Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * adaptive and fixed codebook vector operations for ACELP-based codecs
  3.  *
  4.  * Copyright (c) 2008 Vladimir Voroshilov
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. #include <inttypes.h>
  24.  
  25. #include "libavutil/avassert.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "avcodec.h"
  29. #include "acelp_vectors.h"
  30.  
  31. const uint8_t ff_fc_2pulses_9bits_track1[16] =
  32. {
  33.     1,  3,
  34.     6,  8,
  35.     11, 13,
  36.     16, 18,
  37.     21, 23,
  38.     26, 28,
  39.     31, 33,
  40.     36, 38
  41. };
  42. const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
  43. {
  44.   1,  3,
  45.   8,  6,
  46.   18, 16,
  47.   11, 13,
  48.   38, 36,
  49.   31, 33,
  50.   21, 23,
  51.   28, 26,
  52. };
  53.  
  54. const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
  55. {
  56.   0,  2,
  57.   5,  4,
  58.   12, 10,
  59.   7,  9,
  60.   25, 24,
  61.   20, 22,
  62.   14, 15,
  63.   19, 17,
  64.   36, 31,
  65.   21, 26,
  66.   1,  6,
  67.   16, 11,
  68.   27, 29,
  69.   32, 30,
  70.   39, 37,
  71.   34, 35,
  72. };
  73.  
  74. const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
  75. {
  76.   0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
  77. };
  78.  
  79. const uint8_t ff_fc_4pulses_8bits_track_4[32] =
  80. {
  81.     3,  4,
  82.     8,  9,
  83.     13, 14,
  84.     18, 19,
  85.     23, 24,
  86.     28, 29,
  87.     33, 34,
  88.     38, 39,
  89.     43, 44,
  90.     48, 49,
  91.     53, 54,
  92.     58, 59,
  93.     63, 64,
  94.     68, 69,
  95.     73, 74,
  96.     78, 79,
  97. };
  98.  
  99. const float ff_pow_0_7[10] = {
  100.     0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
  101.     0.117649, 0.082354, 0.057648, 0.040354, 0.028248
  102. };
  103.  
  104. const float ff_pow_0_75[10] = {
  105.     0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
  106.     0.177979, 0.133484, 0.100113, 0.075085, 0.056314
  107. };
  108.  
  109. const float ff_pow_0_55[10] = {
  110.     0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
  111.     0.027681, 0.015224, 0.008373, 0.004605, 0.002533
  112. };
  113.  
  114. const float ff_b60_sinc[61] = {
  115.  0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
  116.  0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
  117. -0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
  118.  0.0689392 ,  0.0357056 ,  0.0       , -0.0305481 , -0.0504150 , -0.0570068  ,
  119. -0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
  120.  0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
  121. -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.0       ,  0.00582886 ,
  122.  0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
  123. -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
  124.  0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
  125.  0.
  126. };
  127.  
  128. void ff_acelp_fc_pulse_per_track(
  129.         int16_t* fc_v,
  130.         const uint8_t *tab1,
  131.         const uint8_t *tab2,
  132.         int pulse_indexes,
  133.         int pulse_signs,
  134.         int pulse_count,
  135.         int bits)
  136. {
  137.     int mask = (1 << bits) - 1;
  138.     int i;
  139.  
  140.     for(i=0; i<pulse_count; i++)
  141.     {
  142.         fc_v[i + tab1[pulse_indexes & mask]] +=
  143.                 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
  144.  
  145.         pulse_indexes >>= bits;
  146.         pulse_signs >>= 1;
  147.     }
  148.  
  149.     fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
  150. }
  151.  
  152. void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
  153.                                 AMRFixed *fixed_sparse,
  154.                                 const uint8_t *gray_decode,
  155.                                 int half_pulse_count, int bits)
  156. {
  157.     int i;
  158.     int mask = (1 << bits) - 1;
  159.  
  160.     fixed_sparse->no_repeat_mask = 0;
  161.     fixed_sparse->n = 2 * half_pulse_count;
  162.     for (i = 0; i < half_pulse_count; i++) {
  163.         const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
  164.         const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
  165.         const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
  166.         fixed_sparse->x[2*i+1] = pos1;
  167.         fixed_sparse->x[2*i  ] = pos2;
  168.         fixed_sparse->y[2*i+1] = sign;
  169.         fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
  170.     }
  171. }
  172.  
  173. void ff_acelp_weighted_vector_sum(
  174.         int16_t* out,
  175.         const int16_t *in_a,
  176.         const int16_t *in_b,
  177.         int16_t weight_coeff_a,
  178.         int16_t weight_coeff_b,
  179.         int16_t rounder,
  180.         int shift,
  181.         int length)
  182. {
  183.     int i;
  184.  
  185.     // Clipping required here; breaks OVERFLOW test.
  186.     for(i=0; i<length; i++)
  187.         out[i] = av_clip_int16((
  188.                  in_a[i] * weight_coeff_a +
  189.                  in_b[i] * weight_coeff_b +
  190.                  rounder) >> shift);
  191. }
  192.  
  193. void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
  194.                              float weight_coeff_a, float weight_coeff_b, int length)
  195. {
  196.     int i;
  197.  
  198.     for(i=0; i<length; i++)
  199.         out[i] = weight_coeff_a * in_a[i]
  200.                + weight_coeff_b * in_b[i];
  201. }
  202.  
  203. void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
  204.                               int size, float alpha, float *gain_mem)
  205. {
  206.     int i;
  207.     float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
  208.     float gain_scale_factor = 1.0;
  209.     float mem = *gain_mem;
  210.  
  211.     if (postfilter_energ)
  212.         gain_scale_factor = sqrt(speech_energ / postfilter_energ);
  213.  
  214.     gain_scale_factor *= 1.0 - alpha;
  215.  
  216.     for (i = 0; i < size; i++) {
  217.         mem = alpha * mem + gain_scale_factor;
  218.         out[i] = in[i] * mem;
  219.     }
  220.  
  221.     *gain_mem = mem;
  222. }
  223.  
  224. void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
  225.                                              float sum_of_squares, const int n)
  226. {
  227.     int i;
  228.     float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
  229.     if (scalefactor)
  230.         scalefactor = sqrt(sum_of_squares / scalefactor);
  231.     for (i = 0; i < n; i++)
  232.         out[i] = in[i] * scalefactor;
  233. }
  234.  
  235. void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
  236. {
  237.     int i;
  238.  
  239.     for (i=0; i < in->n; i++) {
  240.         int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
  241.         float y = in->y[i] * scale;
  242.  
  243.         if (in->pitch_lag > 0)
  244.             av_assert0(x < size);
  245.             do {
  246.                 out[x] += y;
  247.                 y *= in->pitch_fac;
  248.                 x += in->pitch_lag;
  249.             } while (x < size && repeats);
  250.     }
  251. }
  252.  
  253. void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
  254. {
  255.     int i;
  256.  
  257.     for (i=0; i < in->n; i++) {
  258.         int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
  259.  
  260.         if (in->pitch_lag > 0)
  261.             do {
  262.                 out[x] = 0.0;
  263.                 x += in->pitch_lag;
  264.             } while (x < size && repeats);
  265.     }
  266. }
  267.  
  268. void ff_acelp_vectors_init(ACELPVContext *c)
  269. {
  270.     c->weighted_vector_sumf   = ff_weighted_vector_sumf;
  271.  
  272.     if(HAVE_MIPSFPU)
  273.         ff_acelp_vectors_init_mips(c);
  274. }
  275.