Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * G.722 ADPCM audio encoder/decoder
  3.  *
  4.  * Copyright (c) CMU 1993 Computer Science, Speech Group
  5.  *                        Chengxiang Lu and Alex Hauptmann
  6.  * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
  7.  * Copyright (c) 2009 Kenan Gillet
  8.  * Copyright (c) 2010 Martin Storsjo
  9.  *
  10.  * This file is part of FFmpeg.
  11.  *
  12.  * FFmpeg is free software; you can redistribute it and/or
  13.  * modify it under the terms of the GNU Lesser General Public
  14.  * License as published by the Free Software Foundation; either
  15.  * version 2.1 of the License, or (at your option) any later version.
  16.  *
  17.  * FFmpeg is distributed in the hope that it will be useful,
  18.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20.  * Lesser General Public License for more details.
  21.  *
  22.  * You should have received a copy of the GNU Lesser General Public
  23.  * License along with FFmpeg; if not, write to the Free Software
  24.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25.  */
  26.  
  27. /**
  28.  * @file
  29.  * G.722 ADPCM audio codec
  30.  *
  31.  * This G.722 decoder is a bit-exact implementation of the ITU G.722
  32.  * specification for all three specified bitrates - 64000bps, 56000bps
  33.  * and 48000bps. It passes the ITU tests.
  34.  *
  35.  * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
  36.  *       respectively of each byte are ignored.
  37.  */
  38.  
  39. #include "mathops.h"
  40. #include "g722.h"
  41.  
  42. static const int8_t sign_lookup[2] = { -1, 1 };
  43.  
  44. static const int16_t inv_log2_table[32] = {
  45.     2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
  46.     2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
  47.     2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
  48.     3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
  49. };
  50. static const int16_t high_log_factor_step[2] = { 798, -214 };
  51. const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
  52. /**
  53.  * low_log_factor_step[index] == wl[rl42[index]]
  54.  */
  55. static const int16_t low_log_factor_step[16] = {
  56.      -60, 3042, 1198, 538, 334, 172,  58, -30,
  57.     3042, 1198,  538, 334, 172,  58, -30, -60
  58. };
  59. const int16_t ff_g722_low_inv_quant4[16] = {
  60.        0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
  61.     2557,  1612,  1121,   786,   530,   323,   150,     0
  62. };
  63. const int16_t ff_g722_low_inv_quant6[64] = {
  64.      -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
  65.    -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
  66.     -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
  67.     -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
  68.     3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
  69.     1279,  1170,  1072,   982,   899,   822,   750,   682,
  70.      618,   558,   501,   447,   396,   347,   300,   254,
  71.      211,   170,   130,    91,    54,    17,   -54,   -17
  72. };
  73.  
  74. static inline void s_zero(int cur_diff, struct G722Band *band)
  75. {
  76.     int s_zero = 0;
  77.  
  78.     #define ACCUM(k, x, d) do { \
  79.             int tmp = x; \
  80.             band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \
  81.                d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \
  82.             band->diff_mem[k] = tmp; \
  83.             s_zero += (tmp * band->zero_mem[k]) >> 15; \
  84.         } while (0)
  85.     if (cur_diff) {
  86.         ACCUM(5, band->diff_mem[4], 1);
  87.         ACCUM(4, band->diff_mem[3], 1);
  88.         ACCUM(3, band->diff_mem[2], 1);
  89.         ACCUM(2, band->diff_mem[1], 1);
  90.         ACCUM(1, band->diff_mem[0], 1);
  91.         ACCUM(0, cur_diff << 1, 1);
  92.     } else {
  93.         ACCUM(5, band->diff_mem[4], 0);
  94.         ACCUM(4, band->diff_mem[3], 0);
  95.         ACCUM(3, band->diff_mem[2], 0);
  96.         ACCUM(2, band->diff_mem[1], 0);
  97.         ACCUM(1, band->diff_mem[0], 0);
  98.         ACCUM(0, cur_diff << 1, 0);
  99.     }
  100.     #undef ACCUM
  101.     band->s_zero = s_zero;
  102. }
  103.  
  104. /**
  105.  * adaptive predictor
  106.  *
  107.  * @param cur_diff the dequantized and scaled delta calculated from the
  108.  *                 current codeword
  109.  */
  110. static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
  111. {
  112.     int sg[2], limit, cur_qtzd_reconst;
  113.  
  114.     const int cur_part_reconst = band->s_zero + cur_diff < 0;
  115.  
  116.     sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
  117.     sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
  118.     band->part_reconst_mem[1] = band->part_reconst_mem[0];
  119.     band->part_reconst_mem[0] = cur_part_reconst;
  120.  
  121.     band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
  122.                                 (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
  123.  
  124.     limit = 15360 - band->pole_mem[1];
  125.     band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
  126.  
  127.     s_zero(cur_diff, band);
  128.  
  129.     cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
  130.     band->s_predictor = av_clip_int16(band->s_zero +
  131.                                       (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
  132.                                       (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
  133.     band->prev_qtzd_reconst = cur_qtzd_reconst;
  134. }
  135.  
  136. static inline int linear_scale_factor(const int log_factor)
  137. {
  138.     const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
  139.     const int shift = log_factor >> 11;
  140.     return shift < 0 ? wd1 >> -shift : wd1 << shift;
  141. }
  142.  
  143. void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
  144. {
  145.     do_adaptive_prediction(band,
  146.                            band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);
  147.  
  148.     // quantizer adaptation
  149.     band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
  150.                                  low_log_factor_step[ilow], 0, 18432);
  151.     band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
  152. }
  153.  
  154. void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
  155.                                   const int ihigh)
  156. {
  157.     do_adaptive_prediction(band, dhigh);
  158.  
  159.     // quantizer adaptation
  160.     band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
  161.                                  high_log_factor_step[ihigh&1], 0, 22528);
  162.     band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
  163. }
  164.