Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * SMPTE 302M encoder
  3.  * Copyright (c) 2010 Google, Inc.
  4.  * Copyright (c) 2013 Darryl Wallace <wallacdj@gmail.com>
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. #include "avcodec.h"
  24. #include "internal.h"
  25. #include "mathops.h"
  26. #include "put_bits.h"
  27.  
  28. #define AES3_HEADER_LEN 4
  29.  
  30. typedef struct S302MEncContext {
  31.     uint8_t framing_index; /* Set for even channels on multiple of 192 samples */
  32. } S302MEncContext;
  33.  
  34. static av_cold int s302m_encode_init(AVCodecContext *avctx)
  35. {
  36.     S302MEncContext *s = avctx->priv_data;
  37.  
  38.     if (avctx->channels & 1 || avctx->channels > 8) {
  39.         av_log(avctx, AV_LOG_ERROR,
  40.                "Encoding %d channel(s) is not allowed. Only 2, 4, 6 and 8 channels are supported.\n",
  41.                avctx->channels);
  42.         return AVERROR(EINVAL);
  43.     }
  44.  
  45.     switch (avctx->sample_fmt) {
  46.     case AV_SAMPLE_FMT_S16:
  47.         avctx->bits_per_raw_sample = 16;
  48.         break;
  49.     case AV_SAMPLE_FMT_S32:
  50.         if (avctx->bits_per_raw_sample > 20) {
  51.             if (avctx->bits_per_raw_sample > 24)
  52.                 av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
  53.             avctx->bits_per_raw_sample = 24;
  54.         } else if (!avctx->bits_per_raw_sample) {
  55.             avctx->bits_per_raw_sample = 24;
  56.         } else if (avctx->bits_per_raw_sample <= 20) {
  57.             avctx->bits_per_raw_sample = 20;
  58.         }
  59.     }
  60.  
  61.     avctx->frame_size = 0;
  62.     avctx->bit_rate   = 48000 * avctx->channels *
  63.                        (avctx->bits_per_raw_sample + 4);
  64.     s->framing_index  = 0;
  65.  
  66.     return 0;
  67. }
  68.  
  69. static int s302m_encode2_frame(AVCodecContext *avctx, AVPacket *avpkt,
  70.                                const AVFrame *frame, int *got_packet_ptr)
  71. {
  72.     S302MEncContext *s = avctx->priv_data;
  73.     const int buf_size = AES3_HEADER_LEN +
  74.                         (frame->nb_samples *
  75.                          avctx->channels *
  76.                         (avctx->bits_per_raw_sample + 4)) / 8;
  77.     int ret, c, channels;
  78.     uint8_t *o;
  79.     PutBitContext pb;
  80.  
  81.     if ((ret = ff_alloc_packet2(avctx, avpkt, buf_size, 0)) < 0)
  82.         return ret;
  83.  
  84.     o = avpkt->data;
  85.     init_put_bits(&pb, o, buf_size);
  86.     put_bits(&pb, 16, buf_size - AES3_HEADER_LEN);
  87.     put_bits(&pb, 2, (avctx->channels - 2) >> 1);   // number of channels
  88.     put_bits(&pb, 8, 0);                            // channel ID
  89.     put_bits(&pb, 2, (avctx->bits_per_raw_sample - 16) / 4); // bits per samples (0 = 16bit, 1 = 20bit, 2 = 24bit)
  90.     put_bits(&pb, 4, 0);                            // alignments
  91.     flush_put_bits(&pb);
  92.     o += AES3_HEADER_LEN;
  93.  
  94.     if (avctx->bits_per_raw_sample == 24) {
  95.         const uint32_t *samples = (uint32_t *)frame->data[0];
  96.  
  97.         for (c = 0; c < frame->nb_samples; c++) {
  98.             uint8_t vucf = s->framing_index == 0 ? 0x10: 0;
  99.  
  100.             for (channels = 0; channels < avctx->channels; channels += 2) {
  101.                 o[0] = ff_reverse[(samples[0] & 0x0000FF00) >> 8];
  102.                 o[1] = ff_reverse[(samples[0] & 0x00FF0000) >> 16];
  103.                 o[2] = ff_reverse[(samples[0] & 0xFF000000) >> 24];
  104.                 o[3] = ff_reverse[(samples[1] & 0x00000F00) >> 4] | vucf;
  105.                 o[4] = ff_reverse[(samples[1] & 0x000FF000) >> 12];
  106.                 o[5] = ff_reverse[(samples[1] & 0x0FF00000) >> 20];
  107.                 o[6] = ff_reverse[(samples[1] & 0xF0000000) >> 28];
  108.                 o += 7;
  109.                 samples += 2;
  110.             }
  111.  
  112.             s->framing_index++;
  113.             if (s->framing_index >= 192)
  114.                 s->framing_index = 0;
  115.         }
  116.     } else if (avctx->bits_per_raw_sample == 20) {
  117.         const uint32_t *samples = (uint32_t *)frame->data[0];
  118.  
  119.         for (c = 0; c < frame->nb_samples; c++) {
  120.             uint8_t vucf = s->framing_index == 0 ? 0x80: 0;
  121.  
  122.             for (channels = 0; channels < avctx->channels; channels += 2) {
  123.                 o[0] = ff_reverse[ (samples[0] & 0x000FF000) >> 12];
  124.                 o[1] = ff_reverse[ (samples[0] & 0x0FF00000) >> 20];
  125.                 o[2] = ff_reverse[((samples[0] & 0xF0000000) >> 28) | vucf];
  126.                 o[3] = ff_reverse[ (samples[1] & 0x000FF000) >> 12];
  127.                 o[4] = ff_reverse[ (samples[1] & 0x0FF00000) >> 20];
  128.                 o[5] = ff_reverse[ (samples[1] & 0xF0000000) >> 28];
  129.                 o += 6;
  130.                 samples += 2;
  131.             }
  132.  
  133.             s->framing_index++;
  134.             if (s->framing_index >= 192)
  135.                 s->framing_index = 0;
  136.         }
  137.     } else if (avctx->bits_per_raw_sample == 16) {
  138.         const uint16_t *samples = (uint16_t *)frame->data[0];
  139.  
  140.         for (c = 0; c < frame->nb_samples; c++) {
  141.             uint8_t vucf = s->framing_index == 0 ? 0x10 : 0;
  142.  
  143.             for (channels = 0; channels < avctx->channels; channels += 2) {
  144.                 o[0] = ff_reverse[ samples[0] & 0xFF];
  145.                 o[1] = ff_reverse[(samples[0] & 0xFF00) >>  8];
  146.                 o[2] = ff_reverse[(samples[1] & 0x0F)   <<  4] | vucf;
  147.                 o[3] = ff_reverse[(samples[1] & 0x0FF0) >>  4];
  148.                 o[4] = ff_reverse[(samples[1] & 0xF000) >> 12];
  149.                 o += 5;
  150.                 samples += 2;
  151.  
  152.             }
  153.  
  154.             s->framing_index++;
  155.             if (s->framing_index >= 192)
  156.                 s->framing_index = 0;
  157.         }
  158.     }
  159.  
  160.     *got_packet_ptr = 1;
  161.  
  162.     return 0;
  163. }
  164.  
  165. AVCodec ff_s302m_encoder = {
  166.     .name                  = "s302m",
  167.     .long_name             = NULL_IF_CONFIG_SMALL("SMPTE 302M"),
  168.     .type                  = AVMEDIA_TYPE_AUDIO,
  169.     .id                    = AV_CODEC_ID_S302M,
  170.     .priv_data_size        = sizeof(S302MEncContext),
  171.     .init                  = s302m_encode_init,
  172.     .encode2               = s302m_encode2_frame,
  173.     .sample_fmts           = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
  174.                                                             AV_SAMPLE_FMT_S16,
  175.                                                             AV_SAMPLE_FMT_NONE },
  176.     .capabilities          = AV_CODEC_CAP_VARIABLE_FRAME_SIZE | AV_CODEC_CAP_EXPERIMENTAL,
  177.     .supported_samplerates = (const int[]) { 48000, 0 },
  178. };
  179.