Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * E-AC-3 decoder
  3.  * Copyright (c) 2007 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
  4.  * Copyright (c) 2008 Justin Ruggles
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. /*
  24.  * There are several features of E-AC-3 that this decoder does not yet support.
  25.  *
  26.  * Enhanced Coupling
  27.  *     No known samples exist.  If any ever surface, this feature should not be
  28.  *     too difficult to implement.
  29.  *
  30.  * Reduced Sample Rates
  31.  *     No known samples exist.  The spec also does not give clear information
  32.  *     on how this is to be implemented.
  33.  *
  34.  * Dependent Streams
  35.  *     Only the independent stream is currently decoded. Any dependent
  36.  *     streams are skipped.  We have only come across two examples of this, and
  37.  *     they are both just test streams, one for HD-DVD and the other for
  38.  *     Blu-ray.
  39.  *
  40.  * Transient Pre-noise Processing
  41.  *     This is side information which a decoder should use to reduce artifacts
  42.  *     caused by transients.  There are samples which are known to have this
  43.  *     information, but this decoder currently ignores it.
  44.  */
  45.  
  46.  
  47. #include "avcodec.h"
  48. #include "internal.h"
  49. #include "aac_ac3_parser.h"
  50. #include "ac3.h"
  51. #include "ac3_parser.h"
  52. #include "ac3dec.h"
  53. #include "ac3dec_data.h"
  54. #include "eac3_data.h"
  55.  
  56. /** gain adaptive quantization mode */
  57. typedef enum {
  58.     EAC3_GAQ_NO =0,
  59.     EAC3_GAQ_12,
  60.     EAC3_GAQ_14,
  61.     EAC3_GAQ_124
  62. } EAC3GaqMode;
  63.  
  64. #define EAC3_SR_CODE_REDUCED  3
  65.  
  66. static void ff_eac3_apply_spectral_extension(AC3DecodeContext *s)
  67. {
  68.     int bin, bnd, ch, i;
  69.     uint8_t wrapflag[SPX_MAX_BANDS]={1,0,}, num_copy_sections, copy_sizes[SPX_MAX_BANDS];
  70.     float rms_energy[SPX_MAX_BANDS];
  71.  
  72.     /* Set copy index mapping table. Set wrap flags to apply a notch filter at
  73.        wrap points later on. */
  74.     bin = s->spx_dst_start_freq;
  75.     num_copy_sections = 0;
  76.     for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
  77.         int copysize;
  78.         int bandsize = s->spx_band_sizes[bnd];
  79.         if (bin + bandsize > s->spx_src_start_freq) {
  80.             copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
  81.             bin = s->spx_dst_start_freq;
  82.             wrapflag[bnd] = 1;
  83.         }
  84.         for (i = 0; i < bandsize; i += copysize) {
  85.             if (bin == s->spx_src_start_freq) {
  86.                 copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
  87.                 bin = s->spx_dst_start_freq;
  88.             }
  89.             copysize = FFMIN(bandsize - i, s->spx_src_start_freq - bin);
  90.             bin += copysize;
  91.         }
  92.     }
  93.     copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
  94.  
  95.     for (ch = 1; ch <= s->fbw_channels; ch++) {
  96.         if (!s->channel_uses_spx[ch])
  97.             continue;
  98.  
  99.         /* Copy coeffs from normal bands to extension bands */
  100.         bin = s->spx_src_start_freq;
  101.         for (i = 0; i < num_copy_sections; i++) {
  102.             memcpy(&s->transform_coeffs[ch][bin],
  103.                    &s->transform_coeffs[ch][s->spx_dst_start_freq],
  104.                    copy_sizes[i]*sizeof(INTFLOAT));
  105.             bin += copy_sizes[i];
  106.         }
  107.  
  108.         /* Calculate RMS energy for each SPX band. */
  109.         bin = s->spx_src_start_freq;
  110.         for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
  111.             int bandsize = s->spx_band_sizes[bnd];
  112.             float accum = 0.0f;
  113.             for (i = 0; i < bandsize; i++) {
  114.                 float coeff = s->transform_coeffs[ch][bin++];
  115.                 accum += coeff * coeff;
  116.             }
  117.             rms_energy[bnd] = sqrtf(accum / bandsize);
  118.         }
  119.  
  120.         /* Apply a notch filter at transitions between normal and extension
  121.            bands and at all wrap points. */
  122.         if (s->spx_atten_code[ch] >= 0) {
  123.             const float *atten_tab = ff_eac3_spx_atten_tab[s->spx_atten_code[ch]];
  124.             bin = s->spx_src_start_freq - 2;
  125.             for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
  126.                 if (wrapflag[bnd]) {
  127.                     INTFLOAT *coeffs = &s->transform_coeffs[ch][bin];
  128.                     coeffs[0] *= atten_tab[0];
  129.                     coeffs[1] *= atten_tab[1];
  130.                     coeffs[2] *= atten_tab[2];
  131.                     coeffs[3] *= atten_tab[1];
  132.                     coeffs[4] *= atten_tab[0];
  133.                 }
  134.                 bin += s->spx_band_sizes[bnd];
  135.             }
  136.         }
  137.  
  138.         /* Apply noise-blended coefficient scaling based on previously
  139.            calculated RMS energy, blending factors, and SPX coordinates for
  140.            each band. */
  141.         bin = s->spx_src_start_freq;
  142.         for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
  143.             float nscale = s->spx_noise_blend[ch][bnd] * rms_energy[bnd] * (1.0f / INT32_MIN);
  144.             float sscale = s->spx_signal_blend[ch][bnd];
  145. #if USE_FIXED
  146.             // spx_noise_blend and spx_signal_blend are both FP.23
  147.             nscale *= 1.0 / (1<<23);
  148.             sscale *= 1.0 / (1<<23);
  149. #endif
  150.             for (i = 0; i < s->spx_band_sizes[bnd]; i++) {
  151.                 float noise  = nscale * (int32_t)av_lfg_get(&s->dith_state);
  152.                 s->transform_coeffs[ch][bin]   *= sscale;
  153.                 s->transform_coeffs[ch][bin++] += noise;
  154.             }
  155.         }
  156.     }
  157. }
  158.  
  159.  
  160. /** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
  161. #define COEFF_0 10273905LL
  162.  
  163. /** lrint(M_SQRT2*cos(0*M_PI/12)*(1<<23)) = lrint(M_SQRT2*(1<<23)) */
  164. #define COEFF_1 11863283LL
  165.  
  166. /** lrint(M_SQRT2*cos(5*M_PI/12)*(1<<23)) */
  167. #define COEFF_2  3070444LL
  168.  
  169. /**
  170.  * Calculate 6-point IDCT of the pre-mantissas.
  171.  * All calculations are 24-bit fixed-point.
  172.  */
  173. static void idct6(int pre_mant[6])
  174. {
  175.     int tmp;
  176.     int even0, even1, even2, odd0, odd1, odd2;
  177.  
  178.     odd1 = pre_mant[1] - pre_mant[3] - pre_mant[5];
  179.  
  180.     even2 = ( pre_mant[2]                * COEFF_0) >> 23;
  181.     tmp   = ( pre_mant[4]                * COEFF_1) >> 23;
  182.     odd0  = ((pre_mant[1] + pre_mant[5]) * COEFF_2) >> 23;
  183.  
  184.     even0 = pre_mant[0] + (tmp >> 1);
  185.     even1 = pre_mant[0] - tmp;
  186.  
  187.     tmp = even0;
  188.     even0 = tmp + even2;
  189.     even2 = tmp - even2;
  190.  
  191.     tmp = odd0;
  192.     odd0 = tmp + pre_mant[1] + pre_mant[3];
  193.     odd2 = tmp + pre_mant[5] - pre_mant[3];
  194.  
  195.     pre_mant[0] = even0 + odd0;
  196.     pre_mant[1] = even1 + odd1;
  197.     pre_mant[2] = even2 + odd2;
  198.     pre_mant[3] = even2 - odd2;
  199.     pre_mant[4] = even1 - odd1;
  200.     pre_mant[5] = even0 - odd0;
  201. }
  202.  
  203. static void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
  204. {
  205.     int bin, blk, gs;
  206.     int end_bap, gaq_mode;
  207.     GetBitContext *gbc = &s->gbc;
  208.     int gaq_gain[AC3_MAX_COEFS];
  209.  
  210.     gaq_mode = get_bits(gbc, 2);
  211.     end_bap = (gaq_mode < 2) ? 12 : 17;
  212.  
  213.     /* if GAQ gain is used, decode gain codes for bins with hebap between
  214.        8 and end_bap */
  215.     gs = 0;
  216.     if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
  217.         /* read 1-bit GAQ gain codes */
  218.         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
  219.             if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
  220.                 gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
  221.         }
  222.     } else if (gaq_mode == EAC3_GAQ_124) {
  223.         /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
  224.         int gc = 2;
  225.         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
  226.             if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
  227.                 if (gc++ == 2) {
  228.                     int group_code = get_bits(gbc, 5);
  229.                     if (group_code > 26) {
  230.                         av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
  231.                         group_code = 26;
  232.                     }
  233.                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
  234.                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
  235.                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
  236.                     gc = 0;
  237.                 }
  238.             }
  239.         }
  240.     }
  241.  
  242.     gs=0;
  243.     for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
  244.         int hebap = s->bap[ch][bin];
  245.         int bits = ff_eac3_bits_vs_hebap[hebap];
  246.         if (!hebap) {
  247.             /* zero-mantissa dithering */
  248.             for (blk = 0; blk < 6; blk++) {
  249.                 s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
  250.             }
  251.         } else if (hebap < 8) {
  252.             /* Vector Quantization */
  253.             int v = get_bits(gbc, bits);
  254.             for (blk = 0; blk < 6; blk++) {
  255.                 s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] << 8;
  256.             }
  257.         } else {
  258.             /* Gain Adaptive Quantization */
  259.             int gbits, log_gain;
  260.             if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
  261.                 log_gain = gaq_gain[gs++];
  262.             } else {
  263.                 log_gain = 0;
  264.             }
  265.             gbits = bits - log_gain;
  266.  
  267.             for (blk = 0; blk < 6; blk++) {
  268.                 int mant = get_sbits(gbc, gbits);
  269.                 if (log_gain && mant == -(1 << (gbits-1))) {
  270.                     /* large mantissa */
  271.                     int b;
  272.                     int mbits = bits - (2 - log_gain);
  273.                     mant = get_sbits(gbc, mbits);
  274.                     mant <<= (23 - (mbits - 1));
  275.                     /* remap mantissa value to correct for asymmetric quantization */
  276.                     if (mant >= 0)
  277.                         b = 1 << (23 - log_gain);
  278.                     else
  279.                         b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] << 8;
  280.                     mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b;
  281.                 } else {
  282.                     /* small mantissa, no GAQ, or Gk=1 */
  283.                     mant <<= 24 - bits;
  284.                     if (!log_gain) {
  285.                         /* remap mantissa value for no GAQ or Gk=1 */
  286.                         mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15;
  287.                     }
  288.                 }
  289.                 s->pre_mantissa[ch][bin][blk] = mant;
  290.             }
  291.         }
  292.         idct6(s->pre_mantissa[ch][bin]);
  293.     }
  294. }
  295.  
  296. static int ff_eac3_parse_header(AC3DecodeContext *s)
  297. {
  298.     int i, blk, ch;
  299.     int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
  300.     int parse_transient_proc_info;
  301.     int num_cpl_blocks;
  302.     GetBitContext *gbc = &s->gbc;
  303.  
  304.     /* An E-AC-3 stream can have multiple independent streams which the
  305.        application can select from. each independent stream can also contain
  306.        dependent streams which are used to add or replace channels. */
  307.     if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
  308.         avpriv_request_sample(s->avctx, "Dependent substream decoding");
  309.         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
  310.     } else if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
  311.         av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
  312.         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
  313.     }
  314.  
  315.     /* The substream id indicates which substream this frame belongs to. each
  316.        independent stream has its own substream id, and the dependent streams
  317.        associated to an independent stream have matching substream id's. */
  318.     if (s->substreamid) {
  319.         /* only decode substream with id=0. skip any additional substreams. */
  320.         avpriv_request_sample(s->avctx, "Additional substreams");
  321.         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
  322.     }
  323.  
  324.     if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
  325.         /* The E-AC-3 specification does not tell how to handle reduced sample
  326.            rates in bit allocation.  The best assumption would be that it is
  327.            handled like AC-3 DolbyNet, but we cannot be sure until we have a
  328.            sample which utilizes this feature. */
  329.         avpriv_request_sample(s->avctx, "Reduced sampling rate");
  330.         return AVERROR_PATCHWELCOME;
  331.     }
  332.     skip_bits(gbc, 5); // skip bitstream id
  333.  
  334.     /* volume control params */
  335.     for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
  336.         skip_bits(gbc, 5); // skip dialog normalization
  337.         if (get_bits1(gbc)) {
  338.             skip_bits(gbc, 8); // skip compression gain word
  339.         }
  340.     }
  341.  
  342.     /* dependent stream channel map */
  343.     if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
  344.         if (get_bits1(gbc)) {
  345.             skip_bits(gbc, 16); // skip custom channel map
  346.         }
  347.     }
  348.  
  349.     /* mixing metadata */
  350.     if (get_bits1(gbc)) {
  351.         /* center and surround mix levels */
  352.         if (s->channel_mode > AC3_CHMODE_STEREO) {
  353.             s->preferred_downmix = get_bits(gbc, 2);
  354.             if (s->channel_mode & 1) {
  355.                 /* if three front channels exist */
  356.                 s->center_mix_level_ltrt = get_bits(gbc, 3);
  357.                 s->center_mix_level      = get_bits(gbc, 3);
  358.             }
  359.             if (s->channel_mode & 4) {
  360.                 /* if a surround channel exists */
  361.                 s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
  362.                 s->surround_mix_level      = av_clip(get_bits(gbc, 3), 3, 7);
  363.             }
  364.         }
  365.  
  366.         /* lfe mix level */
  367.         if (s->lfe_on && (s->lfe_mix_level_exists = get_bits1(gbc))) {
  368.             s->lfe_mix_level = get_bits(gbc, 5);
  369.         }
  370.  
  371.         /* info for mixing with other streams and substreams */
  372.         if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
  373.             for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
  374.                 // TODO: apply program scale factor
  375.                 if (get_bits1(gbc)) {
  376.                     skip_bits(gbc, 6);  // skip program scale factor
  377.                 }
  378.             }
  379.             if (get_bits1(gbc)) {
  380.                 skip_bits(gbc, 6);  // skip external program scale factor
  381.             }
  382.             /* skip mixing parameter data */
  383.             switch(get_bits(gbc, 2)) {
  384.                 case 1: skip_bits(gbc, 5);  break;
  385.                 case 2: skip_bits(gbc, 12); break;
  386.                 case 3: {
  387.                     int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
  388.                     skip_bits_long(gbc, mix_data_size);
  389.                     break;
  390.                 }
  391.             }
  392.             /* skip pan information for mono or dual mono source */
  393.             if (s->channel_mode < AC3_CHMODE_STEREO) {
  394.                 for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
  395.                     if (get_bits1(gbc)) {
  396.                         /* note: this is not in the ATSC A/52B specification
  397.                            reference: ETSI TS 102 366 V1.1.1
  398.                                       section: E.1.3.1.25 */
  399.                         skip_bits(gbc, 8);  // skip pan mean direction index
  400.                         skip_bits(gbc, 6);  // skip reserved paninfo bits
  401.                     }
  402.                 }
  403.             }
  404.             /* skip mixing configuration information */
  405.             if (get_bits1(gbc)) {
  406.                 for (blk = 0; blk < s->num_blocks; blk++) {
  407.                     if (s->num_blocks == 1 || get_bits1(gbc)) {
  408.                         skip_bits(gbc, 5);
  409.                     }
  410.                 }
  411.             }
  412.         }
  413.     }
  414.  
  415.     /* informational metadata */
  416.     if (get_bits1(gbc)) {
  417.         s->bitstream_mode = get_bits(gbc, 3);
  418.         skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
  419.         if (s->channel_mode == AC3_CHMODE_STEREO) {
  420.             s->dolby_surround_mode  = get_bits(gbc, 2);
  421.             s->dolby_headphone_mode = get_bits(gbc, 2);
  422.         }
  423.         if (s->channel_mode >= AC3_CHMODE_2F2R) {
  424.             s->dolby_surround_ex_mode = get_bits(gbc, 2);
  425.         }
  426.         for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
  427.             if (get_bits1(gbc)) {
  428.                 skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
  429.             }
  430.         }
  431.         if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
  432.             skip_bits1(gbc); // skip source sample rate code
  433.         }
  434.     }
  435.  
  436.     /* converter synchronization flag
  437.        If frames are less than six blocks, this bit should be turned on
  438.        once every 6 blocks to indicate the start of a frame set.
  439.        reference: RFC 4598, Section 2.1.3  Frame Sets */
  440.     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
  441.         skip_bits1(gbc); // skip converter synchronization flag
  442.     }
  443.  
  444.     /* original frame size code if this stream was converted from AC-3 */
  445.     if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
  446.             (s->num_blocks == 6 || get_bits1(gbc))) {
  447.         skip_bits(gbc, 6); // skip frame size code
  448.     }
  449.  
  450.     /* additional bitstream info */
  451.     if (get_bits1(gbc)) {
  452.         int addbsil = get_bits(gbc, 6);
  453.         for (i = 0; i < addbsil + 1; i++) {
  454.             skip_bits(gbc, 8); // skip additional bit stream info
  455.         }
  456.     }
  457.  
  458.     /* audio frame syntax flags, strategy data, and per-frame data */
  459.  
  460.     if (s->num_blocks == 6) {
  461.         ac3_exponent_strategy = get_bits1(gbc);
  462.         parse_aht_info        = get_bits1(gbc);
  463.     } else {
  464.         /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
  465.            do not use AHT */
  466.         ac3_exponent_strategy = 1;
  467.         parse_aht_info = 0;
  468.     }
  469.  
  470.     s->snr_offset_strategy    = get_bits(gbc, 2);
  471.     parse_transient_proc_info = get_bits1(gbc);
  472.  
  473.     s->block_switch_syntax = get_bits1(gbc);
  474.     if (!s->block_switch_syntax)
  475.         memset(s->block_switch, 0, sizeof(s->block_switch));
  476.  
  477.     s->dither_flag_syntax = get_bits1(gbc);
  478.     if (!s->dither_flag_syntax) {
  479.         for (ch = 1; ch <= s->fbw_channels; ch++)
  480.             s->dither_flag[ch] = 1;
  481.     }
  482.     s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;
  483.  
  484.     s->bit_allocation_syntax = get_bits1(gbc);
  485.     if (!s->bit_allocation_syntax) {
  486.         /* set default bit allocation parameters */
  487.         s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
  488.         s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
  489.         s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
  490.         s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
  491.         s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
  492.     }
  493.  
  494.     s->fast_gain_syntax  = get_bits1(gbc);
  495.     s->dba_syntax        = get_bits1(gbc);
  496.     s->skip_syntax       = get_bits1(gbc);
  497.     parse_spx_atten_data = get_bits1(gbc);
  498.  
  499.     /* coupling strategy occurrence and coupling use per block */
  500.     num_cpl_blocks = 0;
  501.     if (s->channel_mode > 1) {
  502.         for (blk = 0; blk < s->num_blocks; blk++) {
  503.             s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
  504.             if (s->cpl_strategy_exists[blk]) {
  505.                 s->cpl_in_use[blk] = get_bits1(gbc);
  506.             } else {
  507.                 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
  508.             }
  509.             num_cpl_blocks += s->cpl_in_use[blk];
  510.         }
  511.     } else {
  512.         memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
  513.     }
  514.  
  515.     /* exponent strategy data */
  516.     if (ac3_exponent_strategy) {
  517.         /* AC-3-style exponent strategy syntax */
  518.         for (blk = 0; blk < s->num_blocks; blk++) {
  519.             for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
  520.                 s->exp_strategy[blk][ch] = get_bits(gbc, 2);
  521.             }
  522.         }
  523.     } else {
  524.         /* LUT-based exponent strategy syntax */
  525.         for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
  526.             int frmchexpstr = get_bits(gbc, 5);
  527.             for (blk = 0; blk < 6; blk++) {
  528.                 s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
  529.             }
  530.         }
  531.     }
  532.     /* LFE exponent strategy */
  533.     if (s->lfe_on) {
  534.         for (blk = 0; blk < s->num_blocks; blk++) {
  535.             s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
  536.         }
  537.     }
  538.     /* original exponent strategies if this stream was converted from AC-3 */
  539.     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
  540.             (s->num_blocks == 6 || get_bits1(gbc))) {
  541.         skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
  542.     }
  543.  
  544.     /* determine which channels use AHT */
  545.     if (parse_aht_info) {
  546.         /* For AHT to be used, all non-zero blocks must reuse exponents from
  547.            the first block.  Furthermore, for AHT to be used in the coupling
  548.            channel, all blocks must use coupling and use the same coupling
  549.            strategy. */
  550.         s->channel_uses_aht[CPL_CH]=0;
  551.         for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
  552.             int use_aht = 1;
  553.             for (blk = 1; blk < 6; blk++) {
  554.                 if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
  555.                         (!ch && s->cpl_strategy_exists[blk])) {
  556.                     use_aht = 0;
  557.                     break;
  558.                 }
  559.             }
  560.             s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
  561.         }
  562.     } else {
  563.         memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
  564.     }
  565.  
  566.     /* per-frame SNR offset */
  567.     if (!s->snr_offset_strategy) {
  568.         int csnroffst = (get_bits(gbc, 6) - 15) << 4;
  569.         int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
  570.         for (ch = 0; ch <= s->channels; ch++)
  571.             s->snr_offset[ch] = snroffst;
  572.     }
  573.  
  574.     /* transient pre-noise processing data */
  575.     if (parse_transient_proc_info) {
  576.         for (ch = 1; ch <= s->fbw_channels; ch++) {
  577.             if (get_bits1(gbc)) { // channel in transient processing
  578.                 skip_bits(gbc, 10); // skip transient processing location
  579.                 skip_bits(gbc, 8);  // skip transient processing length
  580.             }
  581.         }
  582.     }
  583.  
  584.     /* spectral extension attenuation data */
  585.     for (ch = 1; ch <= s->fbw_channels; ch++) {
  586.         if (parse_spx_atten_data && get_bits1(gbc)) {
  587.             s->spx_atten_code[ch] = get_bits(gbc, 5);
  588.         } else {
  589.             s->spx_atten_code[ch] = -1;
  590.         }
  591.     }
  592.  
  593.     /* block start information */
  594.     if (s->num_blocks > 1 && get_bits1(gbc)) {
  595.         /* reference: Section E2.3.2.27
  596.            nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
  597.            The spec does not say what this data is or what it's used for.
  598.            It is likely the offset of each block within the frame. */
  599.         int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
  600.         skip_bits_long(gbc, block_start_bits);
  601.         avpriv_request_sample(s->avctx, "Block start info");
  602.     }
  603.  
  604.     /* syntax state initialization */
  605.     for (ch = 1; ch <= s->fbw_channels; ch++) {
  606.         s->first_spx_coords[ch] = 1;
  607.         s->first_cpl_coords[ch] = 1;
  608.     }
  609.     s->first_cpl_leak = 1;
  610.  
  611.     return 0;
  612. }
  613.