Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * samplerate conversion for both audio and video
  3.  * Copyright (c) 2000 Fabrice Bellard
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * samplerate conversion for both audio and video
  25.  */
  26.  
  27. #include <string.h>
  28.  
  29. #include "avcodec.h"
  30. #include "audioconvert.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/mem.h"
  33. #include "libavutil/samplefmt.h"
  34.  
  35. #if FF_API_AVCODEC_RESAMPLE
  36. FF_DISABLE_DEPRECATION_WARNINGS
  37.  
  38. #define MAX_CHANNELS 8
  39.  
  40. struct AVResampleContext;
  41.  
  42. static const char *context_to_name(void *ptr)
  43. {
  44.     return "audioresample";
  45. }
  46.  
  47. static const AVOption options[] = {{NULL}};
  48. static const AVClass audioresample_context_class = {
  49.     "ReSampleContext", context_to_name, options, LIBAVUTIL_VERSION_INT
  50. };
  51.  
  52. struct ReSampleContext {
  53.     struct AVResampleContext *resample_context;
  54.     short *temp[MAX_CHANNELS];
  55.     int temp_len;
  56.     float ratio;
  57.     /* channel convert */
  58.     int input_channels, output_channels, filter_channels;
  59.     AVAudioConvert *convert_ctx[2];
  60.     enum AVSampleFormat sample_fmt[2]; ///< input and output sample format
  61.     unsigned sample_size[2];           ///< size of one sample in sample_fmt
  62.     short *buffer[2];                  ///< buffers used for conversion to S16
  63.     unsigned buffer_size[2];           ///< sizes of allocated buffers
  64. };
  65.  
  66. /* n1: number of samples */
  67. static void stereo_to_mono(short *output, short *input, int n1)
  68. {
  69.     short *p, *q;
  70.     int n = n1;
  71.  
  72.     p = input;
  73.     q = output;
  74.     while (n >= 4) {
  75.         q[0] = (p[0] + p[1]) >> 1;
  76.         q[1] = (p[2] + p[3]) >> 1;
  77.         q[2] = (p[4] + p[5]) >> 1;
  78.         q[3] = (p[6] + p[7]) >> 1;
  79.         q += 4;
  80.         p += 8;
  81.         n -= 4;
  82.     }
  83.     while (n > 0) {
  84.         q[0] = (p[0] + p[1]) >> 1;
  85.         q++;
  86.         p += 2;
  87.         n--;
  88.     }
  89. }
  90.  
  91. /* n1: number of samples */
  92. static void mono_to_stereo(short *output, short *input, int n1)
  93. {
  94.     short *p, *q;
  95.     int n = n1;
  96.     int v;
  97.  
  98.     p = input;
  99.     q = output;
  100.     while (n >= 4) {
  101.         v = p[0]; q[0] = v; q[1] = v;
  102.         v = p[1]; q[2] = v; q[3] = v;
  103.         v = p[2]; q[4] = v; q[5] = v;
  104.         v = p[3]; q[6] = v; q[7] = v;
  105.         q += 8;
  106.         p += 4;
  107.         n -= 4;
  108.     }
  109.     while (n > 0) {
  110.         v = p[0]; q[0] = v; q[1] = v;
  111.         q += 2;
  112.         p += 1;
  113.         n--;
  114.     }
  115. }
  116.  
  117. /*
  118. 5.1 to stereo input: [fl, fr, c, lfe, rl, rr]
  119. - Left = front_left + rear_gain * rear_left + center_gain * center
  120. - Right = front_right + rear_gain * rear_right + center_gain * center
  121. Where rear_gain is usually around 0.5-1.0 and
  122.       center_gain is almost always 0.7 (-3 dB)
  123. */
  124. static void surround_to_stereo(short **output, short *input, int channels, int samples)
  125. {
  126.     int i;
  127.     short l, r;
  128.  
  129.     for (i = 0; i < samples; i++) {
  130.         int fl,fr,c,rl,rr;
  131.         fl = input[0];
  132.         fr = input[1];
  133.         c = input[2];
  134.         // lfe = input[3];
  135.         rl = input[4];
  136.         rr = input[5];
  137.  
  138.         l = av_clip_int16(fl + (0.5 * rl) + (0.7 * c));
  139.         r = av_clip_int16(fr + (0.5 * rr) + (0.7 * c));
  140.  
  141.         /* output l & r. */
  142.         *output[0]++ = l;
  143.         *output[1]++ = r;
  144.  
  145.         /* increment input. */
  146.         input += channels;
  147.     }
  148. }
  149.  
  150. static void deinterleave(short **output, short *input, int channels, int samples)
  151. {
  152.     int i, j;
  153.  
  154.     for (i = 0; i < samples; i++) {
  155.         for (j = 0; j < channels; j++) {
  156.             *output[j]++ = *input++;
  157.         }
  158.     }
  159. }
  160.  
  161. static void interleave(short *output, short **input, int channels, int samples)
  162. {
  163.     int i, j;
  164.  
  165.     for (i = 0; i < samples; i++) {
  166.         for (j = 0; j < channels; j++) {
  167.             *output++ = *input[j]++;
  168.         }
  169.     }
  170. }
  171.  
  172. static void ac3_5p1_mux(short *output, short *input1, short *input2, int n)
  173. {
  174.     int i;
  175.     short l, r;
  176.  
  177.     for (i = 0; i < n; i++) {
  178.         l = *input1++;
  179.         r = *input2++;
  180.         *output++ = l;                  /* left */
  181.         *output++ = (l / 2) + (r / 2);  /* center */
  182.         *output++ = r;                  /* right */
  183.         *output++ = 0;                  /* left surround */
  184.         *output++ = 0;                  /* right surroud */
  185.         *output++ = 0;                  /* low freq */
  186.     }
  187. }
  188.  
  189. #define SUPPORT_RESAMPLE(ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8) \
  190.     ch8<<7 | ch7<<6 | ch6<<5 | ch5<<4 | ch4<<3 | ch3<<2 | ch2<<1 | ch1<<0
  191.  
  192. static const uint8_t supported_resampling[MAX_CHANNELS] = {
  193.     // output ch:    1  2  3  4  5  6  7  8
  194.     SUPPORT_RESAMPLE(1, 1, 0, 0, 0, 0, 0, 0), // 1 input channel
  195.     SUPPORT_RESAMPLE(1, 1, 0, 0, 0, 1, 0, 0), // 2 input channels
  196.     SUPPORT_RESAMPLE(0, 0, 1, 0, 0, 0, 0, 0), // 3 input channels
  197.     SUPPORT_RESAMPLE(0, 0, 0, 1, 0, 0, 0, 0), // 4 input channels
  198.     SUPPORT_RESAMPLE(0, 0, 0, 0, 1, 0, 0, 0), // 5 input channels
  199.     SUPPORT_RESAMPLE(0, 1, 0, 0, 0, 1, 0, 0), // 6 input channels
  200.     SUPPORT_RESAMPLE(0, 0, 0, 0, 0, 0, 1, 0), // 7 input channels
  201.     SUPPORT_RESAMPLE(0, 0, 0, 0, 0, 0, 0, 1), // 8 input channels
  202. };
  203.  
  204. ReSampleContext *av_audio_resample_init(int output_channels, int input_channels,
  205.                                         int output_rate, int input_rate,
  206.                                         enum AVSampleFormat sample_fmt_out,
  207.                                         enum AVSampleFormat sample_fmt_in,
  208.                                         int filter_length, int log2_phase_count,
  209.                                         int linear, double cutoff)
  210. {
  211.     ReSampleContext *s;
  212.  
  213.     if (input_channels > MAX_CHANNELS) {
  214.         av_log(NULL, AV_LOG_ERROR,
  215.                "Resampling with input channels greater than %d is unsupported.\n",
  216.                MAX_CHANNELS);
  217.         return NULL;
  218.     }
  219.     if (!(supported_resampling[input_channels-1] & (1<<(output_channels-1)))) {
  220.         int i;
  221.         av_log(NULL, AV_LOG_ERROR, "Unsupported audio resampling. Allowed "
  222.                "output channels for %d input channel%s", input_channels,
  223.                input_channels > 1 ? "s:" : ":");
  224.         for (i = 0; i < MAX_CHANNELS; i++)
  225.             if (supported_resampling[input_channels-1] & (1<<i))
  226.                 av_log(NULL, AV_LOG_ERROR, " %d", i + 1);
  227.         av_log(NULL, AV_LOG_ERROR, "\n");
  228.         return NULL;
  229.     }
  230.  
  231.     s = av_mallocz(sizeof(ReSampleContext));
  232.     if (!s) {
  233.         av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context.\n");
  234.         return NULL;
  235.     }
  236.  
  237.     s->ratio = (float)output_rate / (float)input_rate;
  238.  
  239.     s->input_channels = input_channels;
  240.     s->output_channels = output_channels;
  241.  
  242.     s->filter_channels = s->input_channels;
  243.     if (s->output_channels < s->filter_channels)
  244.         s->filter_channels = s->output_channels;
  245.  
  246.     s->sample_fmt[0]  = sample_fmt_in;
  247.     s->sample_fmt[1]  = sample_fmt_out;
  248.     s->sample_size[0] = av_get_bytes_per_sample(s->sample_fmt[0]);
  249.     s->sample_size[1] = av_get_bytes_per_sample(s->sample_fmt[1]);
  250.  
  251.     if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  252.         if (!(s->convert_ctx[0] = av_audio_convert_alloc(AV_SAMPLE_FMT_S16, 1,
  253.                                                          s->sample_fmt[0], 1, NULL, 0))) {
  254.             av_log(s, AV_LOG_ERROR,
  255.                    "Cannot convert %s sample format to s16 sample format\n",
  256.                    av_get_sample_fmt_name(s->sample_fmt[0]));
  257.             av_free(s);
  258.             return NULL;
  259.         }
  260.     }
  261.  
  262.     if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  263.         if (!(s->convert_ctx[1] = av_audio_convert_alloc(s->sample_fmt[1], 1,
  264.                                                          AV_SAMPLE_FMT_S16, 1, NULL, 0))) {
  265.             av_log(s, AV_LOG_ERROR,
  266.                    "Cannot convert s16 sample format to %s sample format\n",
  267.                    av_get_sample_fmt_name(s->sample_fmt[1]));
  268.             av_audio_convert_free(s->convert_ctx[0]);
  269.             av_free(s);
  270.             return NULL;
  271.         }
  272.     }
  273.  
  274.     s->resample_context = av_resample_init(output_rate, input_rate,
  275.                                            filter_length, log2_phase_count,
  276.                                            linear, cutoff);
  277.  
  278.     *(const AVClass**)s->resample_context = &audioresample_context_class;
  279.  
  280.     return s;
  281. }
  282.  
  283. /* resample audio. 'nb_samples' is the number of input samples */
  284. /* XXX: optimize it ! */
  285. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  286. {
  287.     int i, nb_samples1;
  288.     short *bufin[MAX_CHANNELS];
  289.     short *bufout[MAX_CHANNELS];
  290.     short *buftmp2[MAX_CHANNELS], *buftmp3[MAX_CHANNELS];
  291.     short *output_bak = NULL;
  292.     int lenout;
  293.  
  294.     if (s->input_channels == s->output_channels && s->ratio == 1.0 && 0) {
  295.         /* nothing to do */
  296.         memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  297.         return nb_samples;
  298.     }
  299.  
  300.     if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  301.         int istride[1] = { s->sample_size[0] };
  302.         int ostride[1] = { 2 };
  303.         const void *ibuf[1] = { input };
  304.         void       *obuf[1];
  305.         unsigned input_size = nb_samples * s->input_channels * 2;
  306.  
  307.         if (!s->buffer_size[0] || s->buffer_size[0] < input_size) {
  308.             av_free(s->buffer[0]);
  309.             s->buffer_size[0] = input_size;
  310.             s->buffer[0] = av_malloc(s->buffer_size[0]);
  311.             if (!s->buffer[0]) {
  312.                 av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  313.                 return 0;
  314.             }
  315.         }
  316.  
  317.         obuf[0] = s->buffer[0];
  318.  
  319.         if (av_audio_convert(s->convert_ctx[0], obuf, ostride,
  320.                              ibuf, istride, nb_samples * s->input_channels) < 0) {
  321.             av_log(s->resample_context, AV_LOG_ERROR,
  322.                    "Audio sample format conversion failed\n");
  323.             return 0;
  324.         }
  325.  
  326.         input = s->buffer[0];
  327.     }
  328.  
  329.     lenout= 2*s->output_channels*nb_samples * s->ratio + 16;
  330.  
  331.     if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  332.         int out_size = lenout * av_get_bytes_per_sample(s->sample_fmt[1]) *
  333.                        s->output_channels;
  334.         output_bak = output;
  335.  
  336.         if (!s->buffer_size[1] || s->buffer_size[1] < out_size) {
  337.             av_free(s->buffer[1]);
  338.             s->buffer_size[1] = out_size;
  339.             s->buffer[1] = av_malloc(s->buffer_size[1]);
  340.             if (!s->buffer[1]) {
  341.                 av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  342.                 return 0;
  343.             }
  344.         }
  345.  
  346.         output = s->buffer[1];
  347.     }
  348.  
  349.     /* XXX: move those malloc to resample init code */
  350.     for (i = 0; i < s->filter_channels; i++) {
  351.         bufin[i] = av_malloc_array((nb_samples + s->temp_len), sizeof(short));
  352.         bufout[i] = av_malloc_array(lenout, sizeof(short));
  353.  
  354.         if (!bufin[i] || !bufout[i]) {
  355.             av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  356.             nb_samples1 = 0;
  357.             goto fail;
  358.         }
  359.  
  360.         memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short));
  361.         buftmp2[i] = bufin[i] + s->temp_len;
  362.     }
  363.  
  364.     if (s->input_channels == 2 && s->output_channels == 1) {
  365.         buftmp3[0] = output;
  366.         stereo_to_mono(buftmp2[0], input, nb_samples);
  367.     } else if (s->output_channels >= 2 && s->input_channels == 1) {
  368.         buftmp3[0] = bufout[0];
  369.         memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  370.     } else if (s->input_channels == 6 && s->output_channels ==2) {
  371.         buftmp3[0] = bufout[0];
  372.         buftmp3[1] = bufout[1];
  373.         surround_to_stereo(buftmp2, input, s->input_channels, nb_samples);
  374.     } else if (s->output_channels >= s->input_channels && s->input_channels >= 2) {
  375.         for (i = 0; i < s->input_channels; i++) {
  376.             buftmp3[i] = bufout[i];
  377.         }
  378.         deinterleave(buftmp2, input, s->input_channels, nb_samples);
  379.     } else {
  380.         buftmp3[0] = output;
  381.         memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  382.     }
  383.  
  384.     nb_samples += s->temp_len;
  385.  
  386.     /* resample each channel */
  387.     nb_samples1 = 0; /* avoid warning */
  388.     for (i = 0; i < s->filter_channels; i++) {
  389.         int consumed;
  390.         int is_last = i + 1 == s->filter_channels;
  391.  
  392.         nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i],
  393.                                   &consumed, nb_samples, lenout, is_last);
  394.         s->temp_len = nb_samples - consumed;
  395.         s->temp[i] = av_realloc_array(s->temp[i], s->temp_len, sizeof(short));
  396.         memcpy(s->temp[i], bufin[i] + consumed, s->temp_len * sizeof(short));
  397.     }
  398.  
  399.     if (s->output_channels == 2 && s->input_channels == 1) {
  400.         mono_to_stereo(output, buftmp3[0], nb_samples1);
  401.     } else if (s->output_channels == 6 && s->input_channels == 2) {
  402.         ac3_5p1_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  403.     } else if ((s->output_channels == s->input_channels && s->input_channels >= 2) ||
  404.                (s->output_channels == 2 && s->input_channels == 6)) {
  405.         interleave(output, buftmp3, s->output_channels, nb_samples1);
  406.     }
  407.  
  408.     if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  409.         int istride[1] = { 2 };
  410.         int ostride[1] = { s->sample_size[1] };
  411.         const void *ibuf[1] = { output };
  412.         void       *obuf[1] = { output_bak };
  413.  
  414.         if (av_audio_convert(s->convert_ctx[1], obuf, ostride,
  415.                              ibuf, istride, nb_samples1 * s->output_channels) < 0) {
  416.             av_log(s->resample_context, AV_LOG_ERROR,
  417.                    "Audio sample format conversion failed\n");
  418.             return 0;
  419.         }
  420.     }
  421.  
  422. fail:
  423.     for (i = 0; i < s->filter_channels; i++) {
  424.         av_free(bufin[i]);
  425.         av_free(bufout[i]);
  426.     }
  427.  
  428.     return nb_samples1;
  429. }
  430.  
  431. void audio_resample_close(ReSampleContext *s)
  432. {
  433.     int i;
  434.     av_resample_close(s->resample_context);
  435.     for (i = 0; i < s->filter_channels; i++)
  436.         av_freep(&s->temp[i]);
  437.     av_freep(&s->buffer[0]);
  438.     av_freep(&s->buffer[1]);
  439.     av_audio_convert_free(s->convert_ctx[0]);
  440.     av_audio_convert_free(s->convert_ctx[1]);
  441.     av_free(s);
  442. }
  443.  
  444. FF_ENABLE_DEPRECATION_WARNINGS
  445. #endif
  446.