Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * QCELP decoder
  3.  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * QCELP decoder
  25.  * @author Reynaldo H. Verdejo Pinochet
  26.  * @remark FFmpeg merging spearheaded by Kenan Gillet
  27.  * @remark Development mentored by Benjamin Larson
  28.  */
  29.  
  30. #include <stddef.h>
  31.  
  32. #include "libavutil/avassert.h"
  33. #include "libavutil/channel_layout.h"
  34. #include "libavutil/float_dsp.h"
  35. #include "avcodec.h"
  36. #include "internal.h"
  37. #include "get_bits.h"
  38. #include "qcelpdata.h"
  39. #include "celp_filters.h"
  40. #include "acelp_filters.h"
  41. #include "acelp_vectors.h"
  42. #include "lsp.h"
  43.  
  44. typedef enum {
  45.     I_F_Q = -1,    /**< insufficient frame quality */
  46.     SILENCE,
  47.     RATE_OCTAVE,
  48.     RATE_QUARTER,
  49.     RATE_HALF,
  50.     RATE_FULL
  51. } qcelp_packet_rate;
  52.  
  53. typedef struct QCELPContext {
  54.     GetBitContext     gb;
  55.     qcelp_packet_rate bitrate;
  56.     QCELPFrame        frame;    /**< unpacked data frame */
  57.  
  58.     uint8_t  erasure_count;
  59.     uint8_t  octave_count;      /**< count the consecutive RATE_OCTAVE frames */
  60.     float    prev_lspf[10];
  61.     float    predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
  62.     float    pitch_synthesis_filter_mem[303];
  63.     float    pitch_pre_filter_mem[303];
  64.     float    rnd_fir_filter_mem[180];
  65.     float    formant_mem[170];
  66.     float    last_codebook_gain;
  67.     int      prev_g1[2];
  68.     int      prev_bitrate;
  69.     float    pitch_gain[4];
  70.     uint8_t  pitch_lag[4];
  71.     uint16_t first16bits;
  72.     uint8_t  warned_buf_mismatch_bitrate;
  73.  
  74.     /* postfilter */
  75.     float    postfilter_synth_mem[10];
  76.     float    postfilter_agc_mem;
  77.     float    postfilter_tilt_mem;
  78. } QCELPContext;
  79.  
  80. /**
  81.  * Initialize the speech codec according to the specification.
  82.  *
  83.  * TIA/EIA/IS-733 2.4.9
  84.  */
  85. static av_cold int qcelp_decode_init(AVCodecContext *avctx)
  86. {
  87.     QCELPContext *q = avctx->priv_data;
  88.     int i;
  89.  
  90.     avctx->channels       = 1;
  91.     avctx->channel_layout = AV_CH_LAYOUT_MONO;
  92.     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
  93.  
  94.     for (i = 0; i < 10; i++)
  95.         q->prev_lspf[i] = (i + 1) / 11.0;
  96.  
  97.     return 0;
  98. }
  99.  
  100. /**
  101.  * Decode the 10 quantized LSP frequencies from the LSPV/LSP
  102.  * transmission codes of any bitrate and check for badly received packets.
  103.  *
  104.  * @param q the context
  105.  * @param lspf line spectral pair frequencies
  106.  *
  107.  * @return 0 on success, -1 if the packet is badly received
  108.  *
  109.  * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
  110.  */
  111. static int decode_lspf(QCELPContext *q, float *lspf)
  112. {
  113.     int i;
  114.     float tmp_lspf, smooth, erasure_coeff;
  115.     const float *predictors;
  116.  
  117.     if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
  118.         predictors = q->prev_bitrate != RATE_OCTAVE &&
  119.                      q->prev_bitrate != I_F_Q ? q->prev_lspf
  120.                                               : q->predictor_lspf;
  121.  
  122.         if (q->bitrate == RATE_OCTAVE) {
  123.             q->octave_count++;
  124.  
  125.             for (i = 0; i < 10; i++) {
  126.                 q->predictor_lspf[i] =
  127.                              lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
  128.                                                          : -QCELP_LSP_SPREAD_FACTOR) +
  129.                                         predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR   +
  130.                                         (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
  131.             }
  132.             smooth = q->octave_count < 10 ? .875 : 0.1;
  133.         } else {
  134.             erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
  135.  
  136.             av_assert2(q->bitrate == I_F_Q);
  137.  
  138.             if (q->erasure_count > 1)
  139.                 erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
  140.  
  141.             for (i = 0; i < 10; i++) {
  142.                 q->predictor_lspf[i] =
  143.                              lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
  144.                                        erasure_coeff * predictors[i];
  145.             }
  146.             smooth = 0.125;
  147.         }
  148.  
  149.         // Check the stability of the LSP frequencies.
  150.         lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
  151.         for (i = 1; i < 10; i++)
  152.             lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
  153.  
  154.         lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
  155.         for (i = 9; i > 0; i--)
  156.             lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
  157.  
  158.         // Low-pass filter the LSP frequencies.
  159.         ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
  160.     } else {
  161.         q->octave_count = 0;
  162.  
  163.         tmp_lspf = 0.0;
  164.         for (i = 0; i < 5; i++) {
  165.             lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
  166.             lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
  167.         }
  168.  
  169.         // Check for badly received packets.
  170.         if (q->bitrate == RATE_QUARTER) {
  171.             if (lspf[9] <= .70 || lspf[9] >= .97)
  172.                 return -1;
  173.             for (i = 3; i < 10; i++)
  174.                 if (fabs(lspf[i] - lspf[i - 2]) < .08)
  175.                     return -1;
  176.         } else {
  177.             if (lspf[9] <= .66 || lspf[9] >= .985)
  178.                 return -1;
  179.             for (i = 4; i < 10; i++)
  180.                 if (fabs(lspf[i] - lspf[i - 4]) < .0931)
  181.                     return -1;
  182.         }
  183.     }
  184.     return 0;
  185. }
  186.  
  187. /**
  188.  * Convert codebook transmission codes to GAIN and INDEX.
  189.  *
  190.  * @param q the context
  191.  * @param gain array holding the decoded gain
  192.  *
  193.  * TIA/EIA/IS-733 2.4.6.2
  194.  */
  195. static void decode_gain_and_index(QCELPContext *q, float *gain)
  196. {
  197.     int i, subframes_count, g1[16];
  198.     float slope;
  199.  
  200.     if (q->bitrate >= RATE_QUARTER) {
  201.         switch (q->bitrate) {
  202.         case RATE_FULL: subframes_count = 16; break;
  203.         case RATE_HALF: subframes_count =  4; break;
  204.         default:        subframes_count =  5;
  205.         }
  206.         for (i = 0; i < subframes_count; i++) {
  207.             g1[i] = 4 * q->frame.cbgain[i];
  208.             if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
  209.                 g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
  210.             }
  211.  
  212.             gain[i] = qcelp_g12ga[g1[i]];
  213.  
  214.             if (q->frame.cbsign[i]) {
  215.                 gain[i] = -gain[i];
  216.                 q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
  217.             }
  218.         }
  219.  
  220.         q->prev_g1[0]         = g1[i - 2];
  221.         q->prev_g1[1]         = g1[i - 1];
  222.         q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
  223.  
  224.         if (q->bitrate == RATE_QUARTER) {
  225.             // Provide smoothing of the unvoiced excitation energy.
  226.             gain[7] =       gain[4];
  227.             gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
  228.             gain[5] =       gain[3];
  229.             gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
  230.             gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
  231.             gain[2] =       gain[1];
  232.             gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
  233.         }
  234.     } else if (q->bitrate != SILENCE) {
  235.         if (q->bitrate == RATE_OCTAVE) {
  236.             g1[0] = 2 * q->frame.cbgain[0] +
  237.                     av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
  238.             subframes_count = 8;
  239.         } else {
  240.             av_assert2(q->bitrate == I_F_Q);
  241.  
  242.             g1[0] = q->prev_g1[1];
  243.             switch (q->erasure_count) {
  244.             case 1 : break;
  245.             case 2 : g1[0] -= 1; break;
  246.             case 3 : g1[0] -= 2; break;
  247.             default: g1[0] -= 6;
  248.             }
  249.             if (g1[0] < 0)
  250.                 g1[0] = 0;
  251.             subframes_count = 4;
  252.         }
  253.         // This interpolation is done to produce smoother background noise.
  254.         slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
  255.         for (i = 1; i <= subframes_count; i++)
  256.                 gain[i - 1] = q->last_codebook_gain + slope * i;
  257.  
  258.         q->last_codebook_gain = gain[i - 2];
  259.         q->prev_g1[0]         = q->prev_g1[1];
  260.         q->prev_g1[1]         = g1[0];
  261.     }
  262. }
  263.  
  264. /**
  265.  * If the received packet is Rate 1/4 a further sanity check is made of the
  266.  * codebook gain.
  267.  *
  268.  * @param cbgain the unpacked cbgain array
  269.  * @return -1 if the sanity check fails, 0 otherwise
  270.  *
  271.  * TIA/EIA/IS-733 2.4.8.7.3
  272.  */
  273. static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
  274. {
  275.     int i, diff, prev_diff = 0;
  276.  
  277.     for (i = 1; i < 5; i++) {
  278.         diff = cbgain[i] - cbgain[i-1];
  279.         if (FFABS(diff) > 10)
  280.             return -1;
  281.         else if (FFABS(diff - prev_diff) > 12)
  282.             return -1;
  283.         prev_diff = diff;
  284.     }
  285.     return 0;
  286. }
  287.  
  288. /**
  289.  * Compute the scaled codebook vector Cdn From INDEX and GAIN
  290.  * for all rates.
  291.  *
  292.  * The specification lacks some information here.
  293.  *
  294.  * TIA/EIA/IS-733 has an omission on the codebook index determination
  295.  * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
  296.  * you have to subtract the decoded index parameter from the given scaled
  297.  * codebook vector index 'n' to get the desired circular codebook index, but
  298.  * it does not mention that you have to clamp 'n' to [0-9] in order to get
  299.  * RI-compliant results.
  300.  *
  301.  * The reason for this mistake seems to be the fact they forgot to mention you
  302.  * have to do these calculations per codebook subframe and adjust given
  303.  * equation values accordingly.
  304.  *
  305.  * @param q the context
  306.  * @param gain array holding the 4 pitch subframe gain values
  307.  * @param cdn_vector array for the generated scaled codebook vector
  308.  */
  309. static void compute_svector(QCELPContext *q, const float *gain,
  310.                             float *cdn_vector)
  311. {
  312.     int i, j, k;
  313.     uint16_t cbseed, cindex;
  314.     float *rnd, tmp_gain, fir_filter_value;
  315.  
  316.     switch (q->bitrate) {
  317.     case RATE_FULL:
  318.         for (i = 0; i < 16; i++) {
  319.             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
  320.             cindex   = -q->frame.cindex[i];
  321.             for (j = 0; j < 10; j++)
  322.                 *cdn_vector++ = tmp_gain *
  323.                                 qcelp_rate_full_codebook[cindex++ & 127];
  324.         }
  325.         break;
  326.     case RATE_HALF:
  327.         for (i = 0; i < 4; i++) {
  328.             tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
  329.             cindex   = -q->frame.cindex[i];
  330.             for (j = 0; j < 40; j++)
  331.                 *cdn_vector++ = tmp_gain *
  332.                                 qcelp_rate_half_codebook[cindex++ & 127];
  333.         }
  334.         break;
  335.     case RATE_QUARTER:
  336.         cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
  337.                  (0x003F & q->frame.lspv[3]) <<  8 |
  338.                  (0x0060 & q->frame.lspv[2]) <<  1 |
  339.                  (0x0007 & q->frame.lspv[1]) <<  3 |
  340.                  (0x0038 & q->frame.lspv[0]) >>  3;
  341.         rnd    = q->rnd_fir_filter_mem + 20;
  342.         for (i = 0; i < 8; i++) {
  343.             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
  344.             for (k = 0; k < 20; k++) {
  345.                 cbseed = 521 * cbseed + 259;
  346.                 *rnd   = (int16_t) cbseed;
  347.  
  348.                     // FIR filter
  349.                 fir_filter_value = 0.0;
  350.                 for (j = 0; j < 10; j++)
  351.                     fir_filter_value += qcelp_rnd_fir_coefs[j] *
  352.                                         (rnd[-j] + rnd[-20+j]);
  353.  
  354.                 fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
  355.                 *cdn_vector++     = tmp_gain * fir_filter_value;
  356.                 rnd++;
  357.             }
  358.         }
  359.         memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
  360.                20 * sizeof(float));
  361.         break;
  362.     case RATE_OCTAVE:
  363.         cbseed = q->first16bits;
  364.         for (i = 0; i < 8; i++) {
  365.             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
  366.             for (j = 0; j < 20; j++) {
  367.                 cbseed        = 521 * cbseed + 259;
  368.                 *cdn_vector++ = tmp_gain * (int16_t) cbseed;
  369.             }
  370.         }
  371.         break;
  372.     case I_F_Q:
  373.         cbseed = -44; // random codebook index
  374.         for (i = 0; i < 4; i++) {
  375.             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
  376.             for (j = 0; j < 40; j++)
  377.                 *cdn_vector++ = tmp_gain *
  378.                                 qcelp_rate_full_codebook[cbseed++ & 127];
  379.         }
  380.         break;
  381.     case SILENCE:
  382.         memset(cdn_vector, 0, 160 * sizeof(float));
  383.         break;
  384.     }
  385. }
  386.  
  387. /**
  388.  * Apply generic gain control.
  389.  *
  390.  * @param v_out output vector
  391.  * @param v_in gain-controlled vector
  392.  * @param v_ref vector to control gain of
  393.  *
  394.  * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
  395.  */
  396. static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
  397. {
  398.     int i;
  399.  
  400.     for (i = 0; i < 160; i += 40) {
  401.         float res = avpriv_scalarproduct_float_c(v_ref + i, v_ref + i, 40);
  402.         ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i, res, 40);
  403.     }
  404. }
  405.  
  406. /**
  407.  * Apply filter in pitch-subframe steps.
  408.  *
  409.  * @param memory buffer for the previous state of the filter
  410.  *        - must be able to contain 303 elements
  411.  *        - the 143 first elements are from the previous state
  412.  *        - the next 160 are for output
  413.  * @param v_in input filter vector
  414.  * @param gain per-subframe gain array, each element is between 0.0 and 2.0
  415.  * @param lag per-subframe lag array, each element is
  416.  *        - between 16 and 143 if its corresponding pfrac is 0,
  417.  *        - between 16 and 139 otherwise
  418.  * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
  419.  *        otherwise
  420.  *
  421.  * @return filter output vector
  422.  */
  423. static const float *do_pitchfilter(float memory[303], const float v_in[160],
  424.                                    const float gain[4], const uint8_t *lag,
  425.                                    const uint8_t pfrac[4])
  426. {
  427.     int i, j;
  428.     float *v_lag, *v_out;
  429.     const float *v_len;
  430.  
  431.     v_out = memory + 143; // Output vector starts at memory[143].
  432.  
  433.     for (i = 0; i < 4; i++) {
  434.         if (gain[i]) {
  435.             v_lag = memory + 143 + 40 * i - lag[i];
  436.             for (v_len = v_in + 40; v_in < v_len; v_in++) {
  437.                 if (pfrac[i]) { // If it is a fractional lag...
  438.                     for (j = 0, *v_out = 0.0; j < 4; j++)
  439.                         *v_out += qcelp_hammsinc_table[j] *
  440.                                   (v_lag[j - 4] + v_lag[3 - j]);
  441.                 } else
  442.                     *v_out = *v_lag;
  443.  
  444.                 *v_out = *v_in + gain[i] * *v_out;
  445.  
  446.                 v_lag++;
  447.                 v_out++;
  448.             }
  449.         } else {
  450.             memcpy(v_out, v_in, 40 * sizeof(float));
  451.             v_in  += 40;
  452.             v_out += 40;
  453.         }
  454.     }
  455.  
  456.     memmove(memory, memory + 160, 143 * sizeof(float));
  457.     return memory + 143;
  458. }
  459.  
  460. /**
  461.  * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
  462.  * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
  463.  *
  464.  * @param q the context
  465.  * @param cdn_vector the scaled codebook vector
  466.  */
  467. static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
  468. {
  469.     int i;
  470.     const float *v_synthesis_filtered, *v_pre_filtered;
  471.  
  472.     if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
  473.         (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
  474.  
  475.         if (q->bitrate >= RATE_HALF) {
  476.             // Compute gain & lag for the whole frame.
  477.             for (i = 0; i < 4; i++) {
  478.                 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
  479.  
  480.                 q->pitch_lag[i] = q->frame.plag[i] + 16;
  481.             }
  482.         } else {
  483.             float max_pitch_gain;
  484.  
  485.             if (q->bitrate == I_F_Q) {
  486.                   if (q->erasure_count < 3)
  487.                       max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
  488.                   else
  489.                       max_pitch_gain = 0.0;
  490.             } else {
  491.                 av_assert2(q->bitrate == SILENCE);
  492.                 max_pitch_gain = 1.0;
  493.             }
  494.             for (i = 0; i < 4; i++)
  495.                 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
  496.  
  497.             memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
  498.         }
  499.  
  500.         // pitch synthesis filter
  501.         v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
  502.                                               cdn_vector, q->pitch_gain,
  503.                                               q->pitch_lag, q->frame.pfrac);
  504.  
  505.         // pitch prefilter update
  506.         for (i = 0; i < 4; i++)
  507.             q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
  508.  
  509.         v_pre_filtered       = do_pitchfilter(q->pitch_pre_filter_mem,
  510.                                               v_synthesis_filtered,
  511.                                               q->pitch_gain, q->pitch_lag,
  512.                                               q->frame.pfrac);
  513.  
  514.         apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
  515.     } else {
  516.         memcpy(q->pitch_synthesis_filter_mem,
  517.                cdn_vector + 17, 143 * sizeof(float));
  518.         memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
  519.         memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
  520.         memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
  521.     }
  522. }
  523.  
  524. /**
  525.  * Reconstruct LPC coefficients from the line spectral pair frequencies
  526.  * and perform bandwidth expansion.
  527.  *
  528.  * @param lspf line spectral pair frequencies
  529.  * @param lpc linear predictive coding coefficients
  530.  *
  531.  * @note: bandwidth_expansion_coeff could be precalculated into a table
  532.  *        but it seems to be slower on x86
  533.  *
  534.  * TIA/EIA/IS-733 2.4.3.3.5
  535.  */
  536. static void lspf2lpc(const float *lspf, float *lpc)
  537. {
  538.     double lsp[10];
  539.     double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
  540.     int i;
  541.  
  542.     for (i = 0; i < 10; i++)
  543.         lsp[i] = cos(M_PI * lspf[i]);
  544.  
  545.     ff_acelp_lspd2lpc(lsp, lpc, 5);
  546.  
  547.     for (i = 0; i < 10; i++) {
  548.         lpc[i]                    *= bandwidth_expansion_coeff;
  549.         bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
  550.     }
  551. }
  552.  
  553. /**
  554.  * Interpolate LSP frequencies and compute LPC coefficients
  555.  * for a given bitrate & pitch subframe.
  556.  *
  557.  * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
  558.  *
  559.  * @param q the context
  560.  * @param curr_lspf LSP frequencies vector of the current frame
  561.  * @param lpc float vector for the resulting LPC
  562.  * @param subframe_num frame number in decoded stream
  563.  */
  564. static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
  565.                             float *lpc, const int subframe_num)
  566. {
  567.     float interpolated_lspf[10];
  568.     float weight;
  569.  
  570.     if (q->bitrate >= RATE_QUARTER)
  571.         weight = 0.25 * (subframe_num + 1);
  572.     else if (q->bitrate == RATE_OCTAVE && !subframe_num)
  573.         weight = 0.625;
  574.     else
  575.         weight = 1.0;
  576.  
  577.     if (weight != 1.0) {
  578.         ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
  579.                                 weight, 1.0 - weight, 10);
  580.         lspf2lpc(interpolated_lspf, lpc);
  581.     } else if (q->bitrate >= RATE_QUARTER ||
  582.                (q->bitrate == I_F_Q && !subframe_num))
  583.         lspf2lpc(curr_lspf, lpc);
  584.     else if (q->bitrate == SILENCE && !subframe_num)
  585.         lspf2lpc(q->prev_lspf, lpc);
  586. }
  587.  
  588. static qcelp_packet_rate buf_size2bitrate(const int buf_size)
  589. {
  590.     switch (buf_size) {
  591.     case 35: return RATE_FULL;
  592.     case 17: return RATE_HALF;
  593.     case  8: return RATE_QUARTER;
  594.     case  4: return RATE_OCTAVE;
  595.     case  1: return SILENCE;
  596.     }
  597.  
  598.     return I_F_Q;
  599. }
  600.  
  601. /**
  602.  * Determine the bitrate from the frame size and/or the first byte of the frame.
  603.  *
  604.  * @param avctx the AV codec context
  605.  * @param buf_size length of the buffer
  606.  * @param buf the bufffer
  607.  *
  608.  * @return the bitrate on success,
  609.  *         I_F_Q  if the bitrate cannot be satisfactorily determined
  610.  *
  611.  * TIA/EIA/IS-733 2.4.8.7.1
  612.  */
  613. static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
  614.                                            const int buf_size,
  615.                                            const uint8_t **buf)
  616. {
  617.     qcelp_packet_rate bitrate;
  618.  
  619.     if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
  620.         if (bitrate > **buf) {
  621.             QCELPContext *q = avctx->priv_data;
  622.             if (!q->warned_buf_mismatch_bitrate) {
  623.             av_log(avctx, AV_LOG_WARNING,
  624.                    "Claimed bitrate and buffer size mismatch.\n");
  625.                 q->warned_buf_mismatch_bitrate = 1;
  626.             }
  627.             bitrate = **buf;
  628.         } else if (bitrate < **buf) {
  629.             av_log(avctx, AV_LOG_ERROR,
  630.                    "Buffer is too small for the claimed bitrate.\n");
  631.             return I_F_Q;
  632.         }
  633.         (*buf)++;
  634.     } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
  635.         av_log(avctx, AV_LOG_WARNING,
  636.                "Bitrate byte missing, guessing bitrate from packet size.\n");
  637.     } else
  638.         return I_F_Q;
  639.  
  640.     if (bitrate == SILENCE) {
  641.         // FIXME: Remove this warning when tested with samples.
  642.         avpriv_request_sample(avctx, "Blank frame handling");
  643.     }
  644.     return bitrate;
  645. }
  646.  
  647. static void warn_insufficient_frame_quality(AVCodecContext *avctx,
  648.                                             const char *message)
  649. {
  650.     av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n",
  651.            avctx->frame_number, message);
  652. }
  653.  
  654. static void postfilter(QCELPContext *q, float *samples, float *lpc)
  655. {
  656.     static const float pow_0_775[10] = {
  657.         0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
  658.         0.216676, 0.167924, 0.130141, 0.100859, 0.078166
  659.     }, pow_0_625[10] = {
  660.         0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
  661.         0.059605, 0.037253, 0.023283, 0.014552, 0.009095
  662.     };
  663.     float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
  664.     int n;
  665.  
  666.     for (n = 0; n < 10; n++) {
  667.         lpc_s[n] = lpc[n] * pow_0_625[n];
  668.         lpc_p[n] = lpc[n] * pow_0_775[n];
  669.     }
  670.  
  671.     ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
  672.                                       q->formant_mem + 10, 160, 10);
  673.     memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
  674.     ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
  675.     memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
  676.  
  677.     ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
  678.  
  679.     ff_adaptive_gain_control(samples, pole_out + 10,
  680.                              avpriv_scalarproduct_float_c(q->formant_mem + 10,
  681.                                                           q->formant_mem + 10,
  682.                                                           160),
  683.                              160, 0.9375, &q->postfilter_agc_mem);
  684. }
  685.  
  686. static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
  687.                               int *got_frame_ptr, AVPacket *avpkt)
  688. {
  689.     const uint8_t *buf = avpkt->data;
  690.     int buf_size       = avpkt->size;
  691.     QCELPContext *q    = avctx->priv_data;
  692.     AVFrame *frame     = data;
  693.     float *outbuffer;
  694.     int   i, ret;
  695.     float quantized_lspf[10], lpc[10];
  696.     float gain[16];
  697.     float *formant_mem;
  698.  
  699.     /* get output buffer */
  700.     frame->nb_samples = 160;
  701.     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  702.         return ret;
  703.     outbuffer = (float *)frame->data[0];
  704.  
  705.     if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
  706.         warn_insufficient_frame_quality(avctx, "Bitrate cannot be determined.");
  707.         goto erasure;
  708.     }
  709.  
  710.     if (q->bitrate == RATE_OCTAVE &&
  711.         (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
  712.         warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
  713.         goto erasure;
  714.     }
  715.  
  716.     if (q->bitrate > SILENCE) {
  717.         const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
  718.         const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
  719.                                          qcelp_unpacking_bitmaps_lengths[q->bitrate];
  720.         uint8_t *unpacked_data         = (uint8_t *)&q->frame;
  721.  
  722.         if ((ret = init_get_bits8(&q->gb, buf, buf_size)) < 0)
  723.             return ret;
  724.  
  725.         memset(&q->frame, 0, sizeof(QCELPFrame));
  726.  
  727.         for (; bitmaps < bitmaps_end; bitmaps++)
  728.             unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
  729.  
  730.         // Check for erasures/blanks on rates 1, 1/4 and 1/8.
  731.         if (q->frame.reserved) {
  732.             warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
  733.             goto erasure;
  734.         }
  735.         if (q->bitrate == RATE_QUARTER &&
  736.             codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
  737.             warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
  738.             goto erasure;
  739.         }
  740.  
  741.         if (q->bitrate >= RATE_HALF) {
  742.             for (i = 0; i < 4; i++) {
  743.                 if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
  744.                     warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
  745.                     goto erasure;
  746.                 }
  747.             }
  748.         }
  749.     }
  750.  
  751.     decode_gain_and_index(q, gain);
  752.     compute_svector(q, gain, outbuffer);
  753.  
  754.     if (decode_lspf(q, quantized_lspf) < 0) {
  755.         warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
  756.         goto erasure;
  757.     }
  758.  
  759.     apply_pitch_filters(q, outbuffer);
  760.  
  761.     if (q->bitrate == I_F_Q) {
  762. erasure:
  763.         q->bitrate = I_F_Q;
  764.         q->erasure_count++;
  765.         decode_gain_and_index(q, gain);
  766.         compute_svector(q, gain, outbuffer);
  767.         decode_lspf(q, quantized_lspf);
  768.         apply_pitch_filters(q, outbuffer);
  769.     } else
  770.         q->erasure_count = 0;
  771.  
  772.     formant_mem = q->formant_mem + 10;
  773.     for (i = 0; i < 4; i++) {
  774.         interpolate_lpc(q, quantized_lspf, lpc, i);
  775.         ff_celp_lp_synthesis_filterf(formant_mem, lpc,
  776.                                      outbuffer + i * 40, 40, 10);
  777.         formant_mem += 40;
  778.     }
  779.  
  780.     // postfilter, as per TIA/EIA/IS-733 2.4.8.6
  781.     postfilter(q, outbuffer, lpc);
  782.  
  783.     memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
  784.  
  785.     memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
  786.     q->prev_bitrate  = q->bitrate;
  787.  
  788.     *got_frame_ptr = 1;
  789.  
  790.     return buf_size;
  791. }
  792.  
  793. AVCodec ff_qcelp_decoder = {
  794.     .name           = "qcelp",
  795.     .long_name      = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
  796.     .type           = AVMEDIA_TYPE_AUDIO,
  797.     .id             = AV_CODEC_ID_QCELP,
  798.     .init           = qcelp_decode_init,
  799.     .decode         = qcelp_decode_frame,
  800.     .capabilities   = AV_CODEC_CAP_DR1,
  801.     .priv_data_size = sizeof(QCELPContext),
  802. };
  803.