Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Sierra VMD audio decoder
  3.  * Copyright (c) 2004 The FFmpeg Project
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * Sierra VMD audio decoder
  25.  * by Vladimir "VAG" Gneushev (vagsoft at mail.ru)
  26.  * for more information on the Sierra VMD format, visit:
  27.  *   http://www.pcisys.net/~melanson/codecs/
  28.  *
  29.  * The audio decoder, expects each encoded data
  30.  * chunk to be prepended with the appropriate 16-byte frame information
  31.  * record from the VMD file. It does not require the 0x330-byte VMD file
  32.  * header, but it does need the audio setup parameters passed in through
  33.  * normal libavcodec API means.
  34.  */
  35.  
  36. #include <string.h>
  37.  
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/channel_layout.h"
  40. #include "libavutil/common.h"
  41. #include "libavutil/intreadwrite.h"
  42.  
  43. #include "avcodec.h"
  44. #include "internal.h"
  45.  
  46. #define BLOCK_TYPE_AUDIO    1
  47. #define BLOCK_TYPE_INITIAL  2
  48. #define BLOCK_TYPE_SILENCE  3
  49.  
  50. typedef struct VmdAudioContext {
  51.     int out_bps;
  52.     int chunk_size;
  53. } VmdAudioContext;
  54.  
  55. static const uint16_t vmdaudio_table[128] = {
  56.     0x000, 0x008, 0x010, 0x020, 0x030, 0x040, 0x050, 0x060, 0x070, 0x080,
  57.     0x090, 0x0A0, 0x0B0, 0x0C0, 0x0D0, 0x0E0, 0x0F0, 0x100, 0x110, 0x120,
  58.     0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1A0, 0x1B0, 0x1C0,
  59.     0x1D0, 0x1E0, 0x1F0, 0x200, 0x208, 0x210, 0x218, 0x220, 0x228, 0x230,
  60.     0x238, 0x240, 0x248, 0x250, 0x258, 0x260, 0x268, 0x270, 0x278, 0x280,
  61.     0x288, 0x290, 0x298, 0x2A0, 0x2A8, 0x2B0, 0x2B8, 0x2C0, 0x2C8, 0x2D0,
  62.     0x2D8, 0x2E0, 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308, 0x310, 0x318, 0x320,
  63.     0x328, 0x330, 0x338, 0x340, 0x348, 0x350, 0x358, 0x360, 0x368, 0x370,
  64.     0x378, 0x380, 0x388, 0x390, 0x398, 0x3A0, 0x3A8, 0x3B0, 0x3B8, 0x3C0,
  65.     0x3C8, 0x3D0, 0x3D8, 0x3E0, 0x3E8, 0x3F0, 0x3F8, 0x400, 0x440, 0x480,
  66.     0x4C0, 0x500, 0x540, 0x580, 0x5C0, 0x600, 0x640, 0x680, 0x6C0, 0x700,
  67.     0x740, 0x780, 0x7C0, 0x800, 0x900, 0xA00, 0xB00, 0xC00, 0xD00, 0xE00,
  68.     0xF00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x3000, 0x4000
  69. };
  70.  
  71. static av_cold int vmdaudio_decode_init(AVCodecContext *avctx)
  72. {
  73.     VmdAudioContext *s = avctx->priv_data;
  74.  
  75.     if (avctx->channels < 1 || avctx->channels > 2) {
  76.         av_log(avctx, AV_LOG_ERROR, "invalid number of channels\n");
  77.         return AVERROR(EINVAL);
  78.     }
  79.     if (avctx->block_align < 1 || avctx->block_align % avctx->channels) {
  80.         av_log(avctx, AV_LOG_ERROR, "invalid block align\n");
  81.         return AVERROR(EINVAL);
  82.     }
  83.  
  84.     avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO :
  85.                                                    AV_CH_LAYOUT_STEREO;
  86.  
  87.     if (avctx->bits_per_coded_sample == 16)
  88.         avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  89.     else
  90.         avctx->sample_fmt = AV_SAMPLE_FMT_U8;
  91.     s->out_bps = av_get_bytes_per_sample(avctx->sample_fmt);
  92.  
  93.     s->chunk_size = avctx->block_align + avctx->channels * (s->out_bps == 2);
  94.  
  95.     av_log(avctx, AV_LOG_DEBUG, "%d channels, %d bits/sample, "
  96.            "block align = %d, sample rate = %d\n",
  97.            avctx->channels, avctx->bits_per_coded_sample, avctx->block_align,
  98.            avctx->sample_rate);
  99.  
  100.     return 0;
  101. }
  102.  
  103. static void decode_audio_s16(int16_t *out, const uint8_t *buf, int buf_size,
  104.                              int channels)
  105. {
  106.     int ch;
  107.     const uint8_t *buf_end = buf + buf_size;
  108.     int predictor[2];
  109.     int st = channels - 1;
  110.  
  111.     /* decode initial raw sample */
  112.     for (ch = 0; ch < channels; ch++) {
  113.         predictor[ch] = (int16_t)AV_RL16(buf);
  114.         buf += 2;
  115.         *out++ = predictor[ch];
  116.     }
  117.  
  118.     /* decode DPCM samples */
  119.     ch = 0;
  120.     while (buf < buf_end) {
  121.         uint8_t b = *buf++;
  122.         if (b & 0x80)
  123.             predictor[ch] -= vmdaudio_table[b & 0x7F];
  124.         else
  125.             predictor[ch] += vmdaudio_table[b];
  126.         predictor[ch] = av_clip_int16(predictor[ch]);
  127.         *out++ = predictor[ch];
  128.         ch ^= st;
  129.     }
  130. }
  131.  
  132. static int vmdaudio_decode_frame(AVCodecContext *avctx, void *data,
  133.                                  int *got_frame_ptr, AVPacket *avpkt)
  134. {
  135.     AVFrame *frame     = data;
  136.     const uint8_t *buf = avpkt->data;
  137.     const uint8_t *buf_end;
  138.     int buf_size = avpkt->size;
  139.     VmdAudioContext *s = avctx->priv_data;
  140.     int block_type, silent_chunks, audio_chunks;
  141.     int ret;
  142.     uint8_t *output_samples_u8;
  143.     int16_t *output_samples_s16;
  144.  
  145.     if (buf_size < 16) {
  146.         av_log(avctx, AV_LOG_WARNING, "skipping small junk packet\n");
  147.         *got_frame_ptr = 0;
  148.         return buf_size;
  149.     }
  150.  
  151.     block_type = buf[6];
  152.     if (block_type < BLOCK_TYPE_AUDIO || block_type > BLOCK_TYPE_SILENCE) {
  153.         av_log(avctx, AV_LOG_ERROR, "unknown block type: %d\n", block_type);
  154.         return AVERROR(EINVAL);
  155.     }
  156.     buf      += 16;
  157.     buf_size -= 16;
  158.  
  159.     /* get number of silent chunks */
  160.     silent_chunks = 0;
  161.     if (block_type == BLOCK_TYPE_INITIAL) {
  162.         uint32_t flags;
  163.         if (buf_size < 4) {
  164.             av_log(avctx, AV_LOG_ERROR, "packet is too small\n");
  165.             return AVERROR(EINVAL);
  166.         }
  167.         flags         = AV_RB32(buf);
  168.         silent_chunks = av_popcount(flags);
  169.         buf      += 4;
  170.         buf_size -= 4;
  171.     } else if (block_type == BLOCK_TYPE_SILENCE) {
  172.         silent_chunks = 1;
  173.         buf_size = 0; // should already be zero but set it just to be sure
  174.     }
  175.  
  176.     /* ensure output buffer is large enough */
  177.     audio_chunks = buf_size / s->chunk_size;
  178.  
  179.     /* drop incomplete chunks */
  180.     buf_size     = audio_chunks * s->chunk_size;
  181.  
  182.     /* get output buffer */
  183.     frame->nb_samples = ((silent_chunks + audio_chunks) * avctx->block_align) /
  184.                         avctx->channels;
  185.     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  186.         return ret;
  187.     output_samples_u8  =            frame->data[0];
  188.     output_samples_s16 = (int16_t *)frame->data[0];
  189.  
  190.     /* decode silent chunks */
  191.     if (silent_chunks > 0) {
  192.         int silent_size = avctx->block_align * silent_chunks;
  193.         av_assert0(avctx->block_align * silent_chunks <= frame->nb_samples * avctx->channels);
  194.  
  195.         if (s->out_bps == 2) {
  196.             memset(output_samples_s16, 0x00, silent_size * 2);
  197.             output_samples_s16 += silent_size;
  198.         } else {
  199.             memset(output_samples_u8,  0x80, silent_size);
  200.             output_samples_u8 += silent_size;
  201.         }
  202.     }
  203.  
  204.     /* decode audio chunks */
  205.     if (audio_chunks > 0) {
  206.         buf_end = buf + buf_size;
  207.         av_assert0((buf_size & (avctx->channels > 1)) == 0);
  208.         while (buf_end - buf >= s->chunk_size) {
  209.             if (s->out_bps == 2) {
  210.                 decode_audio_s16(output_samples_s16, buf, s->chunk_size,
  211.                                  avctx->channels);
  212.                 output_samples_s16 += avctx->block_align;
  213.             } else {
  214.                 memcpy(output_samples_u8, buf, s->chunk_size);
  215.                 output_samples_u8  += avctx->block_align;
  216.             }
  217.             buf += s->chunk_size;
  218.         }
  219.     }
  220.  
  221.     *got_frame_ptr = 1;
  222.  
  223.     return avpkt->size;
  224. }
  225.  
  226. AVCodec ff_vmdaudio_decoder = {
  227.     .name           = "vmdaudio",
  228.     .long_name      = NULL_IF_CONFIG_SMALL("Sierra VMD audio"),
  229.     .type           = AVMEDIA_TYPE_AUDIO,
  230.     .id             = AV_CODEC_ID_VMDAUDIO,
  231.     .priv_data_size = sizeof(VmdAudioContext),
  232.     .init           = vmdaudio_decode_init,
  233.     .decode         = vmdaudio_decode_frame,
  234.     .capabilities   = AV_CODEC_CAP_DR1,
  235. };
  236.