Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * AC-3 encoder float/fixed template
  3.  * Copyright (c) 2000 Fabrice Bellard
  4.  * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
  5.  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
  6.  *
  7.  * This file is part of FFmpeg.
  8.  *
  9.  * FFmpeg is free software; you can redistribute it and/or
  10.  * modify it under the terms of the GNU Lesser General Public
  11.  * License as published by the Free Software Foundation; either
  12.  * version 2.1 of the License, or (at your option) any later version.
  13.  *
  14.  * FFmpeg is distributed in the hope that it will be useful,
  15.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17.  * Lesser General Public License for more details.
  18.  *
  19.  * You should have received a copy of the GNU Lesser General Public
  20.  * License along with FFmpeg; if not, write to the Free Software
  21.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22.  */
  23.  
  24. /**
  25.  * @file
  26.  * AC-3 encoder float/fixed template
  27.  */
  28.  
  29. #include <stdint.h>
  30.  
  31. #include "libavutil/attributes.h"
  32. #include "libavutil/internal.h"
  33.  
  34. #include "audiodsp.h"
  35. #include "internal.h"
  36. #include "ac3enc.h"
  37. #include "eac3enc.h"
  38.  
  39. /* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
  40.  
  41. static void scale_coefficients(AC3EncodeContext *s);
  42.  
  43. static int normalize_samples(AC3EncodeContext *s);
  44.  
  45. static void clip_coefficients(AudioDSPContext *adsp, CoefType *coef,
  46.                               unsigned int len);
  47.  
  48. static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
  49.  
  50. static void sum_square_butterfly(AC3EncodeContext *s, CoefSumType sum[4],
  51.                                  const CoefType *coef0, const CoefType *coef1,
  52.                                  int len);
  53.  
  54. int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
  55. {
  56.     int ch;
  57.  
  58.     FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
  59.                      sizeof(*s->windowed_samples), alloc_fail);
  60.     FF_ALLOC_ARRAY_OR_GOTO(s->avctx, s->planar_samples, s->channels, sizeof(*s->planar_samples),
  61.                      alloc_fail);
  62.     for (ch = 0; ch < s->channels; ch++) {
  63.         FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
  64.                           (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
  65.                           alloc_fail);
  66.     }
  67.  
  68.     return 0;
  69. alloc_fail:
  70.     return AVERROR(ENOMEM);
  71. }
  72.  
  73.  
  74. /*
  75.  * Copy input samples.
  76.  * Channels are reordered from FFmpeg's default order to AC-3 order.
  77.  */
  78. static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
  79. {
  80.     int ch;
  81.  
  82.     /* copy and remap input samples */
  83.     for (ch = 0; ch < s->channels; ch++) {
  84.         /* copy last 256 samples of previous frame to the start of the current frame */
  85.         memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
  86.                AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
  87.  
  88.         /* copy new samples for current frame */
  89.         memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
  90.                samples[s->channel_map[ch]],
  91.                AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
  92.     }
  93. }
  94.  
  95.  
  96. /*
  97.  * Apply the MDCT to input samples to generate frequency coefficients.
  98.  * This applies the KBD window and normalizes the input to reduce precision
  99.  * loss due to fixed-point calculations.
  100.  */
  101. static void apply_mdct(AC3EncodeContext *s)
  102. {
  103.     int blk, ch;
  104.  
  105.     for (ch = 0; ch < s->channels; ch++) {
  106.         for (blk = 0; blk < s->num_blocks; blk++) {
  107.             AC3Block *block = &s->blocks[blk];
  108.             const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
  109.  
  110. #if CONFIG_AC3ENC_FLOAT
  111.             s->fdsp->vector_fmul(s->windowed_samples, input_samples,
  112.                                 s->mdct_window, AC3_WINDOW_SIZE);
  113. #else
  114.             s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
  115.                                          s->mdct_window, AC3_WINDOW_SIZE);
  116. #endif
  117.  
  118.             if (s->fixed_point)
  119.                 block->coeff_shift[ch+1] = normalize_samples(s);
  120.  
  121.             s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
  122.                                s->windowed_samples);
  123.         }
  124.     }
  125. }
  126.  
  127.  
  128. /*
  129.  * Calculate coupling channel and coupling coordinates.
  130.  */
  131. static void apply_channel_coupling(AC3EncodeContext *s)
  132. {
  133.     LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
  134. #if CONFIG_AC3ENC_FLOAT
  135.     LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
  136. #else
  137.     int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
  138. #endif
  139.     int av_uninit(blk), ch, bnd, i, j;
  140.     CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
  141.     int cpl_start, num_cpl_coefs;
  142.  
  143.     memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
  144. #if CONFIG_AC3ENC_FLOAT
  145.     memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
  146. #endif
  147.  
  148.     /* align start to 16-byte boundary. align length to multiple of 32.
  149.         note: coupling start bin % 4 will always be 1 */
  150.     cpl_start     = s->start_freq[CPL_CH] - 1;
  151.     num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
  152.     cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
  153.  
  154.     /* calculate coupling channel from fbw channels */
  155.     for (blk = 0; blk < s->num_blocks; blk++) {
  156.         AC3Block *block = &s->blocks[blk];
  157.         CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
  158.         if (!block->cpl_in_use)
  159.             continue;
  160.         memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
  161.         for (ch = 1; ch <= s->fbw_channels; ch++) {
  162.             CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
  163.             if (!block->channel_in_cpl[ch])
  164.                 continue;
  165.             for (i = 0; i < num_cpl_coefs; i++)
  166.                 cpl_coef[i] += ch_coef[i];
  167.         }
  168.  
  169.         /* coefficients must be clipped in order to be encoded */
  170.         clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
  171.     }
  172.  
  173.     /* calculate energy in each band in coupling channel and each fbw channel */
  174.     /* TODO: possibly use SIMD to speed up energy calculation */
  175.     bnd = 0;
  176.     i = s->start_freq[CPL_CH];
  177.     while (i < s->cpl_end_freq) {
  178.         int band_size = s->cpl_band_sizes[bnd];
  179.         for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
  180.             for (blk = 0; blk < s->num_blocks; blk++) {
  181.                 AC3Block *block = &s->blocks[blk];
  182.                 if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
  183.                     continue;
  184.                 for (j = 0; j < band_size; j++) {
  185.                     CoefType v = block->mdct_coef[ch][i+j];
  186.                     MAC_COEF(energy[blk][ch][bnd], v, v);
  187.                 }
  188.             }
  189.         }
  190.         i += band_size;
  191.         bnd++;
  192.     }
  193.  
  194.     /* calculate coupling coordinates for all blocks for all channels */
  195.     for (blk = 0; blk < s->num_blocks; blk++) {
  196.         AC3Block *block  = &s->blocks[blk];
  197.         if (!block->cpl_in_use)
  198.             continue;
  199.         for (ch = 1; ch <= s->fbw_channels; ch++) {
  200.             if (!block->channel_in_cpl[ch])
  201.                 continue;
  202.             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  203.                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
  204.                                                           energy[blk][CPL_CH][bnd]);
  205.             }
  206.         }
  207.     }
  208.  
  209.     /* determine which blocks to send new coupling coordinates for */
  210.     for (blk = 0; blk < s->num_blocks; blk++) {
  211.         AC3Block *block  = &s->blocks[blk];
  212.         AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
  213.  
  214.         memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
  215.  
  216.         if (block->cpl_in_use) {
  217.             /* send new coordinates if this is the first block, if previous
  218.              * block did not use coupling but this block does, the channels
  219.              * using coupling has changed from the previous block, or the
  220.              * coordinate difference from the last block for any channel is
  221.              * greater than a threshold value. */
  222.             if (blk == 0 || !block0->cpl_in_use) {
  223.                 for (ch = 1; ch <= s->fbw_channels; ch++)
  224.                     block->new_cpl_coords[ch] = 1;
  225.             } else {
  226.                 for (ch = 1; ch <= s->fbw_channels; ch++) {
  227.                     if (!block->channel_in_cpl[ch])
  228.                         continue;
  229.                     if (!block0->channel_in_cpl[ch]) {
  230.                         block->new_cpl_coords[ch] = 1;
  231.                     } else {
  232.                         CoefSumType coord_diff = 0;
  233.                         for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  234.                             coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
  235.                                                 cpl_coords[blk  ][ch][bnd]);
  236.                         }
  237.                         coord_diff /= s->num_cpl_bands;
  238.                         if (coord_diff > NEW_CPL_COORD_THRESHOLD)
  239.                             block->new_cpl_coords[ch] = 1;
  240.                     }
  241.                 }
  242.             }
  243.         }
  244.     }
  245.  
  246.     /* calculate final coupling coordinates, taking into account reusing of
  247.        coordinates in successive blocks */
  248.     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  249.         blk = 0;
  250.         while (blk < s->num_blocks) {
  251.             int av_uninit(blk1);
  252.             AC3Block *block  = &s->blocks[blk];
  253.  
  254.             if (!block->cpl_in_use) {
  255.                 blk++;
  256.                 continue;
  257.             }
  258.  
  259.             for (ch = 1; ch <= s->fbw_channels; ch++) {
  260.                 CoefSumType energy_ch, energy_cpl;
  261.                 if (!block->channel_in_cpl[ch])
  262.                     continue;
  263.                 energy_cpl = energy[blk][CPL_CH][bnd];
  264.                 energy_ch = energy[blk][ch][bnd];
  265.                 blk1 = blk+1;
  266.                 while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
  267.                     if (s->blocks[blk1].cpl_in_use) {
  268.                         energy_cpl += energy[blk1][CPL_CH][bnd];
  269.                         energy_ch += energy[blk1][ch][bnd];
  270.                     }
  271.                     blk1++;
  272.                 }
  273.                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
  274.             }
  275.             blk = blk1;
  276.         }
  277.     }
  278.  
  279.     /* calculate exponents/mantissas for coupling coordinates */
  280.     for (blk = 0; blk < s->num_blocks; blk++) {
  281.         AC3Block *block = &s->blocks[blk];
  282.         if (!block->cpl_in_use)
  283.             continue;
  284.  
  285. #if CONFIG_AC3ENC_FLOAT
  286.         s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
  287.                                    cpl_coords[blk][1],
  288.                                    s->fbw_channels * 16);
  289. #endif
  290.         s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
  291.                                     fixed_cpl_coords[blk][1],
  292.                                     s->fbw_channels * 16);
  293.  
  294.         for (ch = 1; ch <= s->fbw_channels; ch++) {
  295.             int bnd, min_exp, max_exp, master_exp;
  296.  
  297.             if (!block->new_cpl_coords[ch])
  298.                 continue;
  299.  
  300.             /* determine master exponent */
  301.             min_exp = max_exp = block->cpl_coord_exp[ch][0];
  302.             for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
  303.                 int exp = block->cpl_coord_exp[ch][bnd];
  304.                 min_exp = FFMIN(exp, min_exp);
  305.                 max_exp = FFMAX(exp, max_exp);
  306.             }
  307.             master_exp = ((max_exp - 15) + 2) / 3;
  308.             master_exp = FFMAX(master_exp, 0);
  309.             while (min_exp < master_exp * 3)
  310.                 master_exp--;
  311.             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  312.                 block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
  313.                                                         master_exp * 3, 0, 15);
  314.             }
  315.             block->cpl_master_exp[ch] = master_exp;
  316.  
  317.             /* quantize mantissas */
  318.             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  319.                 int cpl_exp  = block->cpl_coord_exp[ch][bnd];
  320.                 int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
  321.                 if (cpl_exp == 15)
  322.                     cpl_mant >>= 1;
  323.                 else
  324.                     cpl_mant -= 16;
  325.  
  326.                 block->cpl_coord_mant[ch][bnd] = cpl_mant;
  327.             }
  328.         }
  329.     }
  330.  
  331.     if (CONFIG_EAC3_ENCODER && s->eac3)
  332.         ff_eac3_set_cpl_states(s);
  333. }
  334.  
  335.  
  336. /*
  337.  * Determine rematrixing flags for each block and band.
  338.  */
  339. static void compute_rematrixing_strategy(AC3EncodeContext *s)
  340. {
  341.     int nb_coefs;
  342.     int blk, bnd;
  343.     AC3Block *block, *block0 = NULL;
  344.  
  345.     if (s->channel_mode != AC3_CHMODE_STEREO)
  346.         return;
  347.  
  348.     for (blk = 0; blk < s->num_blocks; blk++) {
  349.         block = &s->blocks[blk];
  350.         block->new_rematrixing_strategy = !blk;
  351.  
  352.         block->num_rematrixing_bands = 4;
  353.         if (block->cpl_in_use) {
  354.             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
  355.             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
  356.             if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
  357.                 block->new_rematrixing_strategy = 1;
  358.         }
  359.         nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
  360.  
  361.         if (!s->rematrixing_enabled) {
  362.             block0 = block;
  363.             continue;
  364.         }
  365.  
  366.         for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
  367.             /* calculate sum of squared coeffs for one band in one block */
  368.             int start = ff_ac3_rematrix_band_tab[bnd];
  369.             int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
  370.             CoefSumType sum[4];
  371.             sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
  372.                                  block->mdct_coef[2] + start, end - start);
  373.  
  374.             /* compare sums to determine if rematrixing will be used for this band */
  375.             if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
  376.                 block->rematrixing_flags[bnd] = 1;
  377.             else
  378.                 block->rematrixing_flags[bnd] = 0;
  379.  
  380.             /* determine if new rematrixing flags will be sent */
  381.             if (blk &&
  382.                 block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
  383.                 block->new_rematrixing_strategy = 1;
  384.             }
  385.         }
  386.         block0 = block;
  387.     }
  388. }
  389.  
  390.  
  391. int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
  392.                            const AVFrame *frame, int *got_packet_ptr)
  393. {
  394.     AC3EncodeContext *s = avctx->priv_data;
  395.     int ret;
  396.  
  397.     if (s->options.allow_per_frame_metadata) {
  398.         ret = ff_ac3_validate_metadata(s);
  399.         if (ret)
  400.             return ret;
  401.     }
  402.  
  403.     if (s->bit_alloc.sr_code == 1 || s->eac3)
  404.         ff_ac3_adjust_frame_size(s);
  405.  
  406.     copy_input_samples(s, (SampleType **)frame->extended_data);
  407.  
  408.     apply_mdct(s);
  409.  
  410.     if (s->fixed_point)
  411.         scale_coefficients(s);
  412.  
  413.     clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
  414.                       AC3_MAX_COEFS * s->num_blocks * s->channels);
  415.  
  416.     s->cpl_on = s->cpl_enabled;
  417.     ff_ac3_compute_coupling_strategy(s);
  418.  
  419.     if (s->cpl_on)
  420.         apply_channel_coupling(s);
  421.  
  422.     compute_rematrixing_strategy(s);
  423.  
  424.     if (!s->fixed_point)
  425.         scale_coefficients(s);
  426.  
  427.     ff_ac3_apply_rematrixing(s);
  428.  
  429.     ff_ac3_process_exponents(s);
  430.  
  431.     ret = ff_ac3_compute_bit_allocation(s);
  432.     if (ret) {
  433.         av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  434.         return ret;
  435.     }
  436.  
  437.     ff_ac3_group_exponents(s);
  438.  
  439.     ff_ac3_quantize_mantissas(s);
  440.  
  441.     if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size, 0)) < 0)
  442.         return ret;
  443.     ff_ac3_output_frame(s, avpkt->data);
  444.  
  445.     if (frame->pts != AV_NOPTS_VALUE)
  446.         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
  447.  
  448.     *got_packet_ptr = 1;
  449.     return 0;
  450. }
  451.