ebur128->gauge.h; y++) {
  737.                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
  738.  
  739.                     for (x = 0; x < ebur128->gauge.w; x++)
  740.                         memcpy(p + x*3, c, 3);
  741.                     p += pic->linesize[0];
  742.                 }
  743.  
  744.                 /* draw textual info */
  745.                 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
  746.                          LOG_FMT "     ", // padding to erase trailing characters
  747.                          loudness_400, loudness_3000,
  748.                          ebur128->integrated_loudness, ebur128->loudness_range);
  749.  
  750.                 /* set pts and push frame */
  751.                 pic->pts = pts;
  752.                 ret = ff_filter_frame(outlink, av_frame_clone(pic));
  753.                 if (ret < 0)
  754.                     return ret;
  755.             }
  756.  
  757.             if (ebur128->metadata) { /* happens only once per filter_frame call */
  758.                 char metabuf[128];
  759. #define META_PREFIX "lavfi.r128."
  760.  
  761. #define SET_META(name, var) do {                                            \
  762.     snprintf(metabuf, sizeof(metabuf), "%.3f", var);                        \
  763.     av_dict_set(&insamples->metadata, name, metabuf, 0);                    \
  764. } while (0)
  765.  
  766. #define SET_META_PEAK(name, ptype) do {                                     \
  767.     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {               \
  768.         char key[64];                                                       \
  769.         for (ch = 0; ch < nb_channels; ch++) {                              \
  770.             snprintf(key, sizeof(key),                                      \
  771.                      META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch);     \
  772.             SET_META(key, ebur128->name##_peaks[ch]);                       \
  773.         }                                                                   \
  774.     }                                                                       \
  775. } while (0)
  776.  
  777.                 SET_META(META_PREFIX "M",        loudness_400);
  778.                 SET_META(META_PREFIX "S",        loudness_3000);
  779.                 SET_META(META_PREFIX "I",        ebur128->integrated_loudness);
  780.                 SET_META(META_PREFIX "LRA",      ebur128->loudness_range);
  781.                 SET_META(META_PREFIX "LRA.low",  ebur128->lra_low);
  782.                 SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
  783.  
  784.                 SET_META_PEAK(sample, SAMPLES);
  785.                 SET_META_PEAK(true,   TRUE);
  786.             }
  787.  
  788.             av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
  789.                    av_ts2timestr(pts, &outlink->time_base),
  790.                    loudness_400, loudness_3000,
  791.                    ebur128->integrated_loudness, ebur128->loudness_range);
  792.  
  793. #define PRINT_PEAKS(str, sp, ptype) do {                            \
  794.     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {       \
  795.         av_log(ctx, ebur128->loglevel, "  " str ":");               \
  796.         for (ch = 0; ch < nb_channels; ch++)                        \
  797.             av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
  798.         av_log(ctx, ebur128->loglevel, " dBFS");                    \
  799.     }                                                               \
  800. } while (0)
  801.  
  802.             PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
  803.             PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
  804.             PRINT_PEAKS("TPK", ebur128->true_peaks,   TRUE);
  805.             av_log(ctx, ebur128->loglevel, "\n");
  806.         }
  807.     }
  808.  
  809.     return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
  810. }
  811.  
  812. static int query_formats(AVFilterContext *ctx)
  813. {
  814.     EBUR128Context *ebur128 = ctx->priv;
  815.     AVFilterFormats *formats;
  816.     AVFilterChannelLayouts *layouts;
  817.     AVFilterLink *inlink = ctx->inputs[0];
  818.     AVFilterLink *outlink = ctx->outputs[0];
  819.  
  820.     static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
  821.     static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
  822.     static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
  823.  
  824.     /* set optional output video format */
  825.     if (ebur128->do_video) {
  826.         formats = ff_make_format_list(pix_fmts);
  827.         if (!formats)
  828.             return AVERROR(ENOMEM);
  829.         ff_formats_ref(formats, &outlink->in_formats);
  830.         outlink = ctx->outputs[1];
  831.     }
  832.  
  833.     /* set input and output audio formats
  834.      * Note: ff_set_common_* functions are not used because they affect all the
  835.      * links, and thus break the video format negotiation */
  836.     formats = ff_make_format_list(sample_fmts);
  837.     if (!formats)
  838.         return AVERROR(ENOMEM);
  839.     ff_formats_ref(formats, &inlink->out_formats);
  840.     ff_formats_ref(formats, &outlink->in_formats);
  841.  
  842.     layouts = ff_all_channel_layouts();
  843.     if (!layouts)
  844.         return AVERROR(ENOMEM);
  845.     ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
  846.     ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
  847.  
  848.     formats = ff_make_format_list(input_srate);
  849.     if (!formats)
  850.         return AVERROR(ENOMEM);
  851.     ff_formats_ref(formats, &inlink->out_samplerates);
  852.     ff_formats_ref(formats, &outlink->in_samplerates);
  853.  
  854.     return 0;
  855. }
  856.  
  857. static av_cold void uninit(AVFilterContext *ctx)
  858. {
  859.     int i;
  860.     EBUR128Context *ebur128 = ctx->priv;
  861.  
  862.     av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
  863.            "  Integrated loudness:\n"
  864.            "    I:         %5.1f LUFS\n"
  865.            "    Threshold: %5.1f LUFS\n\n"
  866.            "  Loudness range:\n"
  867.            "    LRA:       %5.1f LU\n"
  868.            "    Threshold: %5.1f LUFS\n"
  869.            "    LRA low:   %5.1f LUFS\n"
  870.            "    LRA high:  %5.1f LUFS",
  871.            ebur128->integrated_loudness, ebur128->i400.rel_threshold,
  872.            ebur128->loudness_range,      ebur128->i3000.rel_threshold,
  873.            ebur128->lra_low, ebur128->lra_high);
  874.  
  875. #define PRINT_PEAK_SUMMARY(str, sp, ptype) do {                  \
  876.     int ch;                                                      \
  877.     double maxpeak;                                              \
  878.     maxpeak = 0.0;                                               \
  879.     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {    \
  880.         for (ch = 0; ch < ebur128->nb_channels; ch++)            \
  881.             maxpeak = FFMAX(maxpeak, sp[ch]);                    \
  882.         av_log(ctx, AV_LOG_INFO, "\n\n  " str " peak:\n"         \
  883.                "    Peak:      %5.1f dBFS",                      \
  884.                DBFS(maxpeak));                                   \
  885.     }                                                            \
  886. } while (0)
  887.  
  888.     PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
  889.     PRINT_PEAK_SUMMARY("True",   ebur128->true_peaks,   TRUE);
  890.     av_log(ctx, AV_LOG_INFO, "\n");
  891.  
  892.     av_freep(&ebur128->y_line_ref);
  893.     av_freep(&ebur128->ch_weighting);
  894.     av_freep(&ebur128->true_peaks);
  895.     av_freep(&ebur128->sample_peaks);
  896.     av_freep(&ebur128->true_peaks_per_frame);
  897.     av_freep(&ebur128->i400.histogram);
  898.     av_freep(&ebur128->i3000.histogram);
  899.     for (i = 0; i < ebur128->nb_channels; i++) {
  900.         av_freep(&ebur128->i400.cache[i]);
  901.         av_freep(&ebur128->i3000.cache[i]);
  902.     }
  903.     for (i = 0; i < ctx->nb_outputs; i++)
  904.         av_freep(&ctx->output_pads[i].name);
  905.     av_frame_free(&ebur128->outpicref);
  906. #if CONFIG_SWRESAMPLE
  907.     av_freep(&ebur128->swr_buf);
  908.     swr_free(&ebur128->swr_ctx);
  909. #endif
  910. }
  911.  
  912. static const AVFilterPad ebur128_inputs[] = {
  913.     {
  914.         .name         = "default",
  915.         .type         = AVMEDIA_TYPE_AUDIO,
  916.         .filter_frame = filter_frame,
  917.         .config_props = config_audio_input,
  918.     },
  919.     { NULL }
  920. };
  921.  
  922. AVFilter ff_af_ebur128 = {
  923.     .name          = "ebur128",
  924.     .description   = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
  925.     .priv_size     = sizeof(EBUR128Context),
  926.     .init          = init,
  927.     .uninit        = uninit,
  928.     .query_formats = query_formats,
  929.     .inputs        = ebur128_inputs,
  930.     .outputs       = NULL,
  931.     .priv_class    = &ebur128_class,
  932.     .flags         = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
  933. };
  934.