Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  3.  *
  4.  * This file is part of FFmpeg.
  5.  *
  6.  * FFmpeg is free software; you can redistribute it and/or
  7.  * modify it under the terms of the GNU Lesser General Public
  8.  * License as published by the Free Software Foundation; either
  9.  * version 2.1 of the License, or (at your option) any later version.
  10.  *
  11.  * FFmpeg is distributed in the hope that it will be useful,
  12.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14.  * Lesser General Public License for more details.
  15.  *
  16.  * You should have received a copy of the GNU Lesser General Public
  17.  * License along with FFmpeg; if not, write to the Free Software
  18.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19.  *
  20.  * Note: Rounding-to-nearest used unless otherwise stated
  21.  *
  22.  */
  23. #include <stdint.h>
  24.  
  25. #include "config.h"
  26. #include "libavutil/attributes.h"
  27. #include "aacpsdsp.h"
  28.  
  29. static void ps_add_squares_c(INTFLOAT *dst, const INTFLOAT (*src)[2], int n)
  30. {
  31.     int i;
  32.     for (i = 0; i < n; i++)
  33.         dst[i] += AAC_MADD28(src[i][0], src[i][0], src[i][1], src[i][1]);
  34. }
  35.  
  36. static void ps_mul_pair_single_c(INTFLOAT (*dst)[2], INTFLOAT (*src0)[2], INTFLOAT *src1,
  37.                                  int n)
  38. {
  39.     int i;
  40.     for (i = 0; i < n; i++) {
  41.         dst[i][0] = AAC_MUL16(src0[i][0], src1[i]);
  42.         dst[i][1] = AAC_MUL16(src0[i][1], src1[i]);
  43.     }
  44. }
  45.  
  46. static void ps_hybrid_analysis_c(INTFLOAT (*out)[2], INTFLOAT (*in)[2],
  47.                                  const INTFLOAT (*filter)[8][2],
  48.                                  int stride, int n)
  49. {
  50.     int i, j;
  51.  
  52.     for (i = 0; i < n; i++) {
  53.         INT64FLOAT sum_re = (INT64FLOAT)filter[i][6][0] * in[6][0];
  54.         INT64FLOAT sum_im = (INT64FLOAT)filter[i][6][0] * in[6][1];
  55.  
  56.         for (j = 0; j < 6; j++) {
  57.             INTFLOAT in0_re = in[j][0];
  58.             INTFLOAT in0_im = in[j][1];
  59.             INTFLOAT in1_re = in[12-j][0];
  60.             INTFLOAT in1_im = in[12-j][1];
  61.             sum_re += (INT64FLOAT)filter[i][j][0] * (in0_re + in1_re) -
  62.                       (INT64FLOAT)filter[i][j][1] * (in0_im - in1_im);
  63.             sum_im += (INT64FLOAT)filter[i][j][0] * (in0_im + in1_im) +
  64.                       (INT64FLOAT)filter[i][j][1] * (in0_re - in1_re);
  65.         }
  66. #if USE_FIXED
  67.         out[i * stride][0] = (int)((sum_re + 0x40000000) >> 31);
  68.         out[i * stride][1] = (int)((sum_im + 0x40000000) >> 31);
  69. #else
  70.         out[i * stride][0] = sum_re;
  71.         out[i * stride][1] = sum_im;
  72. #endif /* USE_FIXED */
  73.     }
  74. }
  75. static void ps_hybrid_analysis_ileave_c(INTFLOAT (*out)[32][2], INTFLOAT L[2][38][64],
  76.                                       int i, int len)
  77. {
  78.     int j;
  79.  
  80.     for (; i < 64; i++) {
  81.         for (j = 0; j < len; j++) {
  82.             out[i][j][0] = L[0][j][i];
  83.             out[i][j][1] = L[1][j][i];
  84.         }
  85.     }
  86. }
  87.  
  88. static void ps_hybrid_synthesis_deint_c(INTFLOAT out[2][38][64],
  89.                                       INTFLOAT (*in)[32][2],
  90.                                       int i, int len)
  91. {
  92.     int n;
  93.  
  94.     for (; i < 64; i++) {
  95.         for (n = 0; n < len; n++) {
  96.             out[0][n][i] = in[i][n][0];
  97.             out[1][n][i] = in[i][n][1];
  98.         }
  99.     }
  100. }
  101.  
  102. static void ps_decorrelate_c(INTFLOAT (*out)[2], INTFLOAT (*delay)[2],
  103.                              INTFLOAT (*ap_delay)[PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2],
  104.                              const INTFLOAT phi_fract[2], const INTFLOAT (*Q_fract)[2],
  105.                              const INTFLOAT *transient_gain,
  106.                              INTFLOAT g_decay_slope,
  107.                              int len)
  108. {
  109.     static const INTFLOAT a[] = { Q31(0.65143905753106f),
  110.                                Q31(0.56471812200776f),
  111.                                Q31(0.48954165955695f) };
  112.     INTFLOAT ag[PS_AP_LINKS];
  113.     int m, n;
  114.  
  115.     for (m = 0; m < PS_AP_LINKS; m++)
  116.         ag[m] = AAC_MUL30(a[m], g_decay_slope);
  117.  
  118.     for (n = 0; n < len; n++) {
  119.         INTFLOAT in_re = AAC_MSUB30(delay[n][0], phi_fract[0], delay[n][1], phi_fract[1]);
  120.         INTFLOAT in_im = AAC_MADD30(delay[n][0], phi_fract[1], delay[n][1], phi_fract[0]);
  121.         for (m = 0; m < PS_AP_LINKS; m++) {
  122.             INTFLOAT a_re                = AAC_MUL31(ag[m], in_re);
  123.             INTFLOAT a_im                = AAC_MUL31(ag[m], in_im);
  124.             INTFLOAT link_delay_re       = ap_delay[m][n+2-m][0];
  125.             INTFLOAT link_delay_im       = ap_delay[m][n+2-m][1];
  126.             INTFLOAT fractional_delay_re = Q_fract[m][0];
  127.             INTFLOAT fractional_delay_im = Q_fract[m][1];
  128.             INTFLOAT apd_re = in_re;
  129.             INTFLOAT apd_im = in_im;
  130.             in_re = AAC_MSUB30(link_delay_re, fractional_delay_re,
  131.                     link_delay_im, fractional_delay_im);
  132.             in_re -= a_re;
  133.             in_im = AAC_MADD30(link_delay_re, fractional_delay_im,
  134.                     link_delay_im, fractional_delay_re);
  135.             in_im -= a_im;
  136.             ap_delay[m][n+5][0] = apd_re + AAC_MUL31(ag[m], in_re);
  137.             ap_delay[m][n+5][1] = apd_im + AAC_MUL31(ag[m], in_im);
  138.         }
  139.         out[n][0] = AAC_MUL16(transient_gain[n], in_re);
  140.         out[n][1] = AAC_MUL16(transient_gain[n], in_im);
  141.     }
  142. }
  143.  
  144. static void ps_stereo_interpolate_c(INTFLOAT (*l)[2], INTFLOAT (*r)[2],
  145.                                     INTFLOAT h[2][4], INTFLOAT h_step[2][4],
  146.                                     int len)
  147. {
  148.     INTFLOAT h0 = h[0][0];
  149.     INTFLOAT h1 = h[0][1];
  150.     INTFLOAT h2 = h[0][2];
  151.     INTFLOAT h3 = h[0][3];
  152.     INTFLOAT hs0 = h_step[0][0];
  153.     INTFLOAT hs1 = h_step[0][1];
  154.     INTFLOAT hs2 = h_step[0][2];
  155.     INTFLOAT hs3 = h_step[0][3];
  156.     int n;
  157.  
  158.     for (n = 0; n < len; n++) {
  159.         //l is s, r is d
  160.         INTFLOAT l_re = l[n][0];
  161.         INTFLOAT l_im = l[n][1];
  162.         INTFLOAT r_re = r[n][0];
  163.         INTFLOAT r_im = r[n][1];
  164.         h0 += hs0;
  165.         h1 += hs1;
  166.         h2 += hs2;
  167.         h3 += hs3;
  168.         l[n][0] = AAC_MADD30(h0,  l_re,  h2, r_re);
  169.         l[n][1] = AAC_MADD30(h0,  l_im,  h2,  r_im);
  170.         r[n][0] = AAC_MADD30(h1,  l_re,  h3,  r_re);
  171.         r[n][1] = AAC_MADD30(h1,  l_im,  h3,  r_im);
  172.     }
  173. }
  174.  
  175. static void ps_stereo_interpolate_ipdopd_c(INTFLOAT (*l)[2], INTFLOAT (*r)[2],
  176.                                            INTFLOAT h[2][4], INTFLOAT h_step[2][4],
  177.                                            int len)
  178. {
  179.     INTFLOAT h00  = h[0][0],      h10  = h[1][0];
  180.     INTFLOAT h01  = h[0][1],      h11  = h[1][1];
  181.     INTFLOAT h02  = h[0][2],      h12  = h[1][2];
  182.     INTFLOAT h03  = h[0][3],      h13  = h[1][3];
  183.     INTFLOAT hs00 = h_step[0][0], hs10 = h_step[1][0];
  184.     INTFLOAT hs01 = h_step[0][1], hs11 = h_step[1][1];
  185.     INTFLOAT hs02 = h_step[0][2], hs12 = h_step[1][2];
  186.     INTFLOAT hs03 = h_step[0][3], hs13 = h_step[1][3];
  187.     int n;
  188.  
  189.     for (n = 0; n < len; n++) {
  190.         //l is s, r is d
  191.         INTFLOAT l_re = l[n][0];
  192.         INTFLOAT l_im = l[n][1];
  193.         INTFLOAT r_re = r[n][0];
  194.         INTFLOAT r_im = r[n][1];
  195.         h00 += hs00;
  196.         h01 += hs01;
  197.         h02 += hs02;
  198.         h03 += hs03;
  199.         h10 += hs10;
  200.         h11 += hs11;
  201.         h12 += hs12;
  202.         h13 += hs13;
  203.  
  204.         l[n][0] = AAC_MSUB30_V8(h00, l_re, h02, r_re, h10, l_im, h12, r_im);
  205.         l[n][1] = AAC_MADD30_V8(h00, l_im, h02, r_im, h10, l_re, h12, r_re);
  206.         r[n][0] = AAC_MSUB30_V8(h01, l_re, h03, r_re, h11, l_im, h13, r_im);
  207.         r[n][1] = AAC_MADD30_V8(h01, l_im, h03, r_im, h11, l_re, h13, r_re);
  208.     }
  209. }
  210.  
  211. av_cold void AAC_RENAME(ff_psdsp_init)(PSDSPContext *s)
  212. {
  213.     s->add_squares            = ps_add_squares_c;
  214.     s->mul_pair_single        = ps_mul_pair_single_c;
  215.     s->hybrid_analysis        = ps_hybrid_analysis_c;
  216.     s->hybrid_analysis_ileave = ps_hybrid_analysis_ileave_c;
  217.     s->hybrid_synthesis_deint = ps_hybrid_synthesis_deint_c;
  218.     s->decorrelate            = ps_decorrelate_c;
  219.     s->stereo_interpolate[0]  = ps_stereo_interpolate_c;
  220.     s->stereo_interpolate[1]  = ps_stereo_interpolate_ipdopd_c;
  221.  
  222. #if !USE_FIXED
  223.     if (ARCH_ARM)
  224.         ff_psdsp_init_arm(s);
  225.     if (ARCH_MIPS)
  226.         ff_psdsp_init_mips(s);
  227.     if (ARCH_X86)
  228.         ff_psdsp_init_x86(s);
  229. #endif /* !USE_FIXED */
  230. }
  231.