Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 1998 Juergen Mueller And Sundry Contributors
  3.  * This source code is freely redistributable and may be used for
  4.  * any purpose.  This copyright notice must be maintained.
  5.  * Juergen Mueller And Sundry Contributors are not responsible for
  6.  * the consequences of using this software.
  7.  *
  8.  * Copyright (c) 2015 Paul B Mahol
  9.  *
  10.  * This file is part of FFmpeg.
  11.  *
  12.  * FFmpeg is free software; you can redistribute it and/or
  13.  * modify it under the terms of the GNU Lesser General Public
  14.  * License as published by the Free Software Foundation; either
  15.  * version 2.1 of the License, or (at your option) any later version.
  16.  *
  17.  * FFmpeg is distributed in the hope that it will be useful,
  18.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20.  * Lesser General Public License for more details.
  21.  *
  22.  * You should have received a copy of the GNU Lesser General Public
  23.  * License along with FFmpeg; if not, write to the Free Software
  24.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25.  */
  26.  
  27. /**
  28.  * @file
  29.  * chorus audio filter
  30.  */
  31.  
  32. #include "libavutil/avstring.h"
  33. #include "libavutil/opt.h"
  34. #include "audio.h"
  35. #include "avfilter.h"
  36. #include "internal.h"
  37. #include "generate_wave_table.h"
  38.  
  39. typedef struct ChorusContext {
  40.     const AVClass *class;
  41.     float in_gain, out_gain;
  42.     char *delays_str;
  43.     char *decays_str;
  44.     char *speeds_str;
  45.     char *depths_str;
  46.     float *delays;
  47.     float *decays;
  48.     float *speeds;
  49.     float *depths;
  50.     uint8_t **chorusbuf;
  51.     int **phase;
  52.     int *length;
  53.     int32_t **lookup_table;
  54.     int *counter;
  55.     int num_chorus;
  56.     int max_samples;
  57.     int channels;
  58.     int modulation;
  59.     int fade_out;
  60.     int64_t next_pts;
  61. } ChorusContext;
  62.  
  63. #define OFFSET(x) offsetof(ChorusContext, x)
  64. #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  65.  
  66. static const AVOption chorus_options[] = {
  67.     { "in_gain",  "set input gain",  OFFSET(in_gain),    AV_OPT_TYPE_FLOAT,  {.dbl=.4}, 0, 1, A },
  68.     { "out_gain", "set output gain", OFFSET(out_gain),   AV_OPT_TYPE_FLOAT,  {.dbl=.4}, 0, 1, A },
  69.     { "delays",   "set delays",      OFFSET(delays_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A },
  70.     { "decays",   "set decays",      OFFSET(decays_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A },
  71.     { "speeds",   "set speeds",      OFFSET(speeds_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A },
  72.     { "depths",   "set depths",      OFFSET(depths_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, A },
  73.     { NULL }
  74. };
  75.  
  76. AVFILTER_DEFINE_CLASS(chorus);
  77.  
  78. static void count_items(char *item_str, int *nb_items)
  79. {
  80.     char *p;
  81.  
  82.     *nb_items = 1;
  83.     for (p = item_str; *p; p++) {
  84.         if (*p == '|')
  85.             (*nb_items)++;
  86.     }
  87.  
  88. }
  89.  
  90. static void fill_items(char *item_str, int *nb_items, float *items)
  91. {
  92.     char *p, *saveptr = NULL;
  93.     int i, new_nb_items = 0;
  94.  
  95.     p = item_str;
  96.     for (i = 0; i < *nb_items; i++) {
  97.         char *tstr = av_strtok(p, "|", &saveptr);
  98.         p = NULL;
  99.         new_nb_items += sscanf(tstr, "%f", &items[i]) == 1;
  100.     }
  101.  
  102.     *nb_items = new_nb_items;
  103. }
  104.  
  105. static av_cold int init(AVFilterContext *ctx)
  106. {
  107.     ChorusContext *s = ctx->priv;
  108.     int nb_delays, nb_decays, nb_speeds, nb_depths;
  109.  
  110.     if (!s->delays_str || !s->decays_str || !s->speeds_str || !s->depths_str) {
  111.         av_log(ctx, AV_LOG_ERROR, "Both delays & decays & speeds & depths must be set.\n");
  112.         return AVERROR(EINVAL);
  113.     }
  114.  
  115.     count_items(s->delays_str, &nb_delays);
  116.     count_items(s->decays_str, &nb_decays);
  117.     count_items(s->speeds_str, &nb_speeds);
  118.     count_items(s->depths_str, &nb_depths);
  119.  
  120.     s->delays = av_realloc_f(s->delays, nb_delays, sizeof(*s->delays));
  121.     s->decays = av_realloc_f(s->decays, nb_decays, sizeof(*s->decays));
  122.     s->speeds = av_realloc_f(s->speeds, nb_speeds, sizeof(*s->speeds));
  123.     s->depths = av_realloc_f(s->depths, nb_depths, sizeof(*s->depths));
  124.  
  125.     if (!s->delays || !s->decays || !s->speeds || !s->depths)
  126.         return AVERROR(ENOMEM);
  127.  
  128.     fill_items(s->delays_str, &nb_delays, s->delays);
  129.     fill_items(s->decays_str, &nb_decays, s->decays);
  130.     fill_items(s->speeds_str, &nb_speeds, s->speeds);
  131.     fill_items(s->depths_str, &nb_depths, s->depths);
  132.  
  133.     if (nb_delays != nb_decays && nb_delays != nb_speeds && nb_delays != nb_depths) {
  134.         av_log(ctx, AV_LOG_ERROR, "Number of delays & decays & speeds & depths given must be same.\n");
  135.         return AVERROR(EINVAL);
  136.     }
  137.  
  138.     s->num_chorus = nb_delays;
  139.  
  140.     if (s->num_chorus < 1) {
  141.         av_log(ctx, AV_LOG_ERROR, "At least one delay & decay & speed & depth must be set.\n");
  142.         return AVERROR(EINVAL);
  143.     }
  144.  
  145.     s->length = av_calloc(s->num_chorus, sizeof(*s->length));
  146.     s->lookup_table = av_calloc(s->num_chorus, sizeof(*s->lookup_table));
  147.  
  148.     if (!s->length || !s->lookup_table)
  149.         return AVERROR(ENOMEM);
  150.  
  151.     s->next_pts = AV_NOPTS_VALUE;
  152.  
  153.     return 0;
  154. }
  155.  
  156. static int query_formats(AVFilterContext *ctx)
  157. {
  158.     AVFilterFormats *formats;
  159.     AVFilterChannelLayouts *layouts;
  160.     static const enum AVSampleFormat sample_fmts[] = {
  161.         AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE
  162.     };
  163.     int ret;
  164.  
  165.     layouts = ff_all_channel_layouts();
  166.     if (!layouts)
  167.         return AVERROR(ENOMEM);
  168.     ret = ff_set_common_channel_layouts(ctx, layouts);
  169.     if (ret < 0)
  170.         return ret;
  171.  
  172.     formats = ff_make_format_list(sample_fmts);
  173.     if (!formats)
  174.         return AVERROR(ENOMEM);
  175.     ret = ff_set_common_formats(ctx, formats);
  176.     if (ret < 0)
  177.         return ret;
  178.  
  179.     formats = ff_all_samplerates();
  180.     if (!formats)
  181.         return AVERROR(ENOMEM);
  182.     return ff_set_common_samplerates(ctx, formats);
  183. }
  184.  
  185. static int config_output(AVFilterLink *outlink)
  186. {
  187.     AVFilterContext *ctx = outlink->src;
  188.     ChorusContext *s = ctx->priv;
  189.     float sum_in_volume = 1.0;
  190.     int n;
  191.  
  192.     s->channels = outlink->channels;
  193.  
  194.     for (n = 0; n < s->num_chorus; n++) {
  195.         int samples = (int) ((s->delays[n] + s->depths[n]) * outlink->sample_rate / 1000.0);
  196.         int depth_samples = (int) (s->depths[n] * outlink->sample_rate / 1000.0);
  197.  
  198.         s->length[n] = outlink->sample_rate / s->speeds[n];
  199.  
  200.         s->lookup_table[n] = av_malloc(sizeof(int32_t) * s->length[n]);
  201.         if (!s->lookup_table[n])
  202.             return AVERROR(ENOMEM);
  203.  
  204.         ff_generate_wave_table(WAVE_SIN, AV_SAMPLE_FMT_S32, s->lookup_table[n],
  205.                                s->length[n], 0., depth_samples, 0);
  206.         s->max_samples = FFMAX(s->max_samples, samples);
  207.     }
  208.  
  209.     for (n = 0; n < s->num_chorus; n++)
  210.         sum_in_volume += s->decays[n];
  211.  
  212.     if (s->in_gain * (sum_in_volume) > 1.0 / s->out_gain)
  213.         av_log(ctx, AV_LOG_WARNING, "output gain can cause saturation or clipping of output\n");
  214.  
  215.     s->counter = av_calloc(outlink->channels, sizeof(*s->counter));
  216.     if (!s->counter)
  217.         return AVERROR(ENOMEM);
  218.  
  219.     s->phase = av_calloc(outlink->channels, sizeof(*s->phase));
  220.     if (!s->phase)
  221.         return AVERROR(ENOMEM);
  222.  
  223.     for (n = 0; n < outlink->channels; n++) {
  224.         s->phase[n] = av_calloc(s->num_chorus, sizeof(int));
  225.         if (!s->phase[n])
  226.             return AVERROR(ENOMEM);
  227.     }
  228.  
  229.     s->fade_out = s->max_samples;
  230.  
  231.     return av_samples_alloc_array_and_samples(&s->chorusbuf, NULL,
  232.                                               outlink->channels,
  233.                                               s->max_samples,
  234.                                               outlink->format, 0);
  235. }
  236.  
  237. #define MOD(a, b) (((a) >= (b)) ? (a) - (b) : (a))
  238.  
  239. static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
  240. {
  241.     AVFilterContext *ctx = inlink->dst;
  242.     ChorusContext *s = ctx->priv;
  243.     AVFrame *out_frame;
  244.     int c, i, n;
  245.  
  246.     if (av_frame_is_writable(frame)) {
  247.         out_frame = frame;
  248.     } else {
  249.         out_frame = ff_get_audio_buffer(inlink, frame->nb_samples);
  250.         if (!out_frame)
  251.             return AVERROR(ENOMEM);
  252.         av_frame_copy_props(out_frame, frame);
  253.     }
  254.  
  255.     for (c = 0; c < inlink->channels; c++) {
  256.         const float *src = (const float *)frame->extended_data[c];
  257.         float *dst = (float *)out_frame->extended_data[c];
  258.         float *chorusbuf = (float *)s->chorusbuf[c];
  259.         int *phase = s->phase[c];
  260.  
  261.         for (i = 0; i < frame->nb_samples; i++) {
  262.             float out, in = src[i];
  263.  
  264.             out = in * s->in_gain;
  265.  
  266.             for (n = 0; n < s->num_chorus; n++) {
  267.                 out += chorusbuf[MOD(s->max_samples + s->counter[c] -
  268.                                      s->lookup_table[n][phase[n]],
  269.                                      s->max_samples)] * s->decays[n];
  270.                 phase[n] = MOD(phase[n] + 1, s->length[n]);
  271.             }
  272.  
  273.             out *= s->out_gain;
  274.  
  275.             dst[i] = out;
  276.  
  277.             chorusbuf[s->counter[c]] = in;
  278.             s->counter[c] = MOD(s->counter[c] + 1, s->max_samples);
  279.         }
  280.     }
  281.  
  282.     s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, (AVRational){1, inlink->sample_rate}, inlink->time_base);
  283.  
  284.     if (frame != out_frame)
  285.         av_frame_free(&frame);
  286.  
  287.     return ff_filter_frame(ctx->outputs[0], out_frame);
  288. }
  289.  
  290. static int request_frame(AVFilterLink *outlink)
  291. {
  292.     AVFilterContext *ctx = outlink->src;
  293.     ChorusContext *s = ctx->priv;
  294.     int ret;
  295.  
  296.     ret = ff_request_frame(ctx->inputs[0]);
  297.  
  298.     if (ret == AVERROR_EOF && !ctx->is_disabled && s->fade_out) {
  299.         int nb_samples = FFMIN(s->fade_out, 2048);
  300.         AVFrame *frame;
  301.  
  302.         frame = ff_get_audio_buffer(outlink, nb_samples);
  303.         if (!frame)
  304.             return AVERROR(ENOMEM);
  305.         s->fade_out -= nb_samples;
  306.  
  307.         av_samples_set_silence(frame->extended_data, 0,
  308.                                frame->nb_samples,
  309.                                outlink->channels,
  310.                                frame->format);
  311.  
  312.         frame->pts = s->next_pts;
  313.         if (s->next_pts != AV_NOPTS_VALUE)
  314.             s->next_pts += av_rescale_q(nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  315.  
  316.         ret = filter_frame(ctx->inputs[0], frame);
  317.     }
  318.  
  319.     return ret;
  320. }
  321.  
  322. static av_cold void uninit(AVFilterContext *ctx)
  323. {
  324.     ChorusContext *s = ctx->priv;
  325.     int n;
  326.  
  327.     av_freep(&s->delays);
  328.     av_freep(&s->decays);
  329.     av_freep(&s->speeds);
  330.     av_freep(&s->depths);
  331.  
  332.     if (s->chorusbuf)
  333.         av_freep(&s->chorusbuf[0]);
  334.     av_freep(&s->chorusbuf);
  335.  
  336.     if (s->phase)
  337.         for (n = 0; n < s->channels; n++)
  338.             av_freep(&s->phase[n]);
  339.     av_freep(&s->phase);
  340.  
  341.     av_freep(&s->counter);
  342.     av_freep(&s->length);
  343.  
  344.     if (s->lookup_table)
  345.         for (n = 0; n < s->num_chorus; n++)
  346.             av_freep(&s->lookup_table[n]);
  347.     av_freep(&s->lookup_table);
  348. }
  349.  
  350. static const AVFilterPad chorus_inputs[] = {
  351.     {
  352.         .name         = "default",
  353.         .type         = AVMEDIA_TYPE_AUDIO,
  354.         .filter_frame = filter_frame,
  355.     },
  356.     { NULL }
  357. };
  358.  
  359. static const AVFilterPad chorus_outputs[] = {
  360.     {
  361.         .name          = "default",
  362.         .type          = AVMEDIA_TYPE_AUDIO,
  363.         .request_frame = request_frame,
  364.         .config_props  = config_output,
  365.     },
  366.     { NULL }
  367. };
  368.  
  369. AVFilter ff_af_chorus = {
  370.     .name          = "chorus",
  371.     .description   = NULL_IF_CONFIG_SMALL("Add a chorus effect to the audio."),
  372.     .query_formats = query_formats,
  373.     .priv_size     = sizeof(ChorusContext),
  374.     .priv_class    = &chorus_class,
  375.     .init          = init,
  376.     .uninit        = uninit,
  377.     .inputs        = chorus_inputs,
  378.     .outputs       = chorus_outputs,
  379. };
  380.